
FALCON: Feedback Adaptive Loop for Content-BasedRetrievalLeejay Wu Christos Faloutsos Katia Sycara Terry R. PayneCarnegie Mellon UniversityAbstractSeveral methods currently exist that canperform relatively simple queries drivenby relevance feedback on large multimediadatabases. However, all these methods workonly for vector spaces; that is, they requirethat objects be represented as vectors withinfeature spaces. Moreover, their implied queryregions are typically convex. This research pa-per explains our solution.We propose a novel method that is designedto handle disjunctive queries within metricspaces. The user provides weights for pos-itive examples; our system \learns" the im-plied concept and returns similar objects.Our method di�ers from existing relevance-feedback methods that base themselves uponEuclidean or Mahalanobis metrics, as it facili-tates learning even disjunctive, concave mod-els within vector spaces, as well as arbitrarymetric spaces. In addition, our method iscompletely example-driven, and imposes norequirements upon the user for other aspectssuch as feature selection.Our main contributions are two-fold. Not onlydo we present a novel way to estimate thedissimilarity of an object to a set of desir-able objects, but we support it with an algo-rithm that shows how to exploit metric index-ing structures that support range queries toaccelerate the search without incurring falsedismissals. Our empirical results demonstratePermission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 26th VLDB Conference,Cairo, Egypt, 2000.

that our method converges rapidly to excellentprecision/recall, while outperforming sequen-tial scanning by up to 200%.1 IntroductionAs the size and diversity of multimedia databases in-crease, so does the potential complexity of queries.Query concepts such as, "Return all video clips show-ing any US President speaking", may be be easy tospecify, but di�cult to perform. Unless comprehensiveannotations are provided with every database entry, amultimedia database might be forced to rely on noth-ing more than query-by-example. In addition, measur-ing similarity between images then becomes an issue.Should one resort to commercial packages, the resultmay easily yield { at best { a metric space, as neitherthe features nor their relevance are known, where ametric space is de�ned via a distance function whichobeys symmetry and the triangle inequality [4]. Inthis domain, query models demanding vector spacesfail completely. This paper presents a novel approach,FALCON, which allows easy speci�cation of complexqueries, within both vector and metric spaces, for mul-timedia and traditional databases.Many retrieval methods represent database recordsas vectors, with the assumption that the closer are twovectors, the more similar are the corresponding records[9]. Distance functions are chosen to score dissimilaritybetween points within this space. Thus, one may querya database by performing either a range query or anearest-neighbor search relative to a single point orhyper-surface within this space.However, users may wish to perform more compli-cated queries. On a real-world database, a user maywish to retrieve a class of objects that does not mapto a contiguous region according to the similarity met-ric. For instance, the aforementioned query regardingUS Presidents speaking arguably could map to numer-ous rather disparate images due to change of venueand personnel { and if the image distances are gener-ated via a black-box function, we now have an unusualquery in a metric space. Finding similar objects withinthis space is related to clustering, which can be done



in metric spaces as per [16].FALCON combines distances and incorporates userfeedback in such a way as to \learn" the nature of suchqueries. This aggregate dissimilarity model applies tometric data sets, since it does not use any informa-tion about the data itself aside from that returned bya pairwise distance metric. Our experiments demon-strate that FALCON can provide high-quality resultsin terms of precision and recall after 5 to 20 iterations.The paper is organized as follows: Section 2 summa-rizes a sample of existing related systems; the mecha-nisms underlying FALCON are presented in Section 3;the experiments and corresponding results are detailedin Section 4, and the subsequent analysis is presentedin Section 5. The paper concludes with Section 6.2 Related WorkA number of systems such as the following have beendeveloped to handle example-based queries. Note theyhandle neither unusual disjoint queries, nor arbitrarymetric spaces.� Rocchio's relevance feedback mechanism [11],which generates hyper-spherical isosurfaces in fea-ture space.� MARS (Multimedia Analysis and Retrieval Sys-tem) [10, 12, 13], which includes a query expan-sion model that can weight features from multi-ple objects. However, MARS limits the sums ofweights, so that when using �xed thresholds itbecomes di�cult to specify a disjunctive query inwhich being similar to any one of the examples issu�cient to be considered good.� MindReader, which uses the Mahalanobis dis-tance to allow arbitrarily oriented ellipsoids [6].The Mahalanobis distance M (~x; ~y) is de�ned as(~x � ~y)T �M � (~x � ~y) where ~x and ~y are n-dimensional column vectors andM is a n�n ma-trix. This corresponds to a weighted Euclideandistance, and permits e�ective rotation of theaxes, but requires many examples to calculate thecovariance matrix.The original assumption behind the earliest systemsis that there exists an ideal query vector. One canthen try to determine both this vector and the optimalrelative weights of the axes. This dependence on avector space prevents these methods from generalizingto metric spaces.Later systems, such as current versions of MARS,have query expansion models which permit actualelaboration by weighting the relative importance ofdi�erent features of multiple positive examples [10].However, one should note that MARS has been spe-cialized for image databases with features, whereasMindReader generates isosurfaces consisting of single

hyper-ellipsoids, and therefore does not handle dis-junctive queries.
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generalizedweighted EuclideanEuclideanFigure 1: Generic isosurfaces for three previous meth-ods.See Figure 1 for an illustration of these types ofisosurfaces.Fox and Salton used the Lp metric to surpass fuzzyBoolean methods in the domain of text retrieval, re-placing the use of minimum and maximum functions.Our objective is similar, but more complex; we wishto model arbitrarily disjunctive example-based queriesin unbounded metric spaces using relevance feedbackbut lacking speci�c features [14].FALCON does not rely on vector spaces, requireuser input beyond that of relevance feedback andexamples, or sacri�ce the ability to use disjunctivequeries that correspond to arbitrary groupings in met-ric spaces. In addition, advanced indexing methodscan be used to signi�cantly speed up the search pro-cess. Spatial indexing methods such as R-trees [5]and R*-trees [1, 2] would serve if we were to limitourselves to vector domains; M-trees [3] provide fastrange-queries in general metric spaces.3 Proposed MethodThis section proposes the underlying mechanisms andassumptions made by FALCON. Table 1 lists the no-tation used in this section.Let X be the set of objects in our metric data set.Then, let d : X � X ! < be the provided distancemetric that de�nes our metric space.To start each query, the user speci�es at least one\desirable" example that is representative of the in-tended query. This set of \good" examples is denotedby G. Thus:Problem 1: Query by Multiple ExamplesGiven X , a metric data setd, its pairwise distancemetricG = fgig, the set of\good objects"Find Other desirable objectsin X that are similar toG.



Symbol DescriptionX The set of objects in ourdata set.x Any single object fromX .G The current set of user-speci�ed \good points".gi A member of G.DG The aggregate dissimi-larity function based onG.DG (x) The aggregate dissimi-larity value for object xto the current good set G.� A constant that in
u-ences how DG behaves.d The pairwise dissimilar-ity function.Table 1: Notation used within this paper.We propose solving Problem 1 by determining ascoring function that models the user's query. Namely,we seek a function DG : X ! < based on G, such thatthis function varies inversely with the desirability of x.3.1 Proposed \Aggregate Dissimilarity"FunctionOnce we �nd a function that ful�lls our main require-ment { ranking objects inversely according to theirapparent desirability as compared to G { the problemof �nding relevant objects reduces to that of sorting.We de�ne such a function as follows:Problem 2: Aggregate DissimilarityGiven x 2 X , a candidateG = fgig, the set of user-selected \good objects"d, pairwise distance met-ric for XDetermine DG(x), its aggregatedissimilarityWe propose that the FALCON aggregate dissim-ilarity, DG (x) be computed as the �th root of thearithmetic mean of the �th powers, of the pairwisedistances, as expressed by(DG (x))� = � 0 if (� < 0)V9i d(x; gi) = 01k �Pki=1 d(x; gi)�otherwise (1)If the value of � is very high, the highest distancewill have the largest impact on DG(x), while the re-verse is true for very low values of �.

Note that Equation 1 mimics a fuzzy OR if � < 0,and a fuzzy AND if � > 0.Since it is not obvious which values of � are themost suitable, we empirically compare results for vari-ous values of �. Our upcoming experiments show that� = �5 is a reasonable choice for the queries anddatasets we selected; however, in speci�c applicationssome tuning with subsets may be appropriate.Were a user to select parrot photos via query-by-example, the following might ensue.1. The user chooses a data set, X , consisting of birdphotos. This data set is paired with a pairwisedistance metric d, which relies primarily on col-oration when comparing images.2. The user �rst chooses the image of a populargreen-and-red parrot. This becomes the �rstmember of G.3. FALCON returns the best matches, according toDG ; note that grey parrots might be ranked belowcardinals { which are mostly red { and peacocks{ which tend to be green.4. The user adds a picture of a grey parrot to thegood set, which alters the aggregate dissimilarityfunction DG . Other images of grey parrots willnow be considered more relevant to the query.5. Repeat as desired; depending upon the data andthe metric, convergence may be fairly rapid.One useful generalization of the FALCON distanceis to allow for weights. Unlike a distance \combina-tion" function that only uses the minimum distance,the FALCON distance is easily modi�ed to accept apositive wi term for numerical feedback from a user.The proposed extension takes the form:(DG (x))� = 1Pki=1wi � kXi=1 wi(d(x; gi))� (2)This has the e�ect that distance to the favored ob-jects is penalized less if � is negative. We do not raisethe weights to the �th power, as we believe that this {which would have the opposite e�ect { would be muchless intuitive. In addition, we retain the in
uence of allpairwise distances between candidate and examples inall cases except that of an exact match, unlike a pureminimization function.3.2 Speed and CompletenessThere is the obvious question of speed. Sequentialscanning would entail computing aggregate dissimi-larity via Equation 1 or 2 for each element of thedatabase, which would require �(nk) given n objectsin X and k in G. Our objective is to return the same



results as a sequential scan, with less work on averageper search.Indexing structures which support fast rangequeries can be used to achieve signi�cant speed-ups.First, we shift focus to the aggregate dissimilarity ver-sion of the range query:Problem 3: Range Query byMultiple ExampleGiven X , the databaseG = fgig, the set of\good objects"�, a thresholdd, pairwise distance met-ric for XFind Q, such that Q = fx :x 2 X ^ DG(x) < �gquicklyTheorem 1 Consider Problem 3 above. Executingk = jGj separate range queries with threshold �, willyield k sets, the union of which forms a superset ofthe actual answer. No object will be falsely discardedas a candidate by such a procedure.The proof is omitted for the sake of brevity [15].This theorem shows that we can use existing index-ing methods without fear of false dismissals. A post-processing step can then check every member of theunion and discard any whose actual aggregate dissim-ilarity exceeds the threshold.The question remains of selecting a suitable �. Onemethod would be to allow the user to 
ag examplesthat they consider to be about as dissimilar as theywould accept; then, an � can be generated as the max-imumDG for these borderline cases.4 Experimental SetupThe core parts of FALCON were implemented in C,C++ and Perl, and tested on Intel Pentium IITMworkstations under Linux.We tested FALCON with the intent of answering�ve central questions.(a) Does FALCON \learn" to model con-cave and disjunctive queries?(b) Does FALCON provide satisfactoryprecision/recall?(c) Does FALCON's distance functionrapidly converge?(d) What is a suitable value of �?(e) How fast is FALCON?Four data sets were used during the experiments,each with exactly one query. Two of the data setswere synthetic, and two consisted of real data. Weused the standard Euclidean distance as the pairwise

distance metric; with the 2D 20K data set, we alsoexperimented with L1.Vector data sets were used primarily due to easeof generating consistent and objective feedback re-sults; the FALCON system never examined the vectorsthemselves.2D 50K: This synthetic data set consists of 50,000points in 2-dimensional Cartesian space, randomlydistributed approximately uniformly within the axis-aligned square (-2,-2) - (2,2).2D 20K: This synthetic data set was generated us-ing identical rules to that of the 2D 50K data set, butconsists only of 20,000 points.PEN: This database was obtained from the UCIrepository [8], and consists of objects that correspondto handwritten digits, with features being the classi-�cation of each and the coordinates of spatially re-sampled points. We used the existing split of 3498objects in the training set and 7494 in the test set.STOCKS: Daily closing prices for up to �ve yearperiods were collected for 51 stocks from Yahoo's on-line quote server. They were split into 1856 non-overlapping vectors of length 32, which were then pro-cessed via the discrete wavelet transform (DWT). All32 coe�cients for each vector were used for L2 distancecomputations.4.1 QueriesOne implicit query was associated with each data set.Queries were re
