
15-826 C. Faloutsos

1

15-826: Multimedia Databases
and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees

C. Faloutsos

15-826 Copyright: C. Faloutsos (2019) #2

Must-read material

• MM-Textbook, Chapter 5.2
• Ramakrinshan+Gehrke, Chapter 28.6
• Guttman, A. (June 1984). R-Trees: A Dynamic

Index Structure for Spatial Searching. Proc. ACM
SIGMOD, Boston, Mass.

http://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/r-trees.PDF

15-826 C. Faloutsos

2

15-826 Copyright: C. Faloutsos (2019) #3

R-trees – impact:
• Popular method; like multi-d B-trees
• guaranteed utilization; fast search (low dim�s)
• Used in practice:

– Oracle spatial (R-tree default; z-order, too)
docs.oracle.com/html/A88805_01/sdo_intr.htm

– IBM-DB2 spatial extender
– Postgres: create index … using [rtree | gist]
– Sqlite3: www.sqlite.org/rtree.html

15-826 Copyright: C. Faloutsos (2019) #4

Outline

Goal: �Find similar / interesting things�
• Intro to DB
• Indexing - similarity search
• Data Mining

http://www.sqlite.org/rtree.html

15-826 C. Faloutsos

3

15-826 Copyright: C. Faloutsos (2019) #5

Indexing - Detailed outline
• primary key indexing
• secondary key / multi-key indexing
• spatial access methods

– problem dfn
– z-ordering
– R-trees
– ...

• text
• ...

15-826 Copyright: C. Faloutsos (2019) #6

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 C. Faloutsos

4

15-826 Copyright: C. Faloutsos (2019) 7

Spatial Access Methods -
problem

• Given a collection of geometric objects
(points, lines, polygons, ...)

• Find cities within 100mi from Pittsburgh

15-826 Copyright: C. Faloutsos (2019) 8

Solution#2: R-trees
• multi-dim trees
• Allow nodes to overlap
• Guaranteed 50% utilization

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

15-826 C. Faloutsos

5

15-826 Copyright: C. Faloutsos (2019) #9

R-trees

• z-ordering: cuts regions to pieces -> dup.
elim.

• how could we avoid that?
• Idea: try to extend/merge B-trees and k-d

trees

15-826 Copyright: C. Faloutsos (2019) #10

R-trees

• [Guttman 84] Main idea: allow parents to
overlap!

Antonin Guttman
[http://www.baymoon.com/~tg2/]

15-826 C. Faloutsos

6

15-826 Copyright: C. Faloutsos (2019) #11

R-trees

• [Guttman 84] Main idea: allow parents to
overlap!
– => guaranteed 50% utilization
– => easier insertion/split algorithms.
– (only deal with Minimum Bounding Rectangles

-MBRs)

15-826 Copyright: C. Faloutsos (2019) #12

R-trees

• eg., w/ fanout 4: group nearby rectangles to
parent MBRs; each group -> disk page

A

B

C

D
E

F
G

H

I

J

15-826 C. Faloutsos

7

15-826 Copyright: C. Faloutsos (2019) #13

R-trees

• eg., w/ fanout 4:

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4
F GD E

H I JA B C

15-826 Copyright: C. Faloutsos (2019) #14

R-trees

• eg., w/ fanout 4:

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

15-826 C. Faloutsos

8

15-826 Copyright: C. Faloutsos (2019) #15

R-trees - format of nodes

• {(MBR; obj-ptr)} for leaf nodes

P1 P2 P3 P4

A B C
x-low; x-high
y-low; y-high

...

obj
ptr ...

15-826 Copyright: C. Faloutsos (2019) #16

R-trees - format of nodes

• {(MBR; node-ptr)} for non-leaf nodes

P1 P2 P3 P4

A B C

x-low; x-high
y-low; y-high

...

node
ptr ...

15-826 C. Faloutsos

9

15-826 Copyright: C. Faloutsos (2019) #17

R-trees - range search?

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

15-826 Copyright: C. Faloutsos (2019) #18

R-trees - range search?

P1 P2 P3 P4

F GD E

H I JA B C

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

15-826 C. Faloutsos

10

15-826 Copyright: C. Faloutsos (2019) #19

R-trees - range search

Observations:
• every parent node completely covers its
�children�

• a child MBR may be covered by more than
one parent - it is stored under ONLY ONE
of them. (ie., no need for dup. elim.)

