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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
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Graphs - why should we care? 

>$10B; ~1B users 

MLDAS, Doha 2015 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

MLDAS, Doha 2015 



CMU SCS 

(c) 2015, C. Faloutsos 6 

Graphs - why should we care? 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic and 

anomaly detection 
•  Recommendation systems 
•  .... 

•  Many-to-many db relationship -> graph 

MLDAS, Doha 2015 
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Motivating problems 
•  P1: patterns? Fraud detection? 

•  P2: patterns in time-evolving graphs / 
tensors 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 7 
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Motivating problems 
•  P1: patterns? Fraud detection? 

•  P2: patterns in time-evolving graphs / 
tensors 
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time 

destination 

Patterns            anomalies 
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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns & fraud detection 
•  Part#2: time-evolving graphs; tensors 
•  Conclusions 

MLDAS, Doha 2015 
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Part 1: 
Patterns, &  

fraud detection 
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Laws and patterns 
•  Q1: Are real graphs random? 

MLDAS, Doha 2015 
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Laws and patterns 
•  Q1: Are real graphs random? 
•  A1: NO!! 

– Diameter (‘6 degrees’; ‘Kevin Bacon’) 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

MLDAS, Doha 2015 



CMU SCS 

(c) 2015, C. Faloutsos 13 

Solution# S.1 
•  Power law in the degree distribution [Faloutsos x 3 

SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

MLDAS, Doha 2015 
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Solution# S.1 
•  Power law in the degree distribution [Faloutsos x 3 

SIGCOMM99; + Siganos] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

MLDAS, Doha 2015 
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Solution# S.1 
•  Q: So what? 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

MLDAS, Doha 2015 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

MLDAS, Doha 2015 

= friends of friends (F.O.F.) 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: 100^2 * N= 10 Trillion 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

MLDAS, Doha 2015 

= friends of friends (F.O.F.) 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: 100^2 * N= 10 Trillion 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 
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= friends of friends (F.O.F.) 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

MLDAS, Doha 2015 

~0.8PB -> 
a data center(!) 

DCO @ CMU 

Gaussian trap 

= friends of friends (F.O.F.) 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

MLDAS, Doha 2015 

~0.8PB -> 
a data center(!) 

Gaussian trap 
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Observation – big-data: 
•  O(N2) algorithms are ~intractable  - N=1B 

•  N2 seconds = 31B years (>2x age of 
universe) 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 21 
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1B 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix (‘eig()’) 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

MLDAS, Doha 2015 

A x = λ x 



CMU SCS 

(c) 2015, C. Faloutsos 23 

Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns: Degree; Triangles 
– Anomaly/fraud detection 
– Graph understanding 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 

MLDAS, Doha 2015 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

MLDAS, Doha 2015 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 
–  2x the friends, 2x the triangles ? 

MLDAS, Doha 2015 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

MLDAS, Doha 2015 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) – O(dmax

2) 
Q: Can we do that quickly? 
A: 

details 

MLDAS, Doha 2015 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) – O(dmax

2) 
Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues! - O(E) 

MLDAS, Doha 2015 

A x = λ x 

details 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

29 MLDAS, Doha 2015 29 (c) 2015, C. Faloutsos 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

30 MLDAS, Doha 2015 30 (c) 2015, C. Faloutsos 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

32 MLDAS, Doha 2015 32 (c) 2015, C. Faloutsos 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

33 MLDAS, Doha 2015 33 (c) 2015, C. Faloutsos 
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MORE Graph Patterns 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 34 

✔ 
✔ 
✔ 

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09.  



CMU SCS 

MORE Graph Patterns 
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•  Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal) 

•  Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Morgan Claypool.  
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  CopyCatch 
•  Spectral methods (‘fBox’) 
•  Belief Propagation 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
MLDAS, Doha 2015 

Patterns            anomalies 
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Fraud 
•  Given 

– Who ‘likes’ what page, and 
when 

•  Find 
– Suspicious users and suspicious 

products 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 37 

CopyCatch: Stopping Group Attacks by Spotting 
Lockstep Behavior in Social Networks, Alex Beutel, 
Wanhong Xu, Venkatesan Guruswami, Christopher Palow, 
Christos Faloutsos WWW, 2013. 
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Fraud 
•  Given 

– Who ‘likes’ what page, and 
when 

•  Find 
– Suspicious users and suspicious 

products 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 38 

CopyCatch: Stopping Group Attacks by Spotting 
Lockstep Behavior in Social Networks, Alex Beutel, 
Wanhong Xu, Venkatesan Guruswami, Christopher Palow, 
Christos Faloutsos WWW, 2013. 

