FALCON: Feedback Adaptive Loop for Content-Based
Retrieval

Leejay Wu Christos Faloutsos

Katia Sycara Terry R. Payne

Carnegie Mellon University

Abstract

Several methods currently exist that can
perform relatively simple queries driven
by relevance feedback on large multimedia
databases. However, all these methods work
only for vector spaces; that is, they require
that objects be represented as vectors within
feature spaces. Moreover, their implied query
regions are typically convex. This research pa-
per explains our solution.

We propose a novel method that is designed
to handle digjunctive queries within metric
spaces. The user provides weights for pos-
itive examples; our system “learns” the im-
plied concept and returns similar objects.
Our method differs from existing relevance-
feedback methods that base themselves upon
Euclidean or Mahalanobis metrics, as it facili-
tates learning even disjunctive, concave mod-
els within vector spaces, as well as arbitrary
metric spaces. In addition, our method 1s
completely example-driven, and imposes no
requirements upon the user for other aspects
such as feature selection.

Our main contributions are two-fold. Not only
do we present a novel way to estimate the
dissimilarity of an object to a set of desir-
able objects, but we support it with an algo-
rithm that shows how to exploit metric index-
ing structures that support range queries to
accelerate the search without incurring false
dismissals. Our empirical results demonstrate
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that our method converges rapidly to excellent
precision/recall, while outperforming sequen-
tial scanning by up to 200%.

1 Introduction

As the size and diversity of multimedia databases in-
crease, so does the potential complexity of queries.
Query concepts such as, ”Return all video clips show-
ing any US President speaking”, may be be easy to
specify, but difficult to perform. Unless comprehensive
annotations are provided with every database entry, a
multimedia database might be forced to rely on noth-
ing more than query-by-example. In addition, measur-
ing similarity between images then becomes an issue.
Should one resort to commercial packages, the result
may easily yield — at best — a metric space, as neither
the features nor their relevance are known, where a
metric space is defined via a distance function which
obeys symmetry and the triangle inequality [4]. In
this domain, query models demanding vector spaces
fail completely. This paper presents a novel approach,
FALCON, which allows easy specification of complex
queries, within both vector and metric spaces, for mul-
timedia and traditional databases.

Many retrieval methods represent database records
as vectors, with the assumption that the closer are two
vectors, the more similar are the corresponding records
[9]. Distance functions are chosen to score dissimilarity
between points within this space. Thus, one may query
a database by performing either a range query or a
nearest-neighbor search relative to a single point or
hyper-surface within this space.

However, users may wish to perform more compli-
cated queries. On a real-world database, a user may
wish to retrieve a class of objects that does not map
to a contiguous region according to the similarity met-
ric. For instance, the aforementioned query regarding
US Presidents speaking arguably could map to numer-
ous rather disparate images due to change of venue
and personnel — and if the image distances are gener-
ated via a black-box function, we now have an unusual
query in a metric space. Finding similar objects within
this space is related to clustering, which can be done



in metric spaces as per [16].

FALCON combines distances and incorporates user
feedback in such a way as to “learn” the nature of such
queries. This aggregate dissimilarity model applies to
metric data sets, since it does not use any informa-
tion about the data itself aside from that returned by
a pairwise distance metric. Qur experiments demon-
strate that FALCON can provide high-quality results
in terms of precision and recall after 5 to 20 iterations.

The paper is organized as follows: Section 2 summa-
rizes a sample of existing related systems; the mecha-
nisms underlying FALCON are presented in Section 3;
the experiments and corresponding results are detailed
in Section 4, and the subsequent analysis is presented
in Section b. The paper concludes with Section 6.

2 Related Work

A number of systems such as the following have been
developed to handle example-based queries. Note they
handle neither unusual disjoint queries, nor arbitrary
metric spaces.

e Rocchio’s relevance feedback mechanism [11],
which generates hyper-spherical isosurfaces in fea-
ture space.

e MARS (Multimedia Analysis and Retrieval Sys-
tem) [10, 12, 13], which includes a query expan-
sion model that can weight features from multi-
ple objects. However, MARS limits the sums of
weights, so that when using fixed thresholds it
becomes difficult to specify a disjunctive query in
which being similar to any one of the examples is
sufficient to be considered good.

e MindReader, which uses the Mahalanobis dis-
tance to allow arbitrarily oriented ellipsoids [6].
The Mahalanobis distance M (Z,§) is defined as
(Z — §)T x M x (£ — §) where ¥ and § are n-
dimensional column vectors and M is a n X n ma-
trix. This corresponds to a weighted Euclidean
distance, and permits effective rotation of the
axes, but requires many examples to calculate the
covariance matrix.