15-826 Copyright: C. Faloutsos (2019) #20

R-trees - range search

Observations - cont�d
• a point query may follow multiple branches.
• everything works for any dimensionality

15-826 C. Faloutsos

11

15-826 Copyright: C. Faloutsos (2019) #21

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #22

R-trees - insertion

• eg., rectangle �X�

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CX

15-826 C. Faloutsos

12

15-826 Copyright: C. Faloutsos (2019) #23

R-trees - insertion

• eg., rectangle �X�

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CX

X

15-826 Copyright: C. Faloutsos (2019) #24

R-trees - insertion

• eg., rectangle �Y�

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CY

15-826 C. Faloutsos

13

15-826 Copyright: C. Faloutsos (2019) #25

R-trees - insertion

• eg., rectangle �Y�: extend suitable parent.

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CY
Y

15-826 Copyright: C. Faloutsos (2019) #26

R-trees - insertion

• eg., rectangle �Y�: extend suitable parent.
• Q: how to measure �suitability�?

15-826 C. Faloutsos

14

15-826 Copyright: C. Faloutsos (2019) #27

R-trees - insertion

• eg., rectangle �Y�: extend suitable parent.
• Q: how to measure �suitability�?
• A: by increase in area (volume) (more

details: later, under �performance analysis�)
• Q: what if there is no room? how to split?

15-826 Copyright: C. Faloutsos (2019) #28

R-trees - insertion

• eg., rectangle �W�

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

W

K

K

15-826 C. Faloutsos

15

15-826 Copyright: C. Faloutsos (2019) #29

R-trees - insertion

• eg., rectangle �W� - focus on �P1� - how
to split?

A

B

C

P1

W

K

15-826 Copyright: C. Faloutsos (2019) #30

R-trees - insertion

• eg., rectangle �W� - focus on �P1� - how
to split?

A

B

C

P1

W

K • (A1: plane sweep,

until 50% of rectangles)

• A2: �linear� split

• A3: quadratic split

• A4: exponential split

15-826 C. Faloutsos

16

15-826 Copyright: C. Faloutsos (2019) #31

R-trees - insertion & split

• pick two rectangles as �seeds�;
• assign each rectangle �R� to the �closest�
�seed�

seed1

seed2
R

15-826 Copyright: C. Faloutsos (2019) #32

R-trees - insertion & split

• pick two rectangles as �seeds�;
• assign each rectangle �R� to the �closest�
�seed�

• Q: how to measure �closeness�?

15-826 C. Faloutsos

17

15-826 Copyright: C. Faloutsos (2019) #33

R-trees - insertion & split

• pick two rectangles as �seeds�;
• assign each rectangle �R� to the �closest�
�seed�

• Q: how to measure �closeness�?
• A: by increase of area (volume)

15-826 Copyright: C. Faloutsos (2019) #34

R-trees - insertion & split

• pick two rectangles as �seeds�;
• assign each rectangle �R� to the �closest�
�seed�

seed1

seed2
R

15-826 C. Faloutsos

18

15-826 Copyright: C. Faloutsos (2019) #35

R-trees - insertion & split

• pick two rectangles as �seeds�;
• assign each rectangle �R� to the �closest�
�seed�

seed1

seed2
R

15-826 Copyright: C. Faloutsos (2019) #36

R-trees - insertion & split

• pick two rectangles as �seeds�;
• assign each rectangle �R� to the �closest�
�seed�

• smart idea: pre-sort rectangles according to
delta of closeness (ie., schedule easiest
choices first!)

15-826 C. Faloutsos

19

15-826 Copyright: C. Faloutsos (2019) #37

R-trees - insertion - pseudocode

• decide which parent to put new rectangle
into (�closest� parent)

• if overflow, split to two, using (say,) the
quadratic split algorithm
– propagate the split upwards, if necessary

• update the MBRs of the affected parents.

15-826 Copyright: C. Faloutsos (2019) #38

R-trees - insertion -
observations

• many more split algorithms exist (see refs)

15-826 C. Faloutsos

20

15-826 Copyright: C. Faloutsos (2019) #39

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #40

R-trees - deletion

• delete rectangle
• if underflow

– ??

15-826 C. Faloutsos

21

15-826 Copyright: C. Faloutsos (2019) #41

R-trees - deletion

• delete rectangle
• if underflow

– temporarily delete all siblings (!);
– delete the parent node and
– re-insert them

15-826 Copyright: C. Faloutsos (2019) #42

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 C. Faloutsos

22

15-826 Copyright: C. Faloutsos (2019) #43

R-trees - range search

pseudocode:
check the root
for each branch,

if its MBR intersects the query rectangle
apply range-search (or print out, if this

is a leaf)

15-826 Copyright: C. Faloutsos (2019) #44

R-trees - nn search

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 C. Faloutsos

23

15-826 Copyright: C. Faloutsos (2019) #45

R-trees - nn search

• Q: How? (find near neighbor; refine...)

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 Copyright: C. Faloutsos (2019) #46

R-trees - nn search

• A1: depth-first search; then, range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 C. Faloutsos

24

15-826 Copyright: C. Faloutsos (2019) #47

R-trees - nn search

• A1: depth-first search; then, range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 Copyright: C. Faloutsos (2019) #48

R-trees - nn search

• A1: depth-first search; then, range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-826 C. Faloutsos

25

15-826 Copyright: C. Faloutsos (2019) #49

R-trees - nn search

• A2: [Roussopoulos+, sigmod95]:
– priority queue, with promising MBRs, and their

best and worst-case distance

• main idea:

15-826 Copyright: C. Faloutsos (2019) #50

R-trees - nn search

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

consider only P2 and P4, for illustration

15-826 C. Faloutsos

26

15-826 Copyright: C. Faloutsos (2019) #51

R-trees - nn search

D
E

H

J
P2

P4q

worst of P2

best of P4
=> P4 is useless

for 1-nn

15-826 Copyright: C. Faloutsos (2019) #52

R-trees - nn search

D
E

H

J
P2

P4q

worst of P2

best of P4

=> P4 is useless

for 1-nn

15-826 C. Faloutsos

27

15-826 Copyright: C. Faloutsos (2019) #53

R-trees - nn search

D
E

P2
q

worst of P2

• what is really the worst of, say, P2?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #54

R-trees - nn search

D
E

P2
q

worst of P2

• what is really the worst of, say, P2?

DETAILS

15-826 Copyright: C. Faloutsos (2019) #54

R-trees - nn search

P2
q

• what is really the worst of, say, P2?
• A: the smallest of the two red segments!

DETAILS

15-826 C. Faloutsos

28

15-826 Copyright: C. Faloutsos (2019) #55

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #56

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

15-826 C. Faloutsos

29

15-826 Copyright: C. Faloutsos (2019) #57

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

15-826 Copyright: C. Faloutsos (2019) #58

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

15-826 C. Faloutsos

30

15-826 Copyright: C. Faloutsos (2019) #59

R-trees - spatial joins

Assume that they are both organized in R-trees:

15-826 Copyright: C. Faloutsos (2019) #60

R-trees - spatial joins

Assume that they are both organized in R-trees:

15-826 C. Faloutsos

31

15-826 Copyright: C. Faloutsos (2019) #61

R-trees - spatial joins

for each parent P1 of tree T1
for each parent P2 of tree T2

if their MBRs intersect,
process them recursively (ie., check their

children)

15-826 Copyright: C. Faloutsos (2019) #62

R-trees - spatial joins

Improvements - variations:
- [Seeger+, sigmod 92]: do some pre-filtering; do

plane-sweeping to avoid N1 * N2 tests for
intersection

- [Lo & Ravishankar, sigmod 94]: �seeded� R-trees
(FYI, many more papers on spatial joins, without R-

trees: [Koudas+ Sevcik], e.t.c.)

DETAILS

15-826 C. Faloutsos

32

15-826 Copyright: C. Faloutsos (2019) #63

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #64

R-trees - performance analysis
• How many disk (=node) accesses we�ll

need for
– range
– nn
– spatial joins

• why does it matter?

15-826 C. Faloutsos

33

15-826 Copyright: C. Faloutsos (2019) #65

R-trees - performance analysis
• How many disk (=node) accesses we�ll

need for
– range
– nn
– spatial joins

• why does it matter?
• A: because we can design split etc

algorithms accordingly; also, do query-
optimization

15-826 Copyright: C. Faloutsos (2019) #66

R-trees - performance analysis
• How many disk (=node) accesses we�ll

need for
– range
– nn
– spatial joins

• