Mining Large Graphs and Fraud Detection

Christos Faloutsos CMU

Thank you!

Dr. Dragos Margineantu

Dr. Mohammed Zaki

Kimberly Mathern

Lawrence Tingson

MLDAS, Doha 2015

Roadmap

Introduction – Motivation
 – Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Conclusions

Graphs - why should we care? Linked in. Diff off off

>\$10B; ~1B users

MLDAS, Doha 2015

Graphs - why should we care?

Internet Map [lumeta.com]

Food Web [Martinez '91]

MLDAS, Doha 2015

Graphs - why should we care?

- web-log ('blog') news propagation YAHOO! вLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

NETFLIX

• Many-to-many db relationship -> graph

Motivating problems

• P1: patterns? Fraud detection?

Ο

00

• P2: patterns in time-evolving graphs / tensors

destination

source

time

Motivating problems

Retterns X anomalies

• P1: patterns? Fraud detection?

P2: patterns in time-evolving graphs / tensors
 destination

source

time

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns & fraud detection
 - Part#2: time-evolving graphs; tensors
 - Conclusions

Part 1: Patterns, & fraud detection

MLDAS, Doha 2015

Laws and patterns

• Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains

MLDAS, Doha 2015

Solution# S.1

 Power law in the degree distribution [Faloutsos x 3 SIGCOMM99; + Siganos] internet domains

MLDAS, Doha 2015

MLDAS, Doha 2015

MLDAS, Doha 2015

(c) 2015, C. Faloutsos

19

DCO @ CMU

MLDAS, Doha 2015

(c) 2015, C. Faloutsos

20

Solution# S.2: Eigen Exponent E

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns: Degree; Triangles
 - Anomaly/fraud detection
 - Graph understanding
- Part#2: time-evolving graphs; tensors
- Conclusions

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles ?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos) – O(d_{max}²)
Q: Can we do that quickly?
A:

ⁿ **Triangle Law: Computations** [Tsourakakis ICDM 2008]

But: triangles are expensive to compute $(3\text{-way join; several approx. algos}) - O(d_{max}^2)$ Q: Can we do that quickly? A: Yes! $4x = \lambda x$

#triangles = 1/6 Sum (λ_i^3) (and, because of skewness (S2), we only need the top few eigenvalues! - O(E)

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11] MLDAS, Doha 20

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

MLDAS, Doha 2015

Triangle counting for large graphs?

MLDAS, Doha 2015

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

MLDAS, Doha 2015

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

MLDAS, Doha 2015

R

MORE Graph Patterns

	Unweighted	Weighted	
Static	 Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] Triangle Power Law (TPL) [Tsourakakis '08] Eigenvalue Power Law (EPL) [Siganos et al. '03] Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]	
Dvnamic	L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2^{nd} and 3^{rd} connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ_1 PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. `08]	
G: A Recursive Realistic Graph Generator using Random			

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

Carnegie Mellon

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	$ \begin{array}{l} \textbf{L05. Densification Power Law (DPL) [Leskovec et al. '05] \\ \textbf{L06. Small and shrinking diameter [Albert and Barabási '99]. Leskovec et al. '05] \\ \textbf{L07. Constant size 2nd and 3rd connected components [McGlohon et al. '08] \\ \textbf{L08. Principal Eigenvalue Power Law (λ_1PL) [Akoglu et al. '08] \\ \textbf{L09. Bursty/self-similar edge/weight additions [Gomez and Santonja'98, Gribble et al. '08] \\ \textbf{Bestavros '99, McGlohon et al. '08] \\ \end{array} $	L11. Weight Power Law (WPL) [McGlohon et al. `08]

 Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

 Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.

MLDAS, Doha 2015

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 Patterns
 - Spectral methods ('fBox')
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Fraud

- Given
 - Who 'likes' what page, and when
- Find
 - Suspicious users and suspicious products

CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks, Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, Christos Faloutsos *WWW*, 2013.

- Given
 - Who 'likes' what page, and when
- Find
 - Suspicious users and suspicious products

CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks, Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, Christos Faloutsos *WWW*, 2013.

Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep Our intuition Behavior

Lockstep behavior: Same Likes, same time

Carnegie Mellon

MapReduce Overview

- Use Hadoop to search for many clusters in parallel:
 - 1. Start with randomly seed
 - 2. Update set of Pages and center Like times for each cluster
 - 3. Repeat until convergence

MLDAS, Doha 2015

Deployment at Facebook

 CopyCatch runs regularly (along with many other security mechanisms, and a large Site Integrity team)

#users caught

MLDAS, Doha 2015

(c) 2015, C. Faloutsos

time

43

Deployment at Facebook

Fake Accounts
 Malicious Browser Extensions
 OS Malware
 Credential Stealing
 Social Engineering

Most clusters (77%) come from real but compromised users

Manually labeled 22 randomly selected *clusters* from February 2013

MLDAS, Doha 2015

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

Problem: Social Network Link Fraud

Target: find "stealthy" attackers missed by other algorithms

MLDAS, Doha 2015

(c) 2015, C. Faloutsos

Problem: Social Network Link Fraud

Target: find "stealthy" attackers missed by other algorithms

Lekan Olawole Lowe @loweinc 26 Jul 09 Sign up free and Get 400 followers a day using http://tweeteradder.com

Lekan Olawole Lowe @loweinc Get 400 followers a day using http://www.tweeterfollow.com

Takeaway: use *reconstruction error* between true/latent representation!

Neil Shah, Alex Beutel, Brian Gallagher and Christos Faloutsos. *Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective.* ICDM 2014, Shenzhen, China.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU [www'07]

E-bay Fraud detection

MLDAS, Doha 2015

(c) 2015, C. Faloutsos

50

E-bay Fraud detection

MLDAS, Doha 2015

E-bay Fraud detection - NetProbe

MLDAS, Doha 2015

Popular press

The Washington Post Los Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - Belief Propagation; antivirus app
- Part#2: time-evolving graphs; tensors
- Conclusions

Polonium: Tera-Scale Graph Mining and Inference for Malware Detection

SDM 2011, Mesa, Arizona

Polo Chau Machine Learning

Carey Nachenberg

Machine Learning Dept Vice President & Fellow

symantec.

Jeffrey Wilhelm

Principal Software Engineer

symantec.

Adam Wright Software Engineer

Prof. Christos Faloutsos Computer Science Dept

Polonium: The Data

60+ terabytes of data *anonymously* contributed by participants of worldwide *Norton Community Watch* program 50+ million machines 900+ million executable files

Constructed a machine-file bipartite graph (0.2 TB+)

1 billion nodes (machines and files)

37 billion edges

MLDAS, Doha 2015

Polonium: Key Ideas

- Use Belief Propagation to propagate domain knowledge in machine-file graph to detect malware
- Use "guilt-by-association" (i.e., homophily)
 - E.g., files that appear on machines with many bad files are more likely to be bad
- Scalability: handles 37 billion-edge graph

% of non-malware wrongly labeled as malware

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - Belief Propagation; financial fraud
- Part#2: time-evolving graphs; tensors
- Conclusions

• Some accounts are sort-of-suspicious – how to combine weak signals?

• A: Belief Propagation.

• A: Belief Propagation.

Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. Steier, Christos Faloutsos: *SNARE: a link analytic system for graph labeling and risk detection*. KDD 2009: 1265-1274

- Produces improvement over simply using flags
 Up to 6.5 lift
 - Improvement especially for low false positive rate

- Accurate- Produces large improvement over simply using flags
- Flexible- Can be applied to other domains
- Scalable- One iteration BP runs in linear time (# edges)
- Robust- Works on large range of parameters

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - CopyCatch
 - Spectral methods ('fBox')
 - Belief Propagation; fast computation & unification
- Part#2: time-evolving graphs; tensors
- Conclusions

Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra U Kang Hsing-Kuo Kenneth Pao Tai-You Ke Duen Horng (Polo) Chau Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece

Carnegie Mellon

Problem Definition: GBA techniques

Are they related?

- RWR (Random Walk with Restarts)
 - google's pageRank ('*if my friends are important, I'm important, too*')
- SSL (Semi-supervised learning)
 minimize the differences among neighbors
- BP (Belief propagation)
 - send messages to neighbors, on what you believe about them

Are they related? YES!

- RWR (Random Walk with Restarts)
 - google's pageRank ('if my friends are important, I'm important, too')
- SSL (Semi-supervised learning)
 minimize the differences among neighbors
- BP (Belief propagation)
 - send messages to neighbors, on what you believe about them

Correspondence of Methods

Method	Matrix		Unknown		known
RWR	$[\mathbf{I} - \mathbf{c} \ \mathbf{A}\mathbf{D}^{-1}]$	×	Х	=	(1-c) y
SSL	$[\mathbf{I} + \mathbf{a}(\mathbf{D} - \underline{\mathbf{A}})]$	×	X	=	У
FABP	$[\mathbf{I} + \mathbf{a} \mathbf{D} - \mathbf{c'} \mathbf{A}]$	×	b _h	=	$\phi_{\mathbf{h}}$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1	сy	? final labels/ beliefs		0 1 prior labels/ beliefs

MLDAS, Doha 2015

Results: Parallelism

FABP ~2x faster & wins/ties on accuracy.

