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15-826: Multimedia Databases
and Data Mining

Lecture #25: Time series mining and
forecasting

Christos Faloutsos

% CMU SCS

Must-Read Material

* Byong-Kee Yi, Nikolaos D. Sidiropoulos,
Theodore Johnson, H.V. Jagadish, Christos
Faloutsos and Alex Biliris, Online Data Mining
for Co-Evolving Time Sequences, ICDE, Feb
2000.

* Chungmin Melvin Chen and Nick
Roussopoulos, Adaptive Selectivity Estimation
Using Query Feedbacks, SIGMOD 1994
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# * Motivation
+ Similarity search — distance functions
* Linear Forecasting
* Bursty traffic - fractals and multifractals
* Non-linear forecasting
* Conclusions
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Problem definition

. m one or more sequences
X7y Xpy ooy Xgy onn
Gp Yy s Vo oo
)

* Find
— similar sequences; forecasts
— patterns; clusters; outliers
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Motivation - Applications
 Financial, sales, economic series
* Medical
— ECGs +; blood pressure etc monitoring
—reactions to new drugs

—elderly care

15-826 (¢) C. Faloutsos, 2012
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Motivation - Applications
(cont’d)
* ‘Smart house’

— sensors monitor temperature, humidity,
air quality

* video surveillance

15-826 () C. Faloutsos, 2012
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Motivation - Applications
(cont’d)
* civil/automobile infrastructure
—bridge vibrations [Oppenheim+02]
— road conditions / traffic monitoring

15-826 () C. Faloutsos, 2012
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Motivation - Applications
(cont’d)
» Weather, environment/anti-pollution
—volcano monitoring

— air/water pollutant monitoring

H.“‘wl.ll-.l‘vM‘\}\\'l‘\‘;\‘\“
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Motivation - Applications
(cont’d)
* Computer systems
— “Active Disks’ (buffering, prefetching)
—web servers (ditto)

—network traffic monitoring

15-826 () C. Faloutsos, 2012 10

Stream Data: Disk accesses

Disk traffic

#bytes

15000000

1

5000000

0

15-826 () C. Faloutsos, 2012 11

g CMU SCS
Problem #1:

Goal: given a signal (e.g.., #packets over
time)

Find: patterns, periodicities, and/or compress

lynx caught per year

(packets per day;
temperature per day)

year
15-826 (¢) C. Faloutsos, 2012 12
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Problem#2: Forecast

Givenx, x,, ..

., forecast x,,;

15-826

Time Tick
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Problem#2’: Similarity search

E.g.., Find a 3-tick pattern, similar to the last one

15-826

Time Tick
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Problem #3:

» Given: A set of correlated time sequences
» Forecast ‘Sent(t)’

92
80 »
ER) r's \
% 60 ——sent
20l e ™~
e |V —a =—lost
2 304 NN AN
2% - AN S — ~&—repeated
10
0 . . . . :
1 3 5 7 9 1
Time Tick
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Important observations

Patterns, rules, forecasting and similarity
indexing are closely related:

* To do forecasting, we need
— to find patterns/rules
— to find similar settings in the past

* to find outliers, we need to have forecasts
— (outlier = too far away from our forecast)

15-826 () C. Faloutsos, 2012 16
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Outline

* Motivation
q° Similarity Search and Indexing
* Linear Forecasting
* Bursty traffic - fractals and multifractals
* Non-linear forecasting
+ Conclusions
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Outline

* Motivation

q' Similarity search and distance functions
— Euclidean

— Time-warping

15-826 (¢) C. Faloutsos, 2012 18
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Importance of distance
functions

Subtle, but absolutely necessary:

* A ‘must’ for similarity indexing (->
forecasting)

* A ‘must’ for clustering

Two major families
— Euclidean and Lp norms

— Time warping and variations

15-826 () C. Faloutsos, 2012 19
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Euclidean and Lp

[RETEE| I S 2
ey L D(x:y)=Z(xi_yi)
B )

\\,{/ Lp(i,j/)= , |x[_y[ |p

*L,: city-block = Manhattan
L, = Euclidean

.Loo
15-826 (c) C. Faloutsos, 2012 20
g CMU SCS
Observation #1
* Time sequence -> n-d
vector
Day-n
s \\:;;/;Vz
Day-1
15-826 (c) C. Faloutsos, 2012 21

15-826



C. Faloutsos

CMU

g CMU SCS
Observation #2

. . . Day-n
Euclidean distance is
closely related to
— cosine similarity =

Day-2

— dot product Day-1

— ‘cross-correlation’
function

15-826 () C. Faloutsos, 2012 22

% CMU SCS
Time Warping

* allow accelerations - decelerations
— (with or w/o penalty)

* THEN compute the (Euclidean) distance (+
penalty)

* related to the string-editing distance

15-826 () C. Faloutsos, 2012 23
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Time Warping

‘stutters’: g v
ANSVIAN.