Users Pages
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Our intuition 
▪  Lockstep behavior: Same Likes, same time 

Graph Patterns and Lockstep 
Behavior 

Pages
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Our intuition 
▪  Lockstep behavior: Same Likes, same time 

Graph Patterns and Lockstep 
Behavior 

Users Pages
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Our intuition 
▪  Lockstep behavior: Same Likes, same time 

Graph Patterns and Lockstep 
Behavior 
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MapReduce Overview 
▪  Use Hadoop to search for 

many clusters in parallel: 

1.  Start with randomly seed 

2.  Update set of Pages and 
center Like times for 
each cluster 

3.  Repeat until convergence 

Users Pages
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Deployment at Facebook 
▪  CopyCatch runs regularly (along with many other 

security mechanisms, and a large Site Integrity 
team) 

08/25 09/08 09/22 10/06 10/20 11/03 11/17 12/01

N
um

be
r 

of
 u

se
rs

 c
au

gh
t

Date of CopyCatch run

3 months of CopyCatch @ Facebook 

#users 
caught 

time MLDAS, Doha 2015 43 (c) 2015, C. Faloutsos 
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Deployment at Facebook 

23%

58%

5%
9%

5%

Fake Accounts
Malicious Browser Extensions
OS Malware
Credential Stealing
Social Engineering

Manually labeled 22 randomly selected  
clusters from February 2013 

Most clusters (77%) come from  
real but compromised users 

Fake acct 

MLDAS, Doha 2015 44 (c) 2015, C. Faloutsos 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  CopyCatch 
•  Spectral methods (‘fBox’) 
•  Belief Propagation 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
MLDAS, Doha 2015 
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Problem: Social Network Link Fraud 

MLDAS, Doha 2015 

Target: find “stealthy” attackers missed by other algorithms 

Clique 

Bipartite 
core 

41.7M nodes 
1.5B edges 
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Problem: Social Network Link Fraud 

MLDAS, Doha 2015 

Neil Shah, Alex Beutel, Brian Gallagher and Christos 
Faloutsos. Spotting Suspicious Link Behavior with fBox: An 
Adversarial Perspective. ICDM 2014, Shenzhen, China.  

Target: find “stealthy” attackers missed by other algorithms 

Takeaway: use reconstruction error 
between true/latent representation! 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  CopyCatch 
•  Spectral methods (‘fBox’) 
•  Belief Propagation 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
MLDAS, Doha 2015 
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E-bay Fraud detection 

w/ Polo Chau & 
Shashank Pandit, CMU 
[www’07] 
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E-bay Fraud detection 
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E-bay Fraud detection 



CMU SCS 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 52 

E-bay Fraud detection - NetProbe 
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Popular press 

And less desirable attention: 
•  E-mail from ‘Belgium police’ (‘copy of 

your code?’) 
MLDAS, Doha 2015 (c) 2015, C. Faloutsos 53 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  CopyCatch 
•  Spectral methods (‘fBox’) 
•  Belief Propagation; antivirus app 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
MLDAS, Doha 2015 
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Polo	
  Chau	
  
Machine	
  Learning	
  Dept	
  

Carey	
  Nachenberg	
  
Vice	
  President	
  &	
  Fellow	
  

Jeffrey	
  Wilhelm	
  
Principal	
  So9ware	
  Engineer	
  

Adam	
  Wright	
  
So9ware	
  Engineer	
  

Prof.	
  Christos	
  Faloutsos	
  
Computer	
  Science	
  Dept	
  

Polonium:	
  Tera-­‐Scale	
  Graph	
  Mining	
  and	
  
Inference	
  for	
  Malware	
  DetecCon	
  

PATENT	
  PENDING	
  

SDM 2011, Mesa, Arizona 
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Polonium:	
  The	
  Data	
  
60+	
  terabytes	
  of	
  data	
  anonymously	
  
contributed	
  by	
  parCcipants	
  of	
  worldwide	
  
Norton	
  Community	
  Watch	
  program	
  	
  

50+	
  million	
  machines	
  

900+	
  million	
  executable	
  files	
  

Constructed	
  a	
  machine-­‐file	
  biparCte	
  graph	
  
(0.2	
  TB+)	
  

1	
  billion	
  nodes	
  (machines	
  and	
  files)	
  

37	
  billion	
  edges	
  

MLDAS, Doha 2015 56 (c) 2015, C. Faloutsos 
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Polonium:	
  Key	
  Ideas	
  

•  Use	
  Belief	
  PropagaCon	
  to	
  propagate	
  
domain	
  knowledge	
  in	
  machine-­‐file	
  graph	
  to	
  
detect	
  malware	
  

•  Use	
  “guilt-­‐by-­‐associaCon”	
  (i.e.,	
  homophily)	
  
–  E.g.,	
  files	
  that	
  appear	
  on	
  machines	
  with	
  many	
  
bad	
  files	
  are	
  more	
  likely	
  to	
  be	
  bad	
  

•  Scalability:	
  handles	
  37	
  billion-­‐edge	
  graph	
  

MLDAS, Doha 2015 57 (c) 2015, C. Faloutsos 
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Polonium:	
  One-­‐InteracDon	
  Results	
  

84.9%	
  True	
  PosiCve	
  Rate	
  
1%	
  False	
  PosiCve	
  Rate	
  

True Positive Rate 
%	
  of	
  malware	
  	
  

correctly	
  idenCfied	
  

58 

Ideal	
  

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 
False Positive Rate 

%	
  of	
  non-­‐malware	
  wrongly	
  labeled	
  as	
  malware	
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  CopyCatch 
•  Spectral methods (‘fBox’) 
•  Belief Propagation; financial fraud 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
MLDAS, Doha 2015 
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Network Effect Tools: SNARE 

60 

•  Some accounts are sort-of-suspicious – how to combine weak 
signals? 