MLDAS, Doha 2015
Summary of Part#1

- *many* patterns in real graphs
 - Power-laws everywhere
 - Gaussian trap
 - Avg << Max

 Long (and growing) list of tools for anomaly/ fraud detection

MLDAS, Doha 2015

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - Conclusions

Part 2: Time evolving graphs; tensors

MLDAS, Doha 2015

- Problem #2:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2:
 - Given who calls whom, and when
 - Find patterns / anomalies

MLDAS, Doha 2015

- Problem #2:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2:
 - Given who calls whom, and when
 - Find patterns / anomalies

- Problem #2':
 - Given author-keyword-date
 - Find patterns / anomalies

MLDAS, Doha 2015

(c) 2015, C. Faloutsos

MANY more settings, with >2 'modes'

- Problem #2'':
 - Given subject verb object facts
 - Find patterns / anomalies

MANY more settings, with >2 'modes'

- Problem #2''':
 - Given <triplets>
 - Find patterns / anomalies

MANY more settings, with >2 'modes' (and 4, 5, etc modes)

Graphs & side info

- Problem #2a: coupled (eg., side info)
 - Given subject verb object facts
 - And voxel-activity for each subject-word
 - Find patterns / anomalies

Graphs & side info

- Problem #2a: coupled (eg., side info)
 - Given subject verb object facts
 - And voxel-activity for each subject-word
 - Find patterns / anomalies

84

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - Intro to tensors
 - Results
 - Speed
- Conclusions

Answer to both: tensor factorization • PARAFAC decomposition

Answer: tensor factorization

• PARAFAC decomposition

- 4M x 15 days

• Results for who-calls-whom-when

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Anomaly detection in timeevolving graphs

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Part#2: time-evolving graphs; tensors
 - Intro to tensors
 - Results
 - Speed
- Conclusions

- Brain Scan Data*
 - 9 persons
 - 60 nouns
- Questions
 - 218 questions
 - 'is it alive?', 'can you eat it?'

*Mitchell et al. *Predicting human brain activity associated with the meanings of nouns*. Science,2008. Data@ www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html

- Brain Scan Data*
 - 9 persons
 - 60 nouns

Questions

- 218 questions
- 'is it alive?', 'can you eat it?'

Patterns?

Carnegie Mellon

Neuro-semantics

Nouns	Nouns	Nouns	Nouns
beetle	bear	glass	bed
pants	COW	tomato	house
bee	coat	bell	car
Questions	Questions	Questions	Questions
can it cause you pain?	does it grow?	can you pick it up?	does it use electricity?
do you see it daily?	is it alive?	can you hold it in one hand?	can you sit on it?
is it conscious?	was it ever alive?	is it smaller than a golfball?'	does it cast a shadow?

Nouns

Small items -> Premotor cortex

glass tomato bell

Questions

can you hold it in one hand? is it smaller than a golfball?'

MLDAS, Doha 2015

Small items -> Premotor cortex

Nouns

tomato bell

Questions

can you pick it up? can you hold it in one hand? is it smaller than a golfball?'

Group 3

Evangelos Papalexakis, Tom Mitchell, Nicholas Sidiropoulos, Christos Faloutsos, Partha Pratim Talukdar, Brian Murphy, *Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200x*, SDM 2014

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors
- Acknowledgements and Conclusions

Carnegie Mellon

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Project info: PEGASUS

www.cs.cmu.edu/~pegasus

Results on large graphs: with Pegasus + hadoop + M45
Apache license
Code, papers, manual, video

Prof. U Kang

Prof. Polo Chau

MLDAS, Doha 2015

Carnegie Mellon

Cast

Akoglu, Leman

Araujo, **Miguel**

Beutel, Alex

Chau, Polo

Kang, U

Koutra, Danai

Lee, Jay Yoon

Prakash, Aditya

Papalexakis, Vagelis

MLDAS, Doha 2015

113

CONCLUSION#1 – Big data

- Patterns X Anomalies
- Large datasets reveal patterns/outliers that are invisible otherwise

114

CONCLUSION#2 – tensors

• powerful tool

Nouns

glass tomato bell

Questions

can you pick it up? can you hold it in one hand? is it smaller than a golfball?'

MLDAS, Doha 2015

References

- D. Chakrabarti, C. Faloutsos: Graph Mining Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006

TAKE HOME MESSAGE:

Cross-disciplinarity

MLDAS, Doha 2015

Thank you!

Cross-disciplinarity

MLDAS, Doha 2015