15-826 (¢) C. Faloutsos, 2012 2
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Time warping

Q: how to compute it?
A: dynamic programming
D(i,j) = cost to match

prefix of length 7 of first sequence x with prefix
of length j of second sequence y

15-826 (c) C. Faloutsos, 2012 25
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Time warping
Thus, with no penalty for stutter, for sequences

Xpy Xgp ey X ViV oV

D(i-1,j-1) no stutter

D(i, j) = |x[i1- y{ ]|+ min] DG, j 1) x-stutter
D(-1,7) y-stutter
15-826 (c) C. Faloutsos, 2012 26
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Time warping
VERY SIMILAR to the string-editing distance

D(i-1,j-1) no stutter

D(i, j) =|x[i1- ]|+ mind DG, j 1) x-stutter
D(i-1)) y-stutter
15-826 (c) C. Faloutsos, 2012 27
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Time warping

* Complexity: O(M*N) - quadratic on the
length of the strings

» Many variations (penalty for stutters; limit
on the number/percentage of stutters; ...)

* popular in voice processing [Rabiner +
Juang]

15-826 (c) C. Faloutsos, 2012 28
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Other Distance functions

* piece-wise linear/flat approx.; compare
pieces [Keogh+01] [Faloutsos+97]

* ‘cepstrum’ (for voice [Rabiner+Juang])
— do DFT; take log of amplitude; do DFT again!
* Allow for small gaps [Agrawal+95]

See tutorial by [Gunopulos + Das,
SIGMODO01]

15-826 () C. Faloutsos, 2012 29
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Other Distance functions

* In [Keogh+, KDD’04]: parameter-free,
MDL based

15-826 (¢) C. Faloutsos, 2012 30
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Conclusions
Prevailing distances:

— Euclidean and
— time-warping

15-826 (c) C. Faloutsos, 2012 31
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Outline

* Motivation

* Similarity search and distance functions
q' Linear Forecasting

* Bursty traffic - fractals and multifractals

* Non-linear forecasting

+ Conclusions

15-826 () C. Faloutsos, 2012 32

g CMU SCS

Linear
Forecasting

15-826 (¢) C. Faloutsos, 2012 33
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Forecasting
"Prediction is very difficult, especially about the

future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/
thoughts.htmi

15-826 () C. Faloutsos, 2012 34
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Outline

* Motivation

* Linear Forecasting
q — Auto-regression: Least Squares; RLS
— Co-evolving time sequences
— Examples
— Conclusions

15-826 () C. Faloutsos, 2012 35
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Reference

[Yi+00] Byoung-Kee Yi et al.: Online Data Mining
for Co-Evolving Time Sequences, ICDE 2000.
(Describes MUSCLES and Recursive Least
Squares)
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Problem#2: Forecast

» Example: give x, , x,,, ..., forecast x,

Time Tick

15-826 () C. Faloutsos, 2012 37
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Forecasting: Preprocessing

MANUALLY:

remove trends spot periodicities
7 days

: L

. I I

% L |

12 03 4 5 6 7 8 9 10

time time

15-826 () C. Faloutsos, 2012 38
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Problem#2: Forecast

» Solution: try to express
x(

as a linear function of the past: x,_,, x,,, ...,
(up to a window of w)

Formally:

9
§
Ty A ATt + - ..+ QuTi_w + N0OisE gE g’” ??
3
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15-826

13



C. Faloutsos

CMU

g CMU SCS

(Problem: Back-cast; interpolate)

* Solution - interpolate: try to express
xt
as a linear function of the past AND the future:
Xev 1 Xpe25 -+« Xevwgurure; Xe-15 -+ Xewpast
(up to windows of W, Wyre)

* EXACTLY the same algo’s

P T e oy

1 3 5 7 9 11
Time Tick

15-826 () C. Faloutsos, 2012 40
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Linear Regression: idea

. 85

patient| weight  height Body height
1 77 3
2 43 54
3 54 7
e -

Body weight

® express what we don’t know (= ‘dependent variable’)
« as a linear function of what we know (= ‘indep. variable(s)’)

15-826 () C. Faloutsos, 2012 41
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Linear Auto Regression:

Time Packets

Sent(t)
1 43
2 54
3 72
15-826 (c) C. Faloutsos, 2012 42
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Linear Auto Regression:

85
80
75
70
65
60
55

Time | Packets  Packets
Sent (1-1)  Sent(1)

B /43

2 43 54

3 8-

‘lag-plot’

50

45
N Q‘/ ki 40

Number of packets sent (t)

15 25 35 45

Number of packets sent (t-1)

* lag w=1
* Dependent variable = # of packets sent (S [t])
« Independent variable = # of packets sent (S[t-1])

15-826 () C. Faloutsos, 2012 43
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Outline

* Motivation

* Linear Forecasting

q — Auto-regression: Least Squares; RLS
— Co-evolving time sequences

— Examples

— Conclusions

15-826 () C. Faloutsos, 2012 44

g CMU SCS

More details:

* Q1: Can it work with window w>1?
* Al: YES!

X

15-826 (¢) C. Faloutsos, 2012 45
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More details:

* QI: Can it work with window w>1?
* Al: YES! (we’ll fit a hyper-plane, then!)

X2

15-826 () C. Faloutsos, 2012
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More details:

* Ql: Can it work with window w>1?
* Al: YES! (we’ll fit a hyper-plane, then!)