Before 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 
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Network Effect Tools: SNARE 

61 

•  A: Belief Propagation. 

Before 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 
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Network Effect Tools: SNARE 

62 

•  A: Belief Propagation. 

After Before 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 

Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. 
Steier, Christos Faloutsos: SNARE: a link analytic system for 
graph labeling and risk detection. KDD 2009: 1265-1274 
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Network Effect Tools: SNARE 

63 

•  Produces improvement over simply using flags 
– Up to 6.5 lift 
–  Improvement especially for low false positive rate 

True 
positive 

rate 

Results for accounts data (ROC Curve) 
Ideal 

SNARE Baseline (flags 
only) 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 
False positive rate 
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Network Effect Tools: SNARE 

64 

•  Accurate- Produces large improvement over 
simply using flags 

•  Flexible- Can be applied to other domains 
•  Scalable- One iteration BP runs in linear time 

(# edges) 
•  Robust- Works on large range of parameters 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Patterns 
– Anomaly / fraud detection 

•  CopyCatch 
•  Spectral methods (‘fBox’) 
•  Belief Propagation; fast computation & unification 

•  Part#2: time-evolving graphs; tensors 
•  Conclusions 
MLDAS, Doha 2015 



CMU SCS 

Unifying	
  Guilt-­by-­Association	
  Approaches:	
  	
  
Theorems	
  and	
  Fast	
  Algorithms	
  

Danai Koutra    
U Kang   

Hsing-Kuo Kenneth Pao 

Tai-You Ke 
Duen Horng (Polo) Chau 

Christos Faloutsos 

ECML PKDD, 5-9 September 2011, Athens, Greece 
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Problem Definition: 

GBA techniques 

(c) 2015, C. Faloutsos 67 

Given: Graph; &          
   few labeled nodes 
Find: labels of rest 
(assuming network 
effects) 

MLDAS, Doha 2015 
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Are they related? 
•  RWR (Random Walk with Restarts)   

–  google’s pageRank (‘if my friends are 
important, I’m important, too’) 

•  SSL (Semi-supervised learning)  
– minimize the differences among neighbors 

•  BP (Belief propagation)  
–  send messages to neighbors, on what you 

believe about them 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 68 
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Are they related? 
•  RWR (Random Walk with Restarts)   

–  google’s pageRank (‘if my friends are 
important, I’m important, too’) 

•  SSL (Semi-supervised learning)  
– minimize the differences among neighbors 

•  BP (Belief propagation)  
–  send messages to neighbors, on what you 

believe about them 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 69 

YES! 



CMU SCS 

Correspondence of Methods 

(c) 2015, C. Faloutsos 70 

Method Matrix Unknown known 
RWR [I  –    c    AD-1]	

 ×	

 x	

 =	

 (1-c)y	


SSL [I  + a(D  -   A)] 	

 ×	

 x	

 =	

 y	



FABP [I  + a   D  - c’A] 	

 ×	

 bh	

 =	

 φh	



0  1  0 
1  0  1 
0  1  0 

 ? 
 0 
 1 
 1 

 1 
     1  

1 

 d1 
    d2  
d3 final 

labels/ 
beliefs 

prior 
labels/ 
beliefs 

adjacency 
matrix 

MLDAS, Doha 2015 
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Results: Scalability  

(c) 2015, C. Faloutsos 71 

FABP is linear on the number of edges. 

# of edges (Kronecker 
graphs) 

ru
nt

im
e 

(m
in

) 

MLDAS, Doha 2015 
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Results: Parallelism  

(c) 2015, C. Faloutsos 72 

FABP ~2x faster  
& wins/ties on accuracy. 

runtime (min) 

%
 a

cc
ur

ac
y 

MLDAS, Doha 2015 
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Summary of Part#1 
•  *many* patterns in real graphs 

– Power-laws everywhere 
– Gaussian trap 

•  Avg << Max 

– Long (and growing) list of tools for anomaly/
fraud detection 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 73 

Patterns            anomalies 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 
•  Conclusions 

MLDAS, Doha 2015 
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Part 2: 
Time evolving  

graphs; tensors 
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Graphs over time -> tensors! 
•  Problem #2: 

– Given who calls whom, and when 
– Find patterns / anomalies 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 76 

smith 



CMU SCS 

Graphs over time -> tensors! 
•  Problem #2: 

– Given who calls whom, and when 
– Find patterns / anomalies 
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Graphs over time -> tensors! 
•  Problem #2: 

– Given who calls whom, and when 
– Find patterns / anomalies 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 78 

Mon 
Tue 
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Graphs over time -> tensors! 
•  Problem #2: 

– Given who calls whom, and when 
– Find patterns / anomalies 

MLDAS, Doha 2015 (c) 2015, C. Faloutsos 79 
callee 

caller 
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Graphs over time -> tensors! 
•  Problem #2’: 

– Given author-keyword-date 
– Find patterns / anomalies 
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Graphs over time -> tensors! 
•  Problem #2’’: 

– Given subject – verb – object facts 
– Find patterns / anomalies 
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Graphs over time -> tensors! 
•  Problem #2’’’: 

– Given <triplets> 
– Find patterns / anomalies 
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Graphs & side info 
•  Problem #2a: coupled (eg., side info) 

– Given subject – verb – object facts 
•  And voxel-activity for each subject-word 

– Find patterns / anomalies 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: time-evolving graphs; tensors 

–  Intro to tensors 
– Results 
– Speed 

•  Conclusions 

MLDAS, Doha 2015 
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Answer to both: tensor 

factorization 
•  Recall: (SVD) matrix factorization: finds 

blocks 
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Answer to both: tensor 

factorization 
•  PARAFAC decomposition 
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Answer: tensor factorization 
•  PARAFAC decomposition 
•  Results for who-calls-whom-when 

–  4M x 15 days 
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Anomaly detection in time-

evolving graphs 

•  Anomalous communities in phone call data: 
– European country, 4M clients, data over 2 weeks 

~200 calls to EACH receiver on EACH day! 

1 caller 5 receivers 4 days of activity 
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Figure�S1.�Presentation�and�set�of�exemplars�used�in�the�experiment. Participants were 
presented 60 distinct word-picture pairs describing common concrete nouns.  These consisted of 
5 exemplars from each of 12 categories, as shown above.  A slow event-related paradigm was 
employed, in which the stimulus was presented for 3s, followed by a 7s fixation period during 
which an X was presented in the center of the screen.  Images were presented as white lines and 
characters on a dark background, but are inverted here to improve readability.  The entire set of 
60 exemplars was presented six times, randomly permuting the sequence on each presentation. 

 

To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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Fig. 2. Predicting fMRI images
for given stimulus words. (A)
Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on
58 other words. Learned cvi co-
efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.
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Fig. 3. Locations of
most accurately pre-
dicted voxels. Surface
(A) and glass brain (B)
rendering of the correla-
tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior
cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.
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To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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Fig. 2. Predicting fMRI images
for given stimulus words. (A)
Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on
58 other words. Learned cvi co-
efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.
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Fig. 3. Locations of
most accurately pre-
dicted voxels. Surface
(A) and glass brain (B)
rendering of the correla-
tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior
cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.
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•  Brain Scan Data* 

•  9 persons 
•  60 nouns 

•  Questions 
•  218 questions 
•  ‘is it alive?’, ‘can 

you eat it?’ 

To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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Fig. 2. Predicting fMRI images
for given stimulus words. (A)
Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on
58 other words. Learned cvi co-
efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.
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Fig. 3. Locations of
most accurately pre-
dicted voxels. Surface
(A) and glass brain (B)
rendering of the correla-
tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior
cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.
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*Mitchell et al. Predicting human brain activity associated 
with the meanings of nouns. Science,2008. Data@ 
www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html  
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Figure�S1.�Presentation�and�set�of�exemplars�used�in�the�experiment. Participants were 
presented 60 distinct word-picture pairs describing common concrete nouns.  These consisted of 
5 exemplars from each of 12 categories, as shown above.  A slow event-related paradigm was 
employed, in which the stimulus was presented for 3s, followed by a 7s fixation period during 
which an X was presented in the center of the screen.  Images were presented as white lines and 
characters on a dark background, but are inverted here to improve readability.  The entire set of 
60 exemplars was presented six times, randomly permuting the sequence on each presentation. 

 

•  Brain Scan Data* 

•  9 persons 
•  60 nouns 

•  Questions 
•  218 questions 
•  ‘is it alive?’, ‘can 

you eat it?’ 

MLDAS, Doha 2015 95 (c) 2015, C. Faloutsos 

Patterns? 

To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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Fig. 2. Predicting fMRI images
for given stimulus words. (A)
Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on
58 other words. Learned cvi co-
efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.

A

B

C

M
ean over

participants

P
articipant P

5

Fig. 3. Locations of
most accurately pre-
dicted voxels. Surface
(A) and glass brain (B)
rendering of the correla-
tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior
cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.
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To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on
58 other words. Learned cvi co-
efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
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Fig. 3. Locations of
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rendering of the correla-
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tions for words outside
the training set for par-
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cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.
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Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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efficients for 3 of the 25 se-
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and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.
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tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
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cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.
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3.�Additional�Figures�and�legends��

 

Figure�S1.�Presentation�and�set�of�exemplars�used�in�the�experiment. Participants were 
presented 60 distinct word-picture pairs describing common concrete nouns.  These consisted of 
5 exemplars from each of 12 categories, as shown above.  A slow event-related paradigm was 
employed, in which the stimulus was presented for 3s, followed by a 7s fixation period during 
which an X was presented in the center of the screen.  Images were presented as white lines and 
characters on a dark background, but are inverted here to improve readability.  The entire set of 
60 exemplars was presented six times, randomly permuting the sequence on each presentation. 

