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1 PROBLEM - APPLICATIONS

Multimedia System: A system that can store and
retrieve objects/documents with text, voice, images,
animation, slides show etc.

>

Problem definition:
e given a set of multimedia objects,

e find the ones containing a desirable pattern (or
something similar to it)

GOALS: search by content
e Eifficient and

e ‘complete’ (no false dismissals)



Applications:
e time series: financial, marketing, ECGs, voice/sound
e images: education, art, medicine

e higher-d signals: scientific db (eg., meteorology,
astrophysics), medicine, entertainment (video)

Sample queries:
e find companies whose stock prices move similarly

e find past days in which the solar magnetic wind
showed patterns similar to today’s pattern [Vas93]

o find X-rays similar to Smith’s
o :n LANDSAT images, find areas with cornfield

colors

o find the average MRI brain scan of epileptics

Similarity search, hypothesis testing, rule discovery,
data mining [Agrawal et al., SIGMOD 93] [AIS93]



2 FRAMEWORK

e Whole matching vs. Sub-pattern matching

e Range queries vs Nearest Neighbor

e All-pairs queries (’spatial joins’)

Database whole match query
S1
1 365 1 365
sub-sequence match
Sn

ia

1 365 1 30

Distance function: by domain expert.
Eg., Euclidean

D(S,Q) = (£ IS[- QUMY (1)
(similarly for vector fields)
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S1

Database

whole match query

365 1 365

sub-sequence match

365 1 30



Target method:
o fast
e no false dismissals (false alarms are OK)

e dynamic (insertions/deletions/appends)



3 SPATIAL ACCESS METHODS

Objects may be points, rectangles or arbitrary shapes.
Queries:

e point queries,
® range queries,
e ‘all-pairs’/spatial join queries [BKS93],
e nearest neighbor(s) queries [RKV95].
Applications
e Traditional data base systems.
e multimedia objects, after feature extraction [Jag91b]
e Cartography [Sam90a]
e Computer-Aided Design (CAD).
e Computer vision and robotics [BB82]

e Rule indexing in expert database systems [SSH86]
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Overview
e space filling curves/ z-ordering / linear quadtrees
e grid files

e R-trees
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3.1 Space filling curves

Proposed, among others, by. [Ore86] [SSN87] [OMSS]
[Ore89] [Ore90] [Sam90b]. Very similar linear quadtrees
(Gar82].

Y initial shape
11 B & repetitor
10 N
01
00

00011011
C

Z—axisoi Hiﬂ ;1”6

e 2z, = Shuffle ("1,2,1,2”, x4, y4) = Shuffle ("1,2,1,2",
00, 11) = 0101 = (5),0

e 25 = 11 (common prefix of all its blocks)
o zc, = 0010 = 2
o zc, = 1000 = 8

11



NOTICE:

e Relations using z values =

— excellent integration of geometric data bases
with relational ones

— fast processing of geometric queries, using in-
dex on the z values

e used by the U.S. Bureau of Census - TIGER
project [Whi81]

e BUT: regions give too many pieces, unless we use
approximations (=‘redundancy’ [Ore90]).

12



Variations - improvements

e Best distance preserving mapping?

@

G ©

e Study of clustering properties of space filling curves:

— Exhaustive enumeration, [FR89b)]

— formulas for partial match queries and 2x2 squares,
[Jag90]
— closed formula for z-ordering [RF91]
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3.2 Grid File
Dynamic version of multi-attribute hashing [NHS84]

e 2 disk accesses for exact match queries
e symmetric with respect to the attributes

e adapting to non-uniform distributions

Ly e aa
R / (1812, Napoleon)
A ) }@ }CD}@}
0 1000 1500 2000
1750

e Fivery cell — one disk page

e Cuts occur on predefined points (1/2, 1/4 etc of
each axis)

e Cuts cut all the way (as opposed to k-d-B-trees)
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Implementation
y- cutpoints
Z
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BUT: correlated attributes

| | 9 © S
salary |- e
| | | O |

Solutions:
e Rotated grid file [HN83]
o tricell [FR89a)

Other Variations:
e Twin grid file [HSW88]

Notice that it handles points; rectangles can be han-
dled by transforming them into points in 4-d [HN83]
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3.3 R-trees

Idea: Group points in parents - allow parents to
overlap. [Gut84]

e balanced

e > 50% utilization

jpointer

“to child
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Variations / Improvements:

e Packed R-trees [RL85| [KF93] for static data.
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e cell trees [Gun86] introduce diagonal cuts, too.

e R+ trees: [FSR87] [SRF87| No overlap; balanced.
Outperform R-trees when there are few large rect-
angles and several small ones.

e R*-trees [BKSS90] Main idea: defer splitting, us-
ing forced-reinsert on 30% of the most remote
rectangles.

e Hilbert R-trees [KF94] defer split, by pushing
keys to the "Hilbert’ neighbor.

e Analysis for R-trees: Range queries [PSTW93];
using fractal dimensions [FK94]
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3.4 Conclusions

e Z-ordering (Linear quadtrees) and R-trees seem
the most promising methods.

e R-trees are more robust for high-d spaces.
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4 TIME SERIES

[Agrawal et al., FODO 93] [AFS93]
Distance: Euclidean

Obvious solution: sequential scan.
Q: Something faster?