15-826 () C. Faloutsos, 2012
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More details:

* Q1: Can it work with window w>1?
* Al: YES! The problem becomes:

XN xw] X Ay 1] T YINx1]
« OVER-CONSTRAINED

— a is the vector of the regression coefficients

— X has the N values of the w indep. variables
— y has the N values of the dependent variable

15-826 (¢) C. Faloutsos, 2012
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More details:

° X[N XW] X a[w x1] = y[N x1] —_—
Ind-varl Ind-var-w
e

I
time XX, X, B
Xy, Xopseis Xy, a, Y2
: a, :
x|. =1.

Xut»Xnnoeoon X Y

> Nw

15-826 () C. Faloutsos, 2012 49
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More details:

¢ X[N xW] x a[w x1] = YIN x1] -
Ind-varl Ind-var-w
v

¥

Xy X X YN

N22**°> Nw

15-826 () C. Faloutsos, 2012 50
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More details

* Q2: How to estimate a,, a,, ... a, =a?

» A2: with Least Squares fit
a=(X"xX)'x X"xy)

* (Moore-Penrose pseudo-inverse)

* a is the vector that minimizes the RMSE
fromy

* <identical math with ‘query feedbacks’>

15-826 (¢) C. Faloutsos, 2012 51
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More details

* Straightforward solution: w
a=(X"xX)'x(X"xy)

a : Regression Coeff. Vector XN
X : Sample Matrix

 Observations:
— Sample matrix X grows over time
— needs matrix inversion
— O(Nxw?) computation
— O(Nxw) storage

15-826 (c) C. Faloutsos, 2012 52

% CMU SCS

Even more details

* Q3: Can we estimate a incrementally?

* A3: Yes, with the brilliant, classic method
of ‘Recursive Least Squares’ (RLS) (see,
e.g., [Yi+00], for details).

* We can do the matrix inversion, WITHOUT
inversion! (How is that possible?!)

15-826 () C. Faloutsos, 2012 53
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Even more details

* Q3: Can we estimate a incrementally?

» A3: Yes, with the brilliant, classic method
of ‘Recursive Least Squares’ (RLS) (see,
e.g., [Yi+00], for details).

* We can do the matrix inversion, WITHOUT
inversion! (How is that possible?!)

* A: our matrix has special form: (XT X)

15-826 (¢) C. Faloutsos, 2012 54
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More details

w

At the N+ time tick:

Xy Xy N

15-826 () C. Faloutsos, 2012 55
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More details

e Let Gy=( X,/ x X, )" (" gain matrix’*)
* G, can be computed recursively from G,

w

15-826 () C. Faloutsos, 2012 56
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EVEN more details:

Gy, =Gy _[C]_l x[Gy x xN+1T]x XyaxGy

\

T
c=[l+xy,xGyxxy, ]

Let’s elaborate
(VERY IMPORTANT, VERY VALUABLE!)

15-826 (¢) C. Faloutsos, 2012 57

1 X wrow vector

15-826
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EVEN more details:

T

a=[Xy, xXy, ]_1 X[XN+1T X Yyl

15-826 () C. Faloutsos, 2012
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EVEN more details:

a= [XN+1T XXN+1]_] X[XN+1T X Yyl

[wx1] [(N+1) x w] [(N+1)x 1]
[wx (N+1)] [wx (N+1)]
15-826 (c) C. Faloutsos, 2012
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EVEN more details:

a= [XN+IT ><)(N+1£D <[XN+1T ><yN+1:|

[(N+1) x w]

[wx (N+1)]

15-826 (¢) C. Faloutsos, 2012
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EVEN more details:
X x X 7' %[ X,
a=[Xy, xXy, 1 x[Xy, xyy,]
Comt 1 X w row vector
ain T _
n%atrix’ Gy =[Xyy xXy,] :
GN+1 = GN - [c]_l X[GN x xN+1T]x Xy X GN
T
c=[1+x,,, xGyxxy,, |
15-826 (c) C. Faloutsos, 2012 61
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EVEN more details:

Gy, =Gy - [C]il x[Gy x xN+1T]x XyaxGy

T
c=[1+xy,XGyxxy, ]

15-826 (c) C. Faloutsos, 2012 62
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EVEN more details:

1x1

Ixw

wxw  WXW wxw wxl W

-1 T
Gy =Gy =[c] x[Gyxxy,, Ixxy, xGy

SCALAR! - T
c=[l+xy,,xGyxxy,, |

15-826 (¢) C. Faloutsos, 2012 63
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Altogether:

a= [XN+1T X XN+1]_1 X[XN+1T X Yyl

Gy, = [XN+1T XXy, I
Gy, =Gy - [c]_l x[Gy x xN+1T]x Xy xGy

T
c=[+xy,xGyxxy, ]

15-826 () C. Faloutsos, 2012
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Altogether:

G,=61

where
I: w x w identity matrix
0: a large positive number

15-826

() C. Faloutsos, 2012 65
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Comparison:
 Straightforward Least ¢ Recursive LS

Squares — Need much smaller,
— Needs huge matrix fixed size matrix

(growing in size) O O(wxw)

(Nxw) — Fast, incremental
— Costly matrix computation o

operation o (1xw?)

(Nxw?)