ected via a seed set of �ve initial\good" objects, and appropriate feedback for eachdata item. A subset of each data set was selected astraining sets, used for query re�nement; the rest of thedata served only for evaluation. It may in fact be fea-sible to implement a hierarchical view of a database {perhaps traversing something like an M-tree { in or-der to allow the user to easily select examples withoutwading through an entire database at once [3]. In ad-dition, we varied � as there was no a priori reason tobelieve that one particular value would be optimal.RING: Vectors within the 2D 50K data set weremarked as positive examples if and only if they werebetween 0.5 and 1.5 units from the null vector, inclu-sive. The training set consisted of 1,000 vectors. 431in the subset and 19,734 in the full set met this cri-terion. The �ve seeds were vectors of magnitude 1.4,with counter-clockwise angles from the positive X axisof 0, 72, 144, 216, and 288 degrees.This query to tests performance on a contiguous,but non-convex set.TWO CIRCLES: Vectors within the 2D 20Kdata set were marked as positive examples if and onlyif they were within 0.5 units of either (-1,-1) or (1,1);1899 points quali�ed. The subset consisted of 1000points randomly drawn from the full set, including 99positive examples. The seeds were randomly generatedfrom within the two circles.



This query tests performance on a disjunctive set.PEN: Vectors within the PEN data set that wereclassi�ed as 4's were 
agged positive. The existingtraining and test partition was used. 364 vectors inthe training set and 780 in the full set were positiveinstances. The �ve seeds were drawn randomly fromthe positive instances in the training set.This query tests performance on real data.STOCKS: Vectors within the STOCKS data setwere marked as positive examples if and only if theslopes of their least-squares linear approximationswere within the range -0.02 to 0.02. The training setconsisted of 500 examples, of which 153 were positive.540 in the full set were 
agged positive. The �ve seedswere the vectors of DWT coe�cients of �ve perfectly
at lines with y-intercepts of 8, 40, 80, 200 and 400.This query also tests performance on real data.4.2 Evaluation MethodologyWith each data set and its paired query, we tested withthe following values of �: �1, which scores by min-imum distance; -100, which approximates that; �10;�5; �2; 2; and 5.
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sion is pn . We can compute precision for any given levelof recall for a full ranking by choosing n appropriately.With each combination of a query and a value of �,we used the following procedure:� Start with the seeds as the \good set". Computeprecision/recall values over the full set. This givesus a baseline that varies only with the contoursgenerated by �.� Repeat the following as needed:{ Find the top twenty which have not yet beenpicked for feedback. Twenty is arbitrary, butplausible.{ Add any newly-found positive examples intoG.{ Repeat the precision/recall procedure on thefull set.4.3 SpeedWe also ran range-query speed tests. The query anddata involved were that of TWO CIRCLES as de-scribed previously. For the indexing structure, we usedM-trees [3]. Sequential scanning served as a baselinewith which to compare the method described in The-orem 1. We then measured the individual e�ects ofthreshold and number of seeds on elapsed time andcomputational cost. Note that the elapsed time in-cludes everything done on a per query basis, includingall range queries as well as the time required for merg-ing and verifying the results.5 Results and DiscussionWe present our analysis of the results, organized withregard to the �ve central questions.The followingnotes apply to the various graphs. Forall the �gures marked \Precision versus Recall", suchas Figures 4, 6, and 9, one line is plotted per chartediteration. Not all iterations were charted, for purposesof readability. Each line is drawn with ten points, eachof which shows precision at one level of recall from 10%to 100% at 10% increments. Thus, the general trend ofthe lines tracks the progress of FALCON as feedbackis provided on increasing numbers of points.Any �gure that tracks \Precision versus Iterations",such as Figures 7 and 8, instead focuses on precisionat one level of recall, 40%, for multiple values of �.Positive slopes indicate positive progress. 40% was ar-bitrarily chosen as a level at which it is non-trivial, butalso not extremely di�cult, to provide good precision.Figures 10 and 11, labelled \Precision at MultipleLevels of �" also track precision, but after 5 and 20iterations. The �rst shows precision at 40% recall;the second, average precision based on all 10 levels ofrecall.