A: 'Quick-and-dirty’ filter:
e extract n features (numbers, eg., avg., etc.)
e map a sequence into a point in n-d feature space

e organize points with a Spatial Access Method
(SAM) [Jag91b]

e discard false alarms

20



S1

Feature2
U Ry
0
1 365
ey
RN
< F(S2)
Featurel
1 365
Intuitively,
Dfeature(F(Sl)y F(SQ)) ~ Dactual(Sla SQ)
Ideally, "=". However equality might be difficult

(eg., 'dimensionality curse’).

Lemma: To guarantee no false dismissals, lower-
bound the actual distance:

Dfeature(F(Sl)y F(SQ)) S Dactual(Sla SQ)
Le., ‘it is OK to make things look closer’.
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Solution for the whole-matching problem:
e perform Discrete Fourier Transform (DFT).
e keep first few coeflicients
It works well, because:
e DFT maintains distances ( Parseval’s theorem)
e concentrates the 'energy’, for 'colored noises’

e Keeping the first few coeflicients lower-bounds
the distance

22



DFT formulas and definitions [Ham77] [OS75]:
n—1
Xe=1/vn 'Zo zviexp(—j2nfi/n) f=0,1,...,n—1

where 53 = +/—1.

Energy of a signal Z:
n—1
E(F) = Z|°= £ |=i (2)
Theorem (Parseval).

n_

X |zl X5 (3)

and also:
[Z-gIP=|X-Y | (4)

The first few (eg., 2) coefficients result in a lower
bound:

(X1-11)"+(Xp-Y3)” < (X1 -V1)*+H(Xp—Y3) +(X3-Y5)" . ..
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Colored noises

e brown noise (1/f* energy spectrum) = random
walk (stock price movements, currency exchange
rates) [Mandelbrot] [Man77]

e pink noise (1/f energy spectrum) - works of art
[Sch91]

e black noise (1/f* b > 2) water-level of rivers
[Sch91]

24



Examples of colored noises:
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Performance:
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Figure 1: Time per query vs. # Fourier coefficients, for range queries
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5 COLOR IMAGES

Much work on

e machine vision [BB82, DH73a], [TSSM89] [WSTM90]
[CL91, CW92, LH90, LH92], [HK92], [[X90, Jag91la,
KKS*91, CH91, MG89, GNM92, LWSS], and [BGS92,
SBY1, Toks9);

e much work on fast searching;

e little communication between DB and MV com-
munities [ACM91, JN92, NBE193]

Except recently [HHLC92] [PO93] [?] [FBF194]
Goal: Queries on color, shape, texture, eg.,

e find photos with color distribution similar to a
sunset over the ocean

e find shapes similar to tropical fish

Queries (a) 'by example’ (b) 'by sketch’
Support for combinations of color, shape, texture
specifications; browsing; ‘positional color’.
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5.1 Color - features and distance func-
tion
COLOR IMAGE, eg. 256x256
I-th pixel:

(ri, di, bi)

i-th pixel: (r;, g;,b;) (Red, Green, Blue), 0 < r;, g;,b; <
255

eg. pink = ( 200, 60, 60) (£ )

black = (0, 0, 0)

white = (255, 255, 255)

28



Feature vector: histogram with, say 64 colors
(bright red, pink, orange, ..., light blue, dark blue,

)

Eg., sunset photo:
¥ = (80,85,75,...,90,110,...)

pixel
HEE I I
i iorange . dark
- pink * blue
bright light
red blue
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Distance of two histograms Z and ¢: CROSS TALK

bright red
pink
Eorange
X
q
eg, 64 colors
apR agp
distancepisiogram(T,§) = (T —q) | apr app ... |(Z— Q)
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NONE of the S.A.Ms can handle crosstalk.

COLOR IMAGE, eg. 256x256
I-th pixel:

(ri, gi, bi)

V\‘_‘______

Solution:

e Use a simpler feature vector, eg., average or total
R, G, B
= (S, gi, X by)
with

- -
!

distancepgp(x’, q¢') = Euclidean distance

e exploit the theorem [FBF194]

- -

distancerap(2’, ¢') < distancen;siogram(Z, q)

Thus, the distancercp():
e is euclidean = SAMs apply

e lowerbounds actual distance = no false dismissals
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5.2 Shapes

e Features: area, perimeter, moments (= 20)
e Distance: (weighted) Euclidean
e Problem: too many features

e Solution: Karhunen-Loeve (K-L) transform ([Fuk90]
[DH73b]) = 2-3 coefficients are enough
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5.3 Performance

For color
T T T T T T T T T
Total timewith filtering ——
12000 - CPU time with filtering ----- -
Total time for naive sequential -----
CPU timefor naive sequential
10000 —
8000 - ]
()]
e}
c
:
= 6000 - ]
=
4000
2000
N E
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Fraction of database retrieved

Figure 3: Time spent with sequential retrieval vs. filtered retrieval

Observations: resolving crosstalk
e allows indexing

o saves CPU time (distancenisiogram i O(k?)).

33



Performance for shapes
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Figure 4: Average Disk [/O’s per query, vs. dimensions kept

Observations
e first 2 K-L coefficients are best (= 70% of energy)

e similar performance for larger db
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6 3-D MEDICAL IMAGES

Query by content in 2-d medical image databases
[HHL.C92] [PO93] [?]

Case study for 3-d medical images: QBISM [ACF*93]
Goal: DB support for 3-d medical images (and specif-
ically, for the Human Brain Mapping project). le.,:

given 3-d brain scans (PET, MRI etc) + demographic
characteristics

build a system
to allow exploratory research
e a PET study: (z,y, z, intensity) tuples
e intensity = glucose consumption rate = brain ac-
tivity
QBISM: Typical of multimedia retrieval system (han-
dles scalar fields = n-d signals)
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Sample queries:
e fetch a patient’s PET study
e show visual system
e rotate and/or slice
e show areas of high intensity
e list organs within 10mm from hippocampus

o typical/average scan for 20-yr old left-handed fe-
males

1

e find brain scans similar to "Smith’s

36



System architecture:

e DBMS, with 'long fields’, extended SQL with con-
tains, intersects etc., plus

e visualization package (eg., ‘Data Explorer’) as
front end

DBMS Visudization

=~
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Good news for similarity searches:
e Fuclidean distance is a good first step
e DFT leads to a skewed spectrum

Conclusions: Compared to a file-based system, a
DBMS allows:

e convenient querying over multiple images

e better performance through early filtering

38



7 SUB-PATTERN MATCHING

Problem: [Faloutsos et. al., SIGMOD 94] [FRM94]

e Given a collection of sequences (of variable dura-
tion)

e find the ones that contain a desirable pattern
(within distance ¢)

Database
S1

sub-seguence match

1 200

1 500
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Assumption: queries have length > w

Proposed method: use sliding, overlapping windows
to create trails in feature space.

Features: first few coefficients of the w-point DFT

Feature2
S1 (2nd DFT
coefficient)
t=3
t=2 &
o o
/ ©
) 2
t=1 e
1 200
offsett=1_
Featurel
t=2 (first coefficient

of $w$-point DFT)
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More details on the method:
e subdivide trails and bound them by MBRs
e store MBRs in a S.A.M.

Q: Why not store all the points of the trail?
A: Too much space overhead!

MBR1
Fé F2

[j MBR2

F1

Ii

Leaf nodes: set of (seq-id, t-start, t-end, MBR)
Non-leaf nodes: set of (MBR, node-ptr)

41



More details - how to divide a trail into subtrails?

F2 F2
P P
- P4 P3 P4
P3 P6
* P6
P7 p7
P8 *pg
22 P9 . * P9 %
fl PL P2
F1 F1
(a) 'fixed’ (b) 'adaptive’
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Searching, for minimum-length queries:

"short’ query:

value
-
C1
W time

F2

Cc2

F1
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Searching, for longer queries: ‘Multi-piece’ algorithm:
e Break it in p pieces of length w
e Search for each piece, with tolerance €/,/p

e 'OR’ the results and cleanup false alarms

F2 value
oo efsort(p)
oL A
Lo )
Cl \\\\;///// .
W w time
Part 1 Part 2

F1
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Experiments

e real data (stock prices) - 329,000 points; also,
synthetic data.

e implementation in C, AIX, IBM RS/6000
o features: first 3 (complex) DFT coefficients

e 'adaptive’ heuristic for sub-trails

e R*-tree [BKSS90] for S.A.M.
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Search time experiments - ’short’ queries

1000 L] L] L] I L] I L] L] L] I L] L] L] I L] L] I:
Relative Measured Wall Clock Time <> ;
100 F
Ts/Tr
10 F
1 1 1 1 1
le-06 le-05 0.0001 0.001 0.01 0.1

Query Selectivity

Relative wall clock time vs. selectivity in log-log
scale (Len(Q)) =w=>512 points).

Conclusion: 3 to 100 times better than seq. scan-
ning.
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8 CONCLUSIONS

Problem: Fast and ‘complete’ indexing for multime-
dia databases
Solution: ‘Quick and dirty’ filter:

e map objects into points in feature space, lower-
bounding the actual distance. (= ‘complete-
ness’).

e use any spatial access method (= efficiency).
Main idea, for ‘sub-pattern matching’

e map an object into a set of (hyper)-rectangles in
feature space

e use a S.A.M.
Occasional mismatches between features and SAMs:

e ‘dimensionality curse’: Use distance preserving,
enerqy concentrating transforms (eg., DFT, DCT,
wavelet [RBC792] etc.)

e ‘cross-talk’: diagonalization
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Challenges:

e specific distance function / features for each ap-
plication

e handling of non-Euclidean distance functions (eg.,
as in DNA strings)
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