— no matrix inversion

N=10% w=1-100

15-826 (¢) C. Faloutsos, 2012
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Pictorially:

* Given:

Dependent Variable

Independent Variable

15-826 () C. Faloutsos, 2012

67
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Pictorially:

* <— new point

Dependent Variable

Independent Variable

15-826 () C. Faloutsos, 2012
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Pictorially:

RLS: quickly compute new best fit

* — new point

Dependent Variable

Independent Variable

15-826 (¢) C. Faloutsos, 2012
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Even more details

* Q4: can we ‘forget’ the older samples?
* A4: Yes - RLS can easily handle that [Yi+00]:

15-826 () C. Faloutsos, 2012 70

% CMU SCS
Adaptability - ‘forgetting’

)

=}

8 .

5 =

8

> 2

= %

5 2

2

§ =

S

ae
Independent Variable
eg., #packets sent

15-826 () C. Faloutsos, 2012 71
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Adaptability - ‘forgetting’

Trend change

o
=
8o * o
5z AN
5 Pl L e (RILS
58 o — . - .
2 « « *with no forgetting
Independent Variable
eg. #packets sent
15-826 (¢) C. Faloutsos, 2012 72
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Adaptability - ‘forgetting’

Trend change

o
=}
8
3
Z (R)LS
35 with no forgetting
] .
o]
&
(=]
(R)LS

with forgetting

Independent Variable

* RLS: can *trivially* handle ‘forgetting’

15-826 () C. Faloutsos, 2012 73

CMU SCS SKIP

How to choose ‘w’?

* goal: capture arbitrary periodicities
« with NO human intervention
* on a semi-infinite stream

15-826 () C. Faloutsos, 2012 74
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Reference

[Papadimitriou+ vldb2003] Spiros
Papadimitriou, Anthony Brockwell and
Christos Faloutsos Adaptive, Hands-Off
Stream Mining VLDB 2003, Berlin,
Germany, Sept. 2003

15-826 (¢) C. Faloutsos, 2012 75
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Answer:

* ‘AWSOM’ (Arbitrary Window Stream
fOrecasting Method) [Papadimitriou+,
vldb2003]

¢ idea: do AR on each wavelet level
¢ in detail:

15-826 () C. Faloutsos, 2012

[k

AN wr o
L ' [ B

w;)

t

Vs,

t
time

15-826 (¢) C. Faloutsos, 2012
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AWSOM
HHH HH: w, h Wi | Wl'i [ Wi [
e eyt bt
w, — w,‘
Wi
V%M
time’
15-826 (¢) C. Faloutsos, 2012 77
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AWSOM

CMU
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AWSOM - idea

N
Wiia Wit W, W= BuWier + BWiz + -
4N
Wy Wy | Wew Wee= BpiWeea + BpaWees + -

15-826 () C. Faloutsos, 2012
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SKIP

More details...

» Update of wavelet coefficients (incremental)
» Update of linear models (incremental; RLS)
* Feature selection (single-pass)
— Not all correlations are significant

— Throw away the insignificant ones (“noise”)

15-826 () C. Faloutsos, 2012

AWSOM Seasonal AR .
[P ¢ Triangle pulse
- LT - ” ¢ Mix (sine +
;. H i H” ” ”'“ FAILED square)
= ‘1 Il ‘L‘ u“" * AR captures
’ ’.”, TE wrong trend (or
e e e O none)
—‘”—'1‘:'(‘?“ T (TR e e e Seasonal AR
’ : estimation fails
. . 1% FAILED
! !
J AT J

g CMU SCS
Results - Synthetic data

SKIP

Tiwe 1mm | owe | S owo
15-826 (¢) C. Faloutsos, 2012
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Results - Real data

- ile — Original ° AR (35) ile - SAR
i ' i
H
ig i i
& I N — FAILED
8 ' 8
e e

* Automobile traffic

— Daily periodicity

— Bursty “noise” at smaller scales
* AR fails to capture any trend
» Seasonal AR estimation fails

15-826 () C. Faloutsos, 2012 82

K

Results - real data

Sunspot - Original unspot - AWSOM (6.1 Sunspot- AR (60)  nspat — SARIMA (2.1,0) x (1.1,
o a o a
8 ‘ 8 8 8
8 8 8 8
|
i w B L H
R l" 8 AT 8 8
LAY
o L1 UL - A1 . o
§ @ 6o | ®® 6 @ we | ™ 6 P 6o | ®w ¢ Bo 6w | =w
Time Tirne Time Tirne

* Sunspot intensity
— Slightly time-varying “period”
* AR captures wrong trend
* Seasonal ARIMA
— wrong downward trend, despite help by human!