5.1 Concave and Disjunctive QueriesThe RING query is concave, but contiguous; theTWO CIRCLES query is disjunctive. As one sees inFigure 4, FALCON can handle either data set withhigh levels of precision versus recall. This is a sub-stantial improvement over existing methods such asMARS and MindReader, which would have di�cultywith these two.
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0 1 3 4 6 7TWO CIRCLESFigure 4: Precision versus recall for � = �5, for RINGand TWO CIRCLES, using Euclidean pairwise dis-tance.The numbers in the legend indicate the number offeedback iterations to achieve that level of progress.We observe that in both cases, precision largely sta-bilizes after the �rst several iterations { especially forTWO CIRCLES.The success on the TWO CIRCLES query is par-ticularly notable because that set is completely dis-junctive; there are two distinct regions of points thatdeserve high rankings, separated by points that do not.To further test the system, we ran the same query sub-stituting L1 for the Euclidean distance as pairwisemetric d; Figure 5 shows the resulting precision-recall.5.2 Quality of Results on Real DataBoth the PEN and STOCKS queries are reasonablequeries on real data. Consequently, FALCON's per-formance on these, as shown in Figure 6, is relevant toany question as to whether FALCON \works" on realdata.
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9Figure 5: Precision versus recall for � = �5,TWO CIRCLES, and L1 as distance metric dWe note that, for the PEN query, convergence atall levels of recall below 100% is rapid; the rest ofthe iterations after the 4th recall do not add precisionexcept at the highest level of recall. The pattern withthe STOCKS query is more interesting, with large gapsbetween the lines. One plausible explanation is thatthe positive examples were not evenly distributed invector space, but instead clustered. The �rst memberof a cluster to be added to G would immediately causeeverything nearby to move upwards in the rankings.This is particularly plausible given that many of thestock vectors were consecutive slivers from the samestock over time, and therefore may have had similarproperties.Figure 6 shows that FALCON provides good preci-sion at almost all levels of recall. In particular, it pro-vides perfect precision at most levels of recall for thePEN data set and query, identifying objects that cor-respond to 4's. Note also that FALCON provides goodprecision on the RING and TWO CIRCLES queries,as shown in Figure 4, as cited above.5.3 Speed of ConvergenceFigures 7 and 8, show precision at 40% recall versusthe number of iterations. FALCON can quickly attainhigh levels of precision over high levels of recall, evenwith an early G that has not yet grown to include manyof the \good points" in even the training set.The STOCKS query is unlike other queries. Here,there are very wide gaps in performance until 12 iter-ations have elapsed; the others show more continuousgains.Depending upon the complexity of the query andthe data set, progress can be very fast (such as in thePEN data set), or slower (as in the RING data set).For 40% recall, precision exceeds 90% after only 4 to11 iterations for � = �5 on all four queries.There can be over�tting, as seen in theTWO CIRCLES data set. The law of diminishingreturns applies to increasing jGj, suggesting that onedoes not need to maximize jGj to attain near-optimal
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25STOCKSFigure 6: Precision versus recall for � = �5, for PENand STOCKS.levels of precision, and therefore sampling can be rea-sonable.5.4 Optimal Value of �We hypothesized that � = �5 would be a reasonablechoice from our set of possible �'s. We found that� = �100 generally performed worse due to numericalprecision problems, and therefore will not be discussedfurther.Figure 9 show precision versus recall for theTWO CIRCLES data set, using � = �2 and � = �10.As usual, the numbers in the legend indicate iterations.In both cases, all good points in the sample were addedto G in no more than 9 iterations of feedback. We alsonote that the progress in precision over multiple levelsof recall was fairly steady throughout.Precision was generally similar for all negative val-ues of �, especially once G had reached its maximumsize. With positive values of �, precision was quite lowat most levels of recall; see Figures 10 and 11 for someresults.The �rst �gure shows precision at 40% recall foreach level of tested �; each line tracks the precisionsyielded by one particular value of � for the di�erentqueries. This allows us to compare � both early andlate in the process. In the case of TWO CIRCLES,whose G stabilized in fewer than 20 iterations, we usedthe �nal results. Observe that the di�erences among