 

•  Brain Scan Data* 

•  9 persons 
•  60 nouns 

•  Questions 
•  218 questions 
•  ‘is it alive?’, ‘can 

you eat it?’ 
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To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-

Predicted
“celery” = 0.84
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Fig. 2. Predicting fMRI images
for given stimulus words. (A)
Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on
58 other words. Learned cvi co-
efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.

A
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C

M
ean over

participants

P
articipant P

5

Fig. 3. Locations of
most accurately pre-
dicted voxels. Surface
(A) and glass brain (B)
rendering of the correla-
tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior
cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.
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To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
particular other word (e.g., “taste”) or set of words
(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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efficients for 3 of the 25 se-
mantic features (“eat,” “taste,”
and “fill”) are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =

–12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.
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rendering of the correla-
tion between predicted
and actual voxel activa-
tions for words outside
the training set for par-

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose
predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the
cortex and located in the left and right occipital and parietal lobes; left and right fusiform,
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior
cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine
participants. This panel represents clusters containing at least 10 contiguous voxels, each with
average correlation of at least 0.14.
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To fully specify a model within this com-
putational modeling framework, one must first
define a set of intermediate semantic features
f1(w) f2(w)…fn(w) to be extracted from the text
corpus. In this paper, each intermediate semantic
feature is defined in terms of the co-occurrence
statistics of the input stimulus word w with a
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(e.g., “taste,” “tastes,” or “tasted”) within the text
corpus. The model is trained by the application of
multiple regression to these features fi(w) and the
observed fMRI images, so as to obtain maximum-
likelihood estimates for the model parameters cvi
(26). Once trained, the computational model can be
evaluated by giving it words outside the training
set and comparing its predicted fMRI images for
these words with observed fMRI data.

This computational modeling framework is
based on two key theoretical assumptions. First, it
assumes the semantic features that distinguish the
meanings of arbitrary concrete nouns are reflected

in the statistics of their use within a very large text
corpus. This assumption is drawn from the field of
computational linguistics, where statistical word
distributions are frequently used to approximate
the meaning of documents and words (14–17).
Second, it assumes that the brain activity observed
when thinking about any concrete noun can be
derived as a weighted linear sum of contributions
from each of its semantic features. Although the
correctness of this linearity assumption is debat-
able, it is consistent with the widespread use of
linear models in fMRI analysis (27) and with the
assumption that fMRI activation often reflects a
linear superposition of contributions from different
sources. Our theoretical framework does not take a
position on whether the neural activation encoding
meaning is localized in particular cortical re-
gions. Instead, it considers all cortical voxels and
allows the training data to determine which loca-
tions are systematically modulated by which as-
pects of word meanings.

Results. We evaluated this computational mod-
el using fMRI data from nine healthy, college-age
participants who viewed 60 different word-picture
pairs presented six times each. Anatomically de-
fined regions of interest were automatically labeled
according to the methodology in (28). The 60 ran-
domly ordered stimuli included five items from
each of 12 semantic categories (animals, body parts,
buildings, building parts, clothing, furniture, insects,
kitchen items, tools, vegetables, vehicles, and other
man-made items). A representative fMRI image for
each stimulus was created by computing the mean
fMRI response over its six presentations, and the
mean of all 60 of these representative images was
then subtracted from each [for details, see (26)].

To instantiate our modeling framework, we first
chose a set of intermediate semantic features. To be
effective, the intermediate semantic features must
simultaneously encode thewide variety of semantic
content of the input stimulus words and factor the
observed fMRI activation intomore primitive com-
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Figure 4: Turbo-SMT finds meaningful groups of words, questions, and brain regions that are (both negatively
and positively) correlated, as obtained using Turbo-SMT. For instance, Group 3 refers to small items that can
be held in one hand,such as a tomato or a glass, and the activation pattern is very di↵erent from the one of
Group 1, which mostly refers to insects, such as bee or beetle. Additionally, Group 3 shows high activation in the
premotor cortex which is associated with the concepts of that group.
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which were withheld from the training data,
the leave-two-out scheme measures prediction accuracy
by the ability to choose which of the observed brain
images corresponds to which of the two words. After
mean-centering the vectors, this classification decision
is made according to the following rule:

kv1 � v̂1k2 + kv2 � v̂2k2 < kv1 � v̂2k2 + kv2 � v̂1k2

Although our approach is not designed to make predic-
tions, preliminary results are very encouraging: Using
only F=2 components, for the noun pair closet/watch

we obtained mean accuracy of about 0.82 for 5 out of the
9 human subjects. Similarly, for the pair knife/beetle,
we achieved accuracy of about 0.8 for a somewhat dif-
ferent group of 5 subjects. For the rest of the human
subjects, the accuracy is considerably lower, however, it
may be the case that brain activity predictability varies
between subjects, a fact that requires further investiga-
tion.