15-826 () C. Faloutsos, 2012 83
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Complexity

* Model update
Space: O(lgN + mk?) ~ O(IgN)
Time: O?)=0(1)
* Where
— N: number of points (so far)
— k: number of regression coefficients; fixed
— m:number of linear models; O(IgN)

15-826 (¢) C. Faloutsos, 2012 84
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QOutline

* Motivation

* Linear Forecasting
— Auto-regression: Least Squares; RLS
# — Co-evolving time sequences
— Examples

— Conclusions

15-826 () C. Faloutsos, 2012
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Co-Evolving Time Sequences

» Given: A set of correlated time sequences
* Forecast ‘Repeated(t)’

9
80 8
270 Py e
2 60 —&—sent
20X " ~,
S yod Y~ -~ -8 lost
S0l A A NG
e NS T, | A repeated
= o
2 77
0 . . . . :
1 3 5 7 9 1
Time Tick
15-826 (c) C. Faloutsos, 2012 86
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.
Solution:
Q: what should we do?
15-826 (c) C. Faloutsos, 2012 87
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Solution:

Least Squares, with

* Dep. Variable: Repeated(t)

¢ Indep. Variables: Sent(t-1) ... Sent(t-w);
Lost(t-1) ...Lost(t-w); Repeated(t-1), ...

* (named: ‘MUSCLES’ [Yi+00])

15-826 () C. Faloutsos, 2012 88
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Forecasting - Outline

* Auto-regression

* Least Squares; recursive least squares
» Co-evolving time sequences
. Examples

» Conclusions

15-826 () C. Faloutsos, 2012 89
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Examples - Experiments

* Datasets
— Modem pool traffic (14 modems, 1500 time-
ticks; #packets per time unit)

— AT&T WorldNet internet usage (several data
streams; 980 time-ticks)

* Measures of success
— Accuracy : Root Mean Square Error (RMSE)

15-826 (¢) C. Faloutsos, 2012 90
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4

Accuracy - “Modem”

35

3

|
\

25

RMSE 2. mAR
* amiscize
0.5
o
12 3 4 5 6 7 8 9 10 11 12 13 14
Modems
MUSCLES outperforms & ”
15-826 () C. Faloutsos, 2012 91
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13 )
Accuracy - “Internet
1
1.2
1
RmssaB BAR
0.6- 1 DOyesterday
0.4- I BMUSCLES
0.2- u
0'; 2 3 4 5 6 7 8 91011121}51415
Streams
MUSCLES consistently outperforms & ”
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Linear forecasting - OQutline
* Auto-regression
* Least Squares; recursive least squares
» Co-evolving time sequences
» Examples
™). Conclusions
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Conclusions - Practitioner’s
guide
* AR(IMA) methodology: prevailing method
for linear forecasting

* Brilliant method of Recursive Least Squares
for fast, incremental estimation.

* See [Box-Jenkins]
* (AWSOM: no human intervention)

15-826 (c) C. Faloutsos, 2012 94

Resources: software and urls

* MUSCLES: Prof. Byoung-Kee Yi:
http://www.postech.ac.kr/~bkyi/
or christos@cs.cmu.edu

* free-ware: ‘R’ for stat. analysis
(clone of Splus)
http://cran.r-project.org/

15-826 () C. Faloutsos, 2012 95
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Books

* George E.P. Box and Gwilym M. Jenkins and
Gregory C. Reinsel, Time Series Analysis:
Forecasting and Control, Prentice Hall, 1994 (the
classic book on ARIMA, 3rd ed.)

* Brockwell, P. J. and R. A. Davis (1987). Time
Series: Theory and Methods. New York, Springer
Verlag.
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Additional Reading

¢ [Papadimitriou+ vldb2003] Spiros Papadimitriou,
Anthony Brockwell and Christos Faloutsos
Adaptive, Hands-Off Stream Mining VLDB 2003,
Berlin, Germany, Sept. 2003

» [Yi+00] Byoung-Kee Yi et al.: Online Data
Mining for Co-Evolving Time Sequences, ICDE
2000. (Describes MUSCLES and Recursive Least
Squares)
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% CMU SCS
Outline

* Motivation
* Similarity search and distance functions
* Linear Forecasting

# Bursty traffic - fractals and multifractals
* Non-linear forecasting
+ Conclusions
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Bursty Traffic
& Multifractals
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QOutline

* Motivation

* Linear Forecasting

* Bursty traffic - fractals and multifractals

q — Problem

— Main idea (80/20, Hurst exponent)
— Results

15-826 () C. Faloutsos, 2012 100

Reference:

[Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai
Hang Chang, Spiros Papadimitriou and Christos
Faloutsos, Data Mining Meets Performance
Evaluation: Fast Algorithms for Modeling Bursty
Traffic, ICDE 2002, San Jose, CA, 2/26/2002 -
3/1/2002.

Full thesis: CMU-CS-05-185
Performance Modeling of Storage Devices using
Machine Learning Mengzhi Wang, Ph.D. Thesis
Abstract, .ps.gz, .pdf
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g CMU SCS
Recall: Problem #1:

Goal: given a signal (eg., #bytes over time)
Find: patterns, periodicities, and/or compress

#bytes 1 Bytes per 30’

(packets per day;
earthquakes per year)

1000 2000
e In 20min Siet

time
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15-826

34



C. Faloutsos

CMU

g CMU SCS
Problem #1

* model bursty traffic

* generate realistic traces
# bytes

* (Poisson does not work)

7e406

3.50406

Poisson —;

o 250 500
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% CMU SCS

Motivation

« predict queue length distributions (e.g., to
give probabilistic guarantees)

* “learn” traffic, for buffering, prefetching,
‘active disks’, web servers

15-826 () C. Faloutsos, 2012 104

g CMU SCS

Q: any ‘pattern’?