The original assumption behind the earliest systems
is that there exists an ideal query vector. One can
then try to determine both this vector and the optimal
relative weights of the axes. This dependence on a
vector space prevents these methods from generalizing
to metric spaces.

Later systems, such as current versions of MARS,
have query expansion models which permit actual
elaboration by weighting the relative importance of
different features of multiple positive examples [10].
However, one should note that MARS has been spe-
cialized for image databases with features, whereas
MindReader generates isosurfaces consisting of single

hyper-ellipsoids, and therefore does not handle dis-

junctive queries.
O
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Figure 1: Generic isosurfaces for three previous meth-

ods.

See Figure 1 for an illustration of these types of
1sosurfaces.

Fox and Salton used the L, metric to surpass fuzzy
Boolean methods in the domain of text retrieval, re-
placing the use of minimum and maximum functions.
Our objective 1s similar, but more complex; we wish
to model arbitrarily disjunctive example-based queries
in unbounded metric spaces using relevance feedback
but lacking specific features [14].

FALCON does not rely on vector spaces, require
user input beyond that of relevance feedback and
examples, or sacrifice the ability to use disjunctive
queries that correspond to arbitrary groupings in met-
ric spaces. In addition, advanced indexing methods
can be used to significantly speed up the search pro-
cess. Spatial indexing methods such as R-trees [5]
and R*-trees [1, 2] would serve if we were to limit
ourselves to vector domains; M-trees [3] provide fast
range-queries in general metric spaces.

3 Proposed Method

This section proposes the underlying mechanisms and
assumptions made by FALCON. Table 1 lists the no-
tation used in this section.

Let X be the set of objects in our metric data set.
Then, let d : X x X — R be the provided distance
metric that defines our metric space.

To start each query, the user specifies at least one
“desirable” example that is representative of the in-
tended query. This set of “good” examples is denoted
by G. Thus:

Problem 1: Query by Multiple Examples

Given X, a metric data set
d, 1ts pairwise distance
metric
G = {g¢;}, the set of
“good objects”

Find Other desirable objects

in X that are similar to

G.




Symbol Description

X The set of objects in our
data set.

x Any single object from
X.

g The current set of user-
specified “good points”.

gi A member of G.

Dg The aggregate dissimi-
larity function based on
g

Dg(x) The aggregate dissimi-
larity value for object x
to the current good set G.

o A constant that influ-
ences how Dgps behaves.
d The pairwise dissimilar-

ity function.

Table 1: Notation used within this paper.

We propose solving Problem 1 by determining a
scoring function that models the user’s query. Namely,
we seek a function Dg : X — R based on G, such that
this function varies inversely with the desirability of x.

3.1 Proposed
Function

“Aggregate  Dissimilarity”
Once we find a function that fulfills our main require-
ment — ranking objects inversely according to their
apparent desirability as compared to G — the problem
of finding relevant objects reduces to that of sorting.
We define such a function as follows:

Problem 2: Aggregate Dissimilarity
Given =z € X, a candidate

G = {yi}, the set of user-
selected “good objects”

d, pairwise distance met-
ric for X
Dg(z), its
dissimilarity

Determine aggregate

We propose that the FALCON aggregate dissim-
ilarity, Dg(x) be computed as the a'” root of the

arithmetic mean of the a® powers, of the pairwise
distances, as expressed by

o [ 0if (a<0)AJid(x,g9;) =0
(Dg(x)) - { % X Zle d(z, g;)*otherwise
(1)
If the value of « 1s very high, the highest distance

will have the largest impact on Dg(a:), while the re-
verse 1s true for very low values of «.

Note that Equation 1 mimics a fuzzy OR if a < 0,
and a fuzzy AND if a > 0.

Since it is not obvious which values of a are the
most suitable, we empirically compare results for vari-
ous values of a. Our upcoming experiments show that
a = —b i1s a reasonable choice for the queries and
datasets we selected; however, in specific applications
some tuning with subsets may be appropriate.

Were a user to select parrot photos via query-by-
example, the following might ensue.

1. The user chooses a data set, X', consisting of bird
photos. This data set is paired with a pairwise
distance metric d, which relies primarily on col-
oration when comparing images.