5 Experiments

We implemented Turbo-SMT in Matlab. Our imple-
mentation of the code is publicly available.5 For the par-
allelization of the algorithm, we used Matlab’s Parallel
Computing Toolbox. For tensor manipulation, we used

5
http://www.cs.cmu.edu/

~

epapalex/src/turbo_smt.zip

the Tensor Toolbox for Matlab [7] which is optimized
especially for sparse tensors (but works very well for
dense ones too). We use the ALS and the CMTF-OPT
[5] algorithms as baselines, i.e. we compare Turbo-

SMT when using one of those algorithms as their core
CMTF implementation, against the plain execution of
those algorithms. We implemented our version of the
ALS algorithm, and we used the CMTF Toobox6 im-
plementation of CMTF-OPT. We use CMTF-OPT for
higher ranks, since that particular algorithm is more
accurate than ALS, and is the state of the art. All ex-
periments were carried out on a machine with 4 Intel
Xeon E74850 2.00GHz, and 512Gb of RAM. Whenever
we conducted multiple iterations of an experiment (due
to the randomized nature of Turbo-SMT), we report
error-bars along the plots. For all the following experi-
ments we used either portions of the BrainQ dataset,
or the whole dataset.

5.1 Speedup As we have already discussed in the In-
troduction and shown in Fig. 1, Turbo-SMT achieves
a speedup of 50-200 on the BrainQ dataset; For all
cases, the approximation cost is either same as the base-
lines, or is larger by a small factor, indicating that
Turbo-SMT is both fast and accurate. Key facts that

6
http://www.models.life.ku.dk/joda/CMTF_Toolbox
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Figure 4: Turbo-SMT finds meaningful groups of words, questions, and brain regions that are (both negatively
and positively) correlated, as obtained using Turbo-SMT. For instance, Group 3 refers to small items that can
be held in one hand,such as a tomato or a glass, and the activation pattern is very di↵erent from the one of
Group 1, which mostly refers to insects, such as bee or beetle. Additionally, Group 3 shows high activation in the
premotor cortex which is associated with the concepts of that group.
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which were withheld from the training data,
the leave-two-out scheme measures prediction accuracy
by the ability to choose which of the observed brain
images corresponds to which of the two words. After
mean-centering the vectors, this classification decision
is made according to the following rule:

kv1 � v̂1k2 + kv2 � v̂2k2 < kv1 � v̂2k2 + kv2 � v̂1k2

Although our approach is not designed to make predic-
tions, preliminary results are very encouraging: Using
only F=2 components, for the noun pair closet/watch

we obtained mean accuracy of about 0.82 for 5 out of the
9 human subjects. Similarly, for the pair knife/beetle,
we achieved accuracy of about 0.8 for a somewhat dif-
ferent group of 5 subjects. For the rest of the human
subjects, the accuracy is considerably lower, however, it
may be the case that brain activity predictability varies
between subjects, a fact that requires further investiga-
tion.

5 Experiments

We implemented Turbo-SMT in Matlab. Our imple-
mentation of the code is publicly available.5 For the par-
allelization of the algorithm, we used Matlab’s Parallel
Computing Toolbox. For tensor manipulation, we used

5
http://www.cs.cmu.edu/

~

epapalex/src/turbo_smt.zip

the Tensor Toolbox for Matlab [7] which is optimized
especially for sparse tensors (but works very well for
dense ones too). We use the ALS and the CMTF-OPT
[5] algorithms as baselines, i.e. we compare Turbo-

SMT when using one of those algorithms as their core
CMTF implementation, against the plain execution of
those algorithms. We implemented our version of the
ALS algorithm, and we used the CMTF Toobox6 im-
plementation of CMTF-OPT. We use CMTF-OPT for
higher ranks, since that particular algorithm is more
accurate than ALS, and is the state of the art. All ex-
periments were carried out on a machine with 4 Intel
Xeon E74850 2.00GHz, and 512Gb of RAM. Whenever
we conducted multiple iterations of an experiment (due
to the randomized nature of Turbo-SMT), we report
error-bars along the plots. For all the following experi-
ments we used either portions of the BrainQ dataset,
or the whole dataset.

5.1 Speedup As we have already discussed in the In-
troduction and shown in Fig. 1, Turbo-SMT achieves
a speedup of 50-200 on the BrainQ dataset; For all
cases, the approximation cost is either same as the base-
lines, or is larger by a small factor, indicating that
Turbo-SMT is both fast and accurate. Key facts that

6
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and positively) correlated, as obtained using Turbo-SMT. For instance, Group 3 refers to small items that can
be held in one hand,such as a tomato or a glass, and the activation pattern is very di↵erent from the one of
Group 1, which mostly refers to insects, such as bee or beetle. Additionally, Group 3 shows high activation in the
premotor cortex which is associated with the concepts of that group.
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which were withheld from the training data,
the leave-two-out scheme measures prediction accuracy
by the ability to choose which of the observed brain
images corresponds to which of the two words. After
mean-centering the vectors, this classification decision
is made according to the following rule:

kv1 � v̂1k2 + kv2 � v̂2k2 < kv1 � v̂2k2 + kv2 � v̂1k2

Although our approach is not designed to make predic-
tions, preliminary results are very encouraging: Using
only F=2 components, for the noun pair closet/watch

we obtained mean accuracy of about 0.82 for 5 out of the
9 human subjects. Similarly, for the pair knife/beetle,
we achieved accuracy of about 0.8 for a somewhat dif-
ferent group of 5 subjects. For the rest of the human
subjects, the accuracy is considerably lower, however, it
may be the case that brain activity predictability varies
between subjects, a fact that requires further investiga-
tion.

5 Experiments

We implemented Turbo-SMT in Matlab. Our imple-
mentation of the code is publicly available.5 For the par-
allelization of the algorithm, we used Matlab’s Parallel
Computing Toolbox. For tensor manipulation, we used

5
http://www.cs.cmu.edu/
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epapalex/src/turbo_smt.zip

the Tensor Toolbox for Matlab [7] which is optimized
especially for sparse tensors (but works very well for
dense ones too). We use the ALS and the CMTF-OPT
[5] algorithms as baselines, i.e. we compare Turbo-

SMT when using one of those algorithms as their core
CMTF implementation, against the plain execution of
those algorithms. We implemented our version of the
ALS algorithm, and we used the CMTF Toobox6 im-
plementation of CMTF-OPT. We use CMTF-OPT for
higher ranks, since that particular algorithm is more
accurate than ALS, and is the state of the art. All ex-
periments were carried out on a machine with 4 Intel
Xeon E74850 2.00GHz, and 512Gb of RAM. Whenever
we conducted multiple iterations of an experiment (due
to the randomized nature of Turbo-SMT), we report
error-bars along the plots. For all the following experi-
ments we used either portions of the BrainQ dataset,
or the whole dataset.

5.1 Speedup As we have already discussed in the In-
troduction and shown in Fig. 1, Turbo-SMT achieves
a speedup of 50-200 on the BrainQ dataset; For all
cases, the approximation cost is either same as the base-
lines, or is larger by a small factor, indicating that
Turbo-SMT is both fast and accurate. Key facts that
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which were withheld from the training data,
the leave-two-out scheme measures prediction accuracy
by the ability to choose which of the observed brain
images corresponds to which of the two words. After
mean-centering the vectors, this classification decision
is made according to the following rule:

kv1 � v̂1k2 + kv2 � v̂2k2 < kv1 � v̂2k2 + kv2 � v̂1k2

Although our approach is not designed to make predic-
tions, preliminary results are very encouraging: Using
only F=2 components, for the noun pair closet/watch

we obtained mean accuracy of about 0.82 for 5 out of the
9 human subjects. Similarly, for the pair knife/beetle,
we achieved accuracy of about 0.8 for a somewhat dif-
ferent group of 5 subjects. For the rest of the human
subjects, the accuracy is considerably lower, however, it
may be the case that brain activity predictability varies
between subjects, a fact that requires further investiga-
tion.

5 Experiments

We implemented Turbo-SMT in Matlab. Our imple-
mentation of the code is publicly available.5 For the par-
allelization of the algorithm, we used Matlab’s Parallel
Computing Toolbox. For tensor manipulation, we used
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the Tensor Toolbox for Matlab [7] which is optimized
especially for sparse tensors (but works very well for
dense ones too). We use the ALS and the CMTF-OPT
[5] algorithms as baselines, i.e. we compare Turbo-

SMT when using one of those algorithms as their core
CMTF implementation, against the plain execution of
those algorithms. We implemented our version of the
ALS algorithm, and we used the CMTF Toobox6 im-
plementation of CMTF-OPT. We use CMTF-OPT for
higher ranks, since that particular algorithm is more
accurate than ALS, and is the state of the art. All ex-
periments were carried out on a machine with 4 Intel
Xeon E74850 2.00GHz, and 512Gb of RAM. Whenever
we conducted multiple iterations of an experiment (due
to the randomized nature of Turbo-SMT), we report
error-bars along the plots. For all the following experi-
ments we used either portions of the BrainQ dataset,
or the whole dataset.

5.1 Speedup As we have already discussed in the In-
troduction and shown in Fig. 1, Turbo-SMT achieves
a speedup of 50-200 on the BrainQ dataset; For all
cases, the approximation cost is either same as the base-
lines, or is larger by a small factor, indicating that
Turbo-SMT is both fast and accurate. Key facts that
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Figure 4: Turbo-SMT finds meaningful groups of words, questions, and brain regions that are (both negatively
and positively) correlated, as obtained using Turbo-SMT. For instance, Group 3 refers to small items that can
be held in one hand,such as a tomato or a glass, and the activation pattern is very di↵erent from the one of
Group 1, which mostly refers to insects, such as bee or beetle. Additionally, Group 3 shows high activation in the
premotor cortex which is associated with the concepts of that group.
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and v