* Not Poisson

) . # bytes
« spike; silence; more

spikes; more silence...

7e+06

Tl |

500

* any rules?

number of bytes resd

250
tima, in 30min siots

time
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Solution: self-similarity

# bytes # bytes

Aumber of blos raad

time time
15-826 (¢) C. Faloutsos, 2012 106
% CMU SCS
But:
.

* QI: How to generate realistic traces;
extrapolate; give guarantees?

* Q2: How to estimate the model parameters?

15-826 () C. Faloutsos, 2012
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g CMU SCS

Outline

* Motivation
* Linear Forecasting

* Bursty traffic - fractals and multifractals

— Problem
q — Main idea (80/20, Hurst exponent)
— Results
15-826 (c) C. Faloutsos, 2012
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Approach

* Q1: How to generate a sequence, that is
— bursty

— self-similar

— and has similar queue length distributions

15-826
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% CMU SCS

Approach

* A: ‘binomial multifractal’ [Wang+02]
* ~80-20 ‘law’:

— 80% of bytes/queries etc on first half

— repeat recursively

* b: bias factor (eg., 80%)

15-826 () C. Faloutsos, 2012 110

g CMU SCS

Binary multifractals

20 /\80

60000
imet

111
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Binary multifractals
20 /\ 80
/\ | N\
|

xtt)

100

0 il MJ“J

0 30000 6000 90000
timet

Parameter estimation

* Q2: How to estimate the bias factor 5?

15-826 () C. Faloutsos, 2012 13
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Parameter estimation

* Q2: How to estimate the bias factor ?
* A: MANY ways [Crovella+96]
— Hurst exponent
— variance plot
— even DFT amplitude spectrum! (‘periodogram’)
— More robust: ‘entropy plot” [Wang+02]
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Entropy plot

* Rationale:
— burstiness: inverse of uniformity
— entropy measures uniformity of a distribution

— find entropy at several granularities, to see
whether/how our distribution is close to
uniform.
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% CMU SCS
Entropy plot

pl p2
% of bytes  Entropy E(n) after n
here levels of splits
» n=1: E(1)=- pl log,(p1)-
] 1 p2 log,(p2)
| L
JILRE
15-826 () C. Faloutsos, 2012 116
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Entropy plot
P21 P22 | P23 Pas

* Entropy E(n) after n
levels of splits

* n=1: E(1)=-pl log(pl)-
] 1 p2 log(p2)
|

| e n=2:E(2)=-%p,; *
S s
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Real traffic
Entropy
E (n) » Has linear entropy plot
Pt (> self-similar)
12 /
s ) 0.73
g7
o / 073058 ——
# of levels (n)
15-826 () C. Faloutsos, 2012 118

% CMU SCS

Observation - intuition:

Entropy

@( n) intuition: slope =

» A intrinsic dimensionality =
. e info-bits per coordinate-bit
. / ’ — unif. Dataset: slope =?

A orel — multi-point: slope = ?
0 o 5 10 15 20 25
# of levels (n)
15-826

() C. Faloutsos, 2012 119
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Observation - intuition:

Entropy
€ (n) intuition: slope =
» A intrinsic dimensionality =
. / info-bits per coordinate-bit
. pd — unif. Dataset: slope =1
/ 075054, —— — multi-point: slope =0
0 0 5 10 15 20 25
# of levels (n)
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Entropy plot - Intuition

* Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’)

» =info bit per coordinate bit - eg

Dim=1 —+ &

Pick a point;
reveal its coordinate bit-by-bit -
how much info is each bit worth to me?

15-826 (c) C. Faloutsos, 2012 121

e B0
Entropy plot

* Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension”)

+ = info bit per coordinate bit - eg

Dim=1 @&

Is MSB 0?
‘info’ value = E(1): 1 bit

15-826 () C. Faloutsos, 2012 122

g CMU SCS Iﬂ)

Entropy plot

* Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’)

» =1info bit per coordinate bit - eg

Dim=1 — &~

Is MSB 0?

I Is next MSB =0?

15-826

(¢) C. Faloutsos, 2012 123
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Entropy plot

* Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’)

» =info bit per coordinate bit - eg

Dlm =1 - o) - - .
Info value =1 bit Is MSB 0?
=EQ2)-E(1)=
slope! | Is next MSB =0?
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% CMU SCS SKIP

Entropy plot

» Repeat, for all points at same position:

Dim=0 -

15-826 () C. Faloutsos, 2012 125

g CMU SCS Iﬂ)

Entropy plot

* Repeat, for all points at same position:
» we need 0 bits of info, to determine position
+ ->slope = 0 = intrinsic dimensionality

Dim=0

15-826 (¢) C. Faloutsos, 2012 126
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Entropy plot
* Real (and 80-20) datasets can be in-

between: bursts, gaps, smaller bursts,
smaller gaps, at every scale

Dim=1 I e . .
Dim=0 —
0<Dim<1

15-826 (c) C. Faloutsos, 2012
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% CMUSCS
(Fractals, again)

» What set of points could have behavior
between point and line?