2. The user first chooses the image of a popular
green-and-red parrot. This becomes the first
member of G.

3. FALCON returns the best matches, according to
Dg; note that grey parrots might be ranked below
cardinals — which are mostly red — and peacocks
— which tend to be green.

4. The user adds a picture of a grey parrot to the
good set, which alters the aggregate dissimilarity
function Dg. Other images of grey parrots will
now be considered more relevant to the query.

5. Repeat as desired; depending upon the data and
the metric, convergence may be fairly rapid.

One useful generalization of the FALCON distance
is to allow for weights. Unlike a distance “combina-
tion” function that only uses the minimum distance,
the FALCON distance is easily modified to accept a
positive w; term for numerical feedback from a user.
The proposed extension takes the form:

= Y wldea)t (2)

This has the effect that distance to the favored ob-
jects is penalized less if « is negative. We do not raise
the weights to the o!® power, as we believe that this —
which would have the opposite effect — would be much
less intuitive. In addition, we retain the influence of all
pairwise distances between candidate and examples in
all cases except that of an exact match, unlike a pure
minimization function.

3.2 Speed and Completeness

There is the obvious question of speed. Sequential
scanning would entail computing aggregate dissimi-
larity via Equation 1 or 2 for each element of the
database, which would require ©(nk) given n objects
in X and k in G. Our objective is to return the same



results as a sequential scan, with less work on average
per search.

Indexing structures which support fast range
queries can be used to achieve significant speed-ups.
First, we shift focus to the aggregate dissimilarity ver-
sion of the range query:

Problem 3: Range Query by
Multiple Example

Given X, the database

G = {ygi}, the set of
“good objects”

€, a threshold

d, pairwise distance met-
ric for X

Q, such that Q@ = {=z :
r € X A Dg(z) < €
quickly

Find

Theorem 1 Consider Problem 3 above. Ezxecuting
k = |G| separate range queries with threshold ¢, will
yield k sets, the union of which forms a superset of
the actual answer. No object will be falsely discarded
as a candidate by such a procedure.

The proof is omitted for the sake of brevity [15].

This theorem shows that we can use existing index-
ing methods without fear of false dismissals. A post-
processing step can then check every member of the
union and discard any whose actual aggregate dissim-
ilarity exceeds the threshold.

The question remains of selecting a suitable €. One
method would be to allow the user to flag examples
that they consider to be about as dissimilar as they
would accept; then, an € can be generated as the max-
imum Dg for these borderline cases.

4 Experimental Setup

The core parts of FALCON were implemented in C,
C++ and Perl, and tested on Intel Pentium II7M
workstations under Linux.

We tested FALCON with the intent of answering
five central questions.

(a) Does FALCON “learn” to model con-
cave and disjunctive queries?

(b) Does FALCON provide satisfactory
precision /recall?

(c) Does FALCON’s distance function
rapidly converge?

(d) What is a suitable value of «?

(¢) How fast is FALCON?

Four data sets were used during the experiments,
each with exactly one query. Two of the data sets
were synthetic, and two consisted of real data. We
used the standard Euclidean distance as the pairwise

distance metric; with the 2D 20K data set, we also
experimented with L.

Vector data sets were used primarily due to ease
of generating consistent and objective feedback re-
sults; the FALCON system never examined the vectors
themselves.

2D 50K: This synthetic data set consists of 50,000
points in 2-dimensional Cartesian space, randomly
distributed approximately uniformly within the axis-
aligned square (-2,-2) - (2,2).

2D 20K: This synthetic data set was generated us-
ing identical rules to that of the 2D_50K data set, but
consists only of 20,000 points.

PEN: This database was obtained from the UCI
repository [8], and consists of objects that correspond
to handwritten digits, with features being the classi-
fication of each and the coordinates of spatially re-
sampled points. We used the existing split of 3498
objects in the training set and 7494 in the test set.

STOCKS: Daily closing prices for up to five year
periods were collected for 51 stocks from Yahoo’s on-
line quote server. They were split into 1856 non-
overlapping vectors of length 32, which were then pro-
cessed via the discrete wavelet transform (DWT). All
32 coefficients for each vector were used for L distance
computations.