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a=-2STOCKSFigure 7: Precision versus iterations at recall=40%.the negative values of � largely disappear by the 20thiteration of feedback.As we can see in the latter �gure, di�erence in aver-age precision over all levels of recall after 20 iterationsare a bit more marked than at 40%, but again the neg-ative values of � yield fairly similar average precision.We still favor � = �5, as it provided good per-formance as empirically observed, and in no case isit signi�cantly inferior. Similar values appear to yieldsimilar results. This may be due to the limited range ofvalues tested, but also re
ects the fact that this valuepermits a signi�cant amount of 
exibility, in that thiscorresponds to a quite fuzzy OR.5.5 SpeedEmpirically, we have found that merging the results ofk separate range queries as per Theorem 1 is satisfac-tory in terms of both the number of distance compu-tations, and the elapsed time. Some of these resultsmay be noted in Figures 12 and 13.The two graphs in Figure 12 compare the elapsed(real) time and the pairwise distance computationcosts incurred in searching the TWO CIRCLES train-ing data set for points within a variable aggregatedissimilarity threshold from the seeds. These resultsdemonstrate that the k range queries can be mergedinto one.We note that the cross-over point where sequentialscan performs as quickly as merging occurs at a thresh-
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a=-2TWO CIRCLESFigure 8: Precision versus iterations at recall=40%old of approximately 0.7; such a threshold accepts ap-proximately 20% of the database. It is our belief thatusers of large interactive databases will rarely be in-terested in queries of such scope, and thus the mergingmethod is worthwhile.As shown in Figure 13, both measurements of per-formance cost appear to scale with the number ofseeds. These results are taken without caching thedistance computations from previous searches; thesesearches were all independent. These two graphs com-pare the elapsed (real) time and the pairwise dis-tance computation costs incurred in searching theTWO CIRCLES training data set for points with ag-gregate dissimilarity less than or equal to 1, varyingthe number of seeds.The results for the same test, but with the under-lying distance function d = L1, are very similar andare not presented here [15].No direct experimental comparisons are shown withprevious methods. This is because our queries werespeci�cally designed to include queries of disjunctiveand other highly non-convex behavior in general met-ric spaces, and thus previous methods simply do notapply.6 ConclusionsWe proposed a method to handle queries by multipleexamples, on arbitrary vector or metric databases.Our method applies to general metric spaces, as
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0 1 3 4 6 7(� = �10)Figure 9: Precision versus recall on the TWO-CIRCLES data set.the distance combination function depends on onlythe pairwise distances and not the actual nature ofthe data. In addition, it handles disjunctive andconcave queries that are fundamentally impossible fortraditional relevance feedback methods. Using ourmethod, a user could, without any domain-speci�cquery language, specify a disjunctive query merely bylabelling as \good" objects representative of the di�er-ent classes. We argue that this combination of generalapplicability, power and ease-of-use makes this methodmore valuable than other existing systems today.The heart of our method is the FALCON aggregatedissimilarity, or DG , which is able to \learn" disjunc-tive queries via relevance feedback. Additional contri-butions include the following:� Theorem 1, which shows that we can use indexingstructures that support range queries, to speed upour search, guaranteeing zero false dismissals.� Experiments on real and synthetic data, thatshow that the proposed method (\FALCON")achieves good precision and recall. For instance,with all queries, � = �5 yielded at least 80% pre-cision at 50% recall with 10 iterations.� Experiments that show that FALCON needs atmost 10 feedback iterations to reach high preci-sion/recall, and will reach a \steady state" for
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