15-826 () C. Faloutsos, 2012
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g CMU SCS
Cantor dust

 Eliminate the middle third
* Recursively!

15-826 (¢) C. Faloutsos, 2012
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Cantor dust
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Cantor dust
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g CMU SCS
Cantor dust
— — —
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Cantor dust
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% CMU SCS

Cantor dust

Dimensionality?

(no length; infinite # points!)
Answer: log2 / log3 = 0.6

15-826 () C. Faloutsos, 2012 134

g CMU SCS

Some more entropy plots:

» Poisson vs real

3000

#0f requests
g
8
Entropy value

g
g

ol ] \l“”\\h .

0 1000 2000 3000
Time (in seconds)

Poisson: slope = ~1 -> uniformly distributed
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b-model

E * b-model traffic gives perfectly
) linear plot

— * Lemma: its slope is
, e slope = -b log,b - (1-b) log, (1-b)
P
, 7 « Fitting: do entropy plot; get
7 slope; solve for b
n
15-826 () C. Faloutsos, 2012 136

% CMU SCS
Outline

Motivation

* Linear Forecasting
* Bursty traffic - fractals and multifractals
— Problem
— Main idea (80/20, Hurst exponent)
q — Experiments - Results
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Experimental setup

* Disk traces (from HP [Wilkes 93])
» web traces from LBL

http://repository.cs.vt.edu/
Ibl-conn-7.tar.Z

15-826
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Model validation

* Linear entropy plots

(a) Disk Traces (b) Web Traces
Dika —— . ey
e R
_ = / _n e
z H P
i.
£ . / §
= T I ——
5 . 4 =
o 0
m 0 ) W £y F
aggregaton v sgorgaton v

Bias factors b: 0.6-0.8
smallest b / smoothest: nntp traffic
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Web traffic - results

* LBL, NCDF of queue lengths (log-log scales)

Prob( >])
Queue length distribution

(a) Ibl-all (b) Ibl-nntp (c) Ibl-smtp (d) Ibl-ftp
P i PR e o =
§o i oot i\
i ‘\\‘ \| i - )
How to give guarantees? (queue length /)
15-826 () C. Faloutsos, 2012 140
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Web traffic - results

* LBL, NCDF of queue lengths (log-log scales)

1
Prob(>) e
H o 20% of the requests
001 \ .
§ will see
?;_ e queue lengths <100
& oooon
fe00
T 0w e teve
queue length (in Kb)
(queue length /)
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Conclusions

» Multifractals (80/20, ‘b-model’,
Multiplicative Wavelet Model (MWM)) for
analysis and synthesis of bursty traffic

15-826 () C. Faloutsos, 2012 142

% CMU SCS
Books

* Fractals: Manfred Schroeder: Fractals, Chaos,
Power Laws: Minutes from an Infinite Paradise
W.H. Freeman and Company, 1991 (Probably the
BEST book on fractals!)
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g CMU SCS
Further reading:

» Crovella, M. and A. Bestavros (1996). Self-
Similarity in World Wide Web Traffic, Evidence
and Possible Causes. Sigmetrics.

* [ieeeTN94] W. E. Leland, M.S. Taqqu, W.
Willinger, D.V. Wilson, On the Self-Similar
Nature of Ethernet Traffic, IEEE Transactions on
Networking, 2, 1, pp 1-15, Feb. 1994.

15-826 (¢) C. Faloutsos, 2012 144

15-826

48



C. Faloutsos

CMU

g CMU SCS

Further reading

* [Riedi+99] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R.
G. Baraniuk, 4 Multifractal Wavelet Model with
Application to Network Traffic, IEEE Special Issue on
Information Theory, 45. (April 1999), 992-1018.
[Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai Hang
Chang, Spiros Papadimitriou and Christos Faloutsos, Data
Mining Meets Performance Evaluation: Fast Algorithms
for Modeling Bursty Traffic, ICDE 2002, San Jose, CA,
2/26/2002 - 3/1/2002.

Entropy plots
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% CMU SCS
Outline

* Motivation

* Linear Forecasting
* Bursty traffic - fractals and multifractals

#- Non-linear forecasting
+ Conclusions
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Chaos and
non-linear
forecasting

15-826 (¢) C. Faloutsos, 2012
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Reference:

[ Deepay Chakrabarti and Christos Faloutsos
F4: Large-Scale Automated Forecasting
using Fractals CIKM 2002, Washington
DC, Nov. 2002.]

15-826 () C. Faloutsos, 2012 148

% CMU SCS
Detailed Outline

» Non-linear forecasting
— Problem
— Idea
— How-to
— Experiments
— Conclusions
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g CMU SCS

J Recall: Problemﬁ}ww
Value:_:\f/'(ff ﬂl
AU A

S Time
Given a time series {x,}, predict its future

course, that is, X, |, Xp, -
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x(t)

Datasets

Logistic Parabola: time
X, = ax,;(1-x,,) + noise
Models population of flies [R. May/1976]

Lag-plot
ARIMA: fails
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How to forecast?

* ARIMA - but: linearity assumption

Lag-plot
ARIMA: fails
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g CMU SCS

How to forecast?