4.1 Queries

One implicit query was associated with each data set.
Queries were reflected via a seed set of five initial
“good” objects, and appropriate feedback for each
data item. A subset of each data set was selected as
training sets, used for query refinement; the rest of the
data served only for evaluation. It may in fact be fea-
sible to implement a hierarchical view of a database —
perhaps traversing something like an M-tree — in or-
der to allow the user to easily select examples without
wading through an entire database at once [3]. In ad-
dition, we varied a as there was no a priori reason to
believe that one particular value would be optimal.

RING: Vectors within the 2D_50K data set were
marked as positive examples if and only if they were
between 0.5 and 1.5 units from the null vector, inclu-
sive. The training set consisted of 1,000 vectors. 431
in the subset and 19,734 in the full set met this cri-
terion. The five seeds were vectors of magnitude 1.4,
with counter-clockwise angles from the positive X axis
of 0, 72, 144, 216, and 288 degrees.

This query to tests performance on a contiguous,
but non-convex set.

TWO_CIRCLES: Vectors within the 2D_20K
data set were marked as positive examples if and only
if they were within 0.5 units of either (-1,-1) or (1,1);
1899 points qualified. The subset consisted of 1000
points randomly drawn from the full set, including 99
positive examples. The seeds were randomly generated
from within the two circles.



This query tests performance on a disjunctive set.

PEN: Vectors within the PEN data set that were
classified as 4’s were flagged positive. The existing
training and test partition was used. 364 vectors in
the training set and 780 in the full set were positive
instances. The five seeds were drawn randomly from
the positive instances in the training set.

This query tests performance on real data.

STOCKS: Vectors within the STOCKS data set
were marked as positive examples if and only if the
slopes of their least-squares linear approximations
were within the range -0.02 to 0.02. The training set
consisted of 500 examples, of which 153 were positive.
540 in the full set were flagged positive. The five seeds
were the vectors of DW'T coefficients of five perfectly
flat lines with y-intercepts of 8, 40, 80, 200 and 400.

This query also tests performance on real data.

4.2 Evaluation Methodology

With each data set and its paired query, we tested with
the following values of a: —oo, which scores by min-
imum distance; -100, which approximates that; —10;

—b; —=2; 2; and 5.

|

oa=-2 oa=2

a=—

Figure 2: Contour plots for the seeds of the

TWO_CIRCLES query.

Figure 2 shows contour plots for four values of a in
the TWO_CIRCLES. Note that o = 2 reflects only the
center of the “good set”, even on the TWO_CIRCLES
query, and hence is expected to fail on such a disjunc-
tive query.

o= —00 o =-5

Figure 3: Contour plots for the seeds of the RING
query.

Figure 3 shows contour plots for four values of « in
the RING. Again, o = 2 stands out with contours that
are not going to rank the points very well.

FALCON ranks objects by computed score, which
permits evaluation via precision/recall. We define re-
call and precision as follows.

For arbitrary n, consider the n top-ranked objects.
Let there be p positive examples among them, out of
P positive examples total. Then recall is &, and preci-

sion is L. We can compute precision for any given level
of recall for a full ranking by choosing n appropriately.

With each combination of a query and a value of «,
we used the following procedure:

o Start with the seeds as the “good set”. Compute
precision/recall values over the full set. This gives
us a baseline that varies only with the contours
generated by «.

e Repeat the following as needed:

— Find the top twenty which have not yet been
picked for feedback. Twenty is arbitrary, but
plausible.

— Add any newly-found positive examples into
G.

— Repeat the precision/recall procedure on the
full set.

4.3 Speed

We also ran range-query speed tests. The query and
data involved were that of TWO_CIRCLES as de-
scribed previously. For the indexing structure, we used
M-trees [3]. Sequential scanning served as a baseline
with which to compare the method described in The-
orem 1. We then measured the individual effects of
threshold and number of seeds on elapsed time and
computational cost. Note that the elapsed time in-
cludes everything done on a per query basis, including
all range queries as well as the time required for merg-
ing and verifying the results.

5 Results and Discussion

We present our analysis of the results, organized with
regard to the five central questions.

The following notes apply to the various graphs. For
all the figures marked “Precision versus Recall”| such
as Figures 4, 6, and 9, one line is plotted per charted
iteration. Not all iterations were charted, for purposes
of readability. Each line is drawn with ten points, each
of which shows precision at one level of recall from 10%
to 100% at 10% increments. Thus, the general trend of
the lines tracks the progress of FALCON as feedback
is provided on increasing numbers of points.