2

which were withheld from the training data,
the leave-two-out scheme measures prediction accuracy
by the ability to choose which of the observed brain
images corresponds to which of the two words. After
mean-centering the vectors, this classification decision
is made according to the following rule:

kv1 � v̂1k2 + kv2 � v̂2k2 < kv1 � v̂2k2 + kv2 � v̂1k2

Although our approach is not designed to make predic-
tions, preliminary results are very encouraging: Using
only F=2 components, for the noun pair closet/watch

we obtained mean accuracy of about 0.82 for 5 out of the
9 human subjects. Similarly, for the pair knife/beetle,
we achieved accuracy of about 0.8 for a somewhat dif-
ferent group of 5 subjects. For the rest of the human
subjects, the accuracy is considerably lower, however, it
may be the case that brain activity predictability varies
between subjects, a fact that requires further investiga-
tion.

5 Experiments

We implemented Turbo-SMT in Matlab. Our imple-
mentation of the code is publicly available.5 For the par-
allelization of the algorithm, we used Matlab’s Parallel
Computing Toolbox. For tensor manipulation, we used

5
http://www.cs.cmu.edu/

~

epapalex/src/turbo_smt.zip

the Tensor Toolbox for Matlab [7] which is optimized
especially for sparse tensors (but works very well for
dense ones too). We use the ALS and the CMTF-OPT
[5] algorithms as baselines, i.e. we compare Turbo-

SMT when using one of those algorithms as their core
CMTF implementation, against the plain execution of
those algorithms. We implemented our version of the
ALS algorithm, and we used the CMTF Toobox6 im-
plementation of CMTF-OPT. We use CMTF-OPT for
higher ranks, since that particular algorithm is more
accurate than ALS, and is the state of the art. All ex-
periments were carried out on a machine with 4 Intel
Xeon E74850 2.00GHz, and 512Gb of RAM. Whenever
we conducted multiple iterations of an experiment (due
to the randomized nature of Turbo-SMT), we report
error-bars along the plots. For all the following experi-
ments we used either portions of the BrainQ dataset,
or the whole dataset.

5.1 Speedup As we have already discussed in the In-
troduction and shown in Fig. 1, Turbo-SMT achieves
a speedup of 50-200 on the BrainQ dataset; For all
cases, the approximation cost is either same as the base-
lines, or is larger by a small factor, indicating that
Turbo-SMT is both fast and accurate. Key facts that

6
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Figure 4: Turbo-SMT finds meaningful groups of words, questions, and brain regions that are (both negatively
and positively) correlated, as obtained using Turbo-SMT. For instance, Group 3 refers to small items that can
be held in one hand,such as a tomato or a glass, and the activation pattern is very di↵erent from the one of
Group 1, which mostly refers to insects, such as bee or beetle. Additionally, Group 3 shows high activation in the
premotor cortex which is associated with the concepts of that group.
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the leave-two-out scheme measures prediction accuracy
by the ability to choose which of the observed brain
images corresponds to which of the two words. After
mean-centering the vectors, this classification decision
is made according to the following rule:

kv1 � v̂1k2 + kv2 � v̂2k2 < kv1 � v̂2k2 + kv2 � v̂1k2

Although our approach is not designed to make predic-
tions, preliminary results are very encouraging: Using
only F=2 components, for the noun pair closet/watch

we obtained mean accuracy of about 0.82 for 5 out of the
9 human subjects. Similarly, for the pair knife/beetle,
we achieved accuracy of about 0.8 for a somewhat dif-
ferent group of 5 subjects. For the rest of the human
subjects, the accuracy is considerably lower, however, it
may be the case that brain activity predictability varies
between subjects, a fact that requires further investiga-
tion.

5 Experiments

We implemented Turbo-SMT in Matlab. Our imple-
mentation of the code is publicly available.5 For the par-
allelization of the algorithm, we used Matlab’s Parallel
Computing Toolbox. For tensor manipulation, we used
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the Tensor Toolbox for Matlab [7] which is optimized
especially for sparse tensors (but works very well for
dense ones too). We use the ALS and the CMTF-OPT
[5] algorithms as baselines, i.e. we compare Turbo-

SMT when using one of those algorithms as their core
CMTF implementation, against the plain execution of
those algorithms. We implemented our version of the
ALS algorithm, and we used the CMTF Toobox6 im-
plementation of CMTF-OPT. We use CMTF-OPT for
higher ranks, since that particular algorithm is more
accurate than ALS, and is the state of the art. All ex-
periments were carried out on a machine with 4 Intel
Xeon E74850 2.00GHz, and 512Gb of RAM. Whenever
we conducted multiple iterations of an experiment (due
to the randomized nature of Turbo-SMT), we report
error-bars along the plots. For all the following experi-
ments we used either portions of the BrainQ dataset,
or the whole dataset.

5.1 Speedup As we have already discussed in the In-
troduction and shown in Fig. 1, Turbo-SMT achieves
a speedup of 50-200 on the BrainQ dataset; For all
cases, the approximation cost is either same as the base-
lines, or is larger by a small factor, indicating that
Turbo-SMT is both fast and accurate. Key facts that
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