* ARIMA - but: linearity assumption

* ANSWER: ‘Delayed Coordinate
Embedding’ = Lag Plots [Sauer92]

~ nearest-neighbor search, for past
incidents

15-826 (¢) C. Faloutsos, 2012 153
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General Intuition (Lag Plot)
Lag=1,
X k=4 NN
Interpolate = +
these. .. + 4
+
++
To get the final +
prediction +
Xy
4-NN ]
New Point
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% CMUSCS
Questions:

* QI: How to choose lag L?

* Q2: How to choose k (the # of NN)?
* Q3: How to interpolate?

* Q4: why should this work at all?

15-826 () C. Faloutsos, 2012 155

g CMU SCS

Q1: Choosing lag L

* Manually (16, in award winning system by
[Sauer94])

15-826 (¢) C. Faloutsos, 2012 156
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Q2: Choosing number of
neighbors &
* Manually (typically ~ 1-10)

15-826 () C. Faloutsos, 2012 157

% CMU SCS
Q3: How to interpolate?

How do we interpolate between the
k nearest neighbors?

A3.1: Average
A3.2: Weighted average (weights drop

with distance - how?)

15-826 () C. Faloutsos, 2012 158

g CMU SCS
Q3: How to interpolate?

A3.3: Using SVD - seems to perform best
([Sauer94] - first place in the Santa Fe
forecasting competition)

Xy

2

Xt-l
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Q4: Any theory behind it?
A4: YES!
15-826 (¢) C. Faloutsos, 2012 160
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Theoretical foundation

» Based on the ‘Takens theorem’ [Takens81]

 which says that long enough delay vectors
can do prediction, even if there are
unobserved variables in the dynamical
system (= diff. equations)

15-826 () C. Faloutsos, 2012 161

g CMU SCS

' " Theoretical foundation

Eiample: Lotka-Volterra equations

dH/dt=r H —a H*P P —
dP/dt =b H*P - m P /1 v
\
H is count of prey (e.g., hare) = %
P is count of predators (e.g., lynx) H

Suppose only P(t) is observed (t=1, 2, ...).

15-826 (¢) C. Faloutsos, 2012 162
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Theoretical foundation

* But the delay vector space is a faithful
reconstruction of the internal system state

 So prediction in delay vector space is as
good as prediction in state space

P P(t)
P -
1 A ) / /f N \\
- INURE
= N
15-826 H () C. Faloutsos, 2012 P(t—l) 163
Detailed Outline
* Non-linear forecasting
— Problem
— Idea
— How-to
— Experiments
— Conclusions
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Datasets
Logistic Parabola: time

X, = ax,;(1-x, ;) + noise
Models population of flies [R. May/1976]

Lag-plot
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x(t)

Datasets
Logistic Parabola: time
X, = ax,;(1-x,,) + noise
Models population of flies [R. May/1976]
Lag-plot
ARIMA: fails
15-826 () C. Faloutsos, 2012 166

o e Our Prediction from
Logistic Parabola /' here

Value

Timesteps
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Value

o 4o A
Logistic Parabol AN
/ \v‘ // A\
Comparison of prediction \\ /
to correct values / \/

,‘ ‘ M" \ W‘ ’\A \
M | ‘ ‘
H Q, V u}
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Value

Datasets

LORENZ: Models convection
currents in the air
dx/dt=a(y-x)
dy/dt=x(b-2)-y

dz/dt=xy-cz

% 6 0 o

15-826 () C. Faloutsos, 2012
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Value ﬁ #

LORENZ

Comparison of prediction o g/\ / ﬁ»\ ,'p‘
to correct values ¥ \/ i
Vv P

It

I
i ]
o ?[ i 1 Timesteps
) |
VIR |
T m
al i ﬁ
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Value i
Datasets .
ot
* LASER: fluctuations in
a Laser over time (used Time
in Santa Fe
competition)
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Value [ .,
: il
Laser :H\M;MMW‘H
Comparison of prediction :1]‘ H /\ M r\v “ ‘\
e e I
LU
Timesteps
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Conclusions
* Lag plots for non-linear forecasting

(Takens’ theorem)
« suitable for ‘chaotic’ signals
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Overall conclusions

* Similarity search: Euclidean/time-warping;
feature extraction and SAMs
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Overall conclusions
+ Similarity search: Euclidean/time-warping;

feature extraction and SAMs
* Signal processing: DWT is a powerful tool
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Overall conclusions

+ Similarity search: Euclidean/time-warping;
feature extraction and SAMs
* Signal processing: DWT is a powerful tool

* Linear Forecasting: AR (Box-Jenkins)
methodology; AWSOM
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Overall conclusions

* Similarity search: Euclidean/time-warping;
feature extraction and SAMs

* Signal processing: DWT is a powerful tool

* Linear Forecasting: AR (Box-Jenkins)
methodology; AWSOM

* Bursty traffic: multifractals (80-20 ‘law’)
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Overall conclusions

* Similarity search: Euclidean/time-warping;
feature extraction and SAMs
* Signal processing: DWT is a powerful tool

* Linear Forecasting: AR (Box-Jenkins)
methodology; AWSOM

* Bursty traffic: multifractals (80-20 ‘law’)
» Non-linear forecasting: lag-plots (Takens)
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