Any figure that tracks “Precision versus Iterations”,
such as Figures 7 and 8, instead focuses on precision
at one level of recall, 40%, for multiple values of «.
Positive slopes indicate positive progress. 40% was ar-
bitrarily chosen as a level at which it is non-trivial, but
also not extremely difficult, to provide good precision.

Figures 10 and 11, labelled “Precision at Multiple
Levels of a” also track precision, but after 5 and 20
iterations. The first shows precision at 40% recall;
the second, average precision based on all 10 levels of
recall.



5.1 Concave and Disjunctive Queries

The RING query is concave, but contiguous; the
TWO_CIRCLES query is disjunctive. As one sees in
Figure 4, FALCON can handle either data set with
high levels of precision versus recall. This is a sub-
stantial improvement over existing methods such as
MARS and MindReader, which would have difficulty

with these two.

Precision versus Recall over Iterations
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Figure 4: Precision versus recall for & = —5, for RING
and TWO_CIRCLES, using Euclidean pairwise dis-

tance.

The numbers in the legend indicate the number of
feedback iterations to achieve that level of progress.
We observe that in both cases, precision largely sta-
bilizes after the first several iterations — especially for
TWO_CIRCLES.

The success on the TWO_CIRCLES query is par-
ticularly notable because that set is completely dis-
junctive; there are two distinct regions of points that
deserve high rankings, separated by points that do not.
To further test the system, we ran the same query sub-
stituting L., for the Euclidean distance as pairwise
metric d; Figure 5 shows the resulting precision-recall.

5.2 Quality of Results on Real Data

Both the PEN and STOCKS queries are reasonable
queries on real data. Consequently, FALCON’s per-
formance on these, as shown in Figure 6, is relevant to
any question as to whether FALCON “works” on real
data.

Precision versus Recall over Iterations
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Precision

0.4

Recall

Figure 5: Precision versus recall for a = =5

TWO_CIRCLES, and L, as distance metric d

We note that, for the PEN query, convergence at
all levels of recall below 100% is rapid; the rest of
the iterations after the 4*” recall do not add precision
except at the highest level of recall. The pattern with
the STOCKS query is more interesting, with large gaps
between the lines. One plausible explanation is that
the positive examples were not evenly distributed in
vector space, but instead clustered. The first member
of a cluster to be added to G would immediately cause
everything nearby to move upwards in the rankings.
This 1s particularly plausible given that many of the
stock vectors were consecutive slivers from the same
stock over time, and therefore may have had similar
properties.

Figure 6 shows that FALCON provides good preci-
sion at almost all levels of recall. In particular, 1t pro-
vides perfect precision at most levels of recall for the
PEN data set and query, identifying objects that cor-
respond to 4’s. Note also that FALCON provides good
precision on the RING and TWO_CIRCLES queries,

as shown in Figure 4, as cited above.

5.3 Speed of Convergence

Figures 7 and 8, show precision at 40% recall versus
the number of iterations. FALCON can quickly attain
high levels of precision over high levels of recall, even
with an early G that has not yet grown to include many
of the “good points” in even the training set.

The STOCKS query is unlike other queries. Here,
there are very wide gaps in performance until 12 iter-
ations have elapsed; the others show more continuous
gains.

Depending upon the complexity of the query and
the data set, progress can be very fast (such as in the
PEN data set), or slower (as in the RING data set).
For 40% recall, precision exceeds 90% after only 4 to
11 iterations for a = —b on all four queries.

There can be overfitting, as seen in the
TWO_CIRCLES data set. The law of diminishing
returns applies to increasing |G|, suggesting that one
does not need to maximize |G| to attain near-optimal



Precision versus Recall over Iterations
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Figure 6: Precision versus recall for &« = —5, for PEN
and STOCKS.

levels of precision, and therefore sampling can be rea-
sonable.

5.4 Optimal Value of o

We hypothesized that o« = —5 would be a reasonable
choice from our set of possible a’s. We found that
a = —100 generally performed worse due to numerical
precision problems, and therefore will not be discussed
further.

Figure 9 show precision versus recall for the
TWO_CIRCLES data set, using & = —2 and o = —10.
As usual, the numbers in the legend indicate iterations.
In both cases, all good points in the sample were added
to G 1n no more than 9 iterations of feedback. We also
note that the progress in precision over multiple levels
of recall was fairly steady throughout.

Precision was generally similar for all negative val-
ues of «, especially once G had reached its maximum
size. With positive values of «a, precision was quite low
at most levels of recall; see Figures 10 and 11 for some
results.

The first figure shows precision at 40% recall for
each level of tested «; each line tracks the precisions
yielded by one particular value of a for the different
queries. This allows us to compare « both early and
late in the process. In the case of TWO_CIRCLES,
whose G stabilized in fewer than 20 iterations, we used
the final results. Observe that the differences among

Iterations versus Precision at Recall=0.4 in the PEN dataset
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Figure 7: Precision versus iterations at recall=40%.

the negative values of o largely disappear by the 20"
iteration of feedback.

As we can see in the latter figure, difference in aver-
age precision over all levels of recall after 20 iterations
are a bit more marked than at 40%, but again the neg-
ative values of « yield fairly similar average precision.

We still favor @ = —5, as 1t provided good per-
formance as empirically observed, and in no case is
it significantly inferior. Similar values appear to yield
similar results. This may be due to the limited range of
values tested, but also reflects the fact that this value
permits a significant amount of flexibility, in that this
corresponds to a quite fuzzy OR.

5.5 Speed

Empirically, we have found that merging the results of
k separate range queries as per Theorem 1 is satisfac-
tory in terms of both the number of distance compu-
tations, and the elapsed time. Some of these results
may be noted in Figures 12 and 13.

The two graphs in Figure 12 compare the elapsed
(real) time and the pairwise distance computation
costs incurred in searching the TWO_CIRCLES train-
ing data set for points within a variable aggregate
dissimilarity threshold from the seeds. These results
demonstrate that the & range queries can be merged
into one.

We note that the cross-over point where sequential
scan performs as quickly as merging occurs at a thresh-



Iterations versus Precision at Recall=0.4 in the RING dataset
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old of approximately 0.7; such a threshold accepts ap-
proximately 20% of the database. It is our belief that
users of large interactive databases will rarely be in-
terested in queries of such scope, and thus the merging
method is worthwhile.

As shown in Figure 13, both measurements of per-
formance cost appear to scale with the number of
seeds. These results are taken without caching the
distance computations from previous searches; these
searches were all independent. These two graphs com-
pare the elapsed (real) time and the pairwise dis-
tance computation costs incurred in searching the
TWO_CIRCLES training data set for points with ag-
gregate dissimilarity less than or equal to 1, varying
the number of seeds.

The results for the same test, but with the under-
lying distance function d = L, are very similar and
are not presented here [15].

No direct experimental comparisons are shown with
previous methods. This is because our queries were
specifically designed to include queries of disjunctive
and other highly non-convex behavior in general met-
ric spaces, and thus previous methods simply do not

apply.

6 Conclusions

We proposed a method to handle queries by multiple
examples, on arbitrary vector or metric databases.
Our method applies to general metric spaces, as
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Figure 9: Precision versus recall on the TWO-

CIRCLES data set.

the distance combination function depends on only
the pairwise distances and not the actual nature of
the data. In addition, it handles disjunctive and
concave queries that are fundamentally tmpossible for
traditional relevance feedback methods. Using our
method, a user could, without any domain-specific
query language, specify a disjunctive query merely by
labelling as “good” objects representative of the differ-
ent classes. We argue that this combination of general
applicability, power and ease-of-use makes this method
more valuable than other existing systems today.

The heart of our method is the FALCON aggregate
dissimilarity, or D, which i1s able to “learn” disjunc-
tive queries via relevance feedback. Additional contri-
butions include the following:

e Theorem 1, which shows that we can use indexing
structures that support range queries, to speed up
our search, guaranteeing zero false dismissals.

e Experiments on real and synthetic data, that
show that the proposed method (“FALCON”)
achieves good precision and recall. For instance,
with all queries, o = —b yielded at least 80% pre-
cision at 50% recall with 10 iterations.

e Experiments that show that FALCON needs at
most 10 feedback iterations to reach high preci-
sion/recall, and will reach a “steady state” for
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Figure 10: Precision at 40% recall

all levels of recall below 100% within approxi-
mately 20 iterations. Beyond 20 iterations, minor
progress is made for 100% recall.

e Experiments that show that a good range for o
includes —10 to —2; on many queries, the sensi-
tivity of the performance on « is low.

e Experiments that show that we can use the
method described by Theorem 1 to gain up to
200% observed performance improvements versus
sequential scanning.

Possible avenues for future work include using Dg
for other data mining tasks, such as classification and
representative selection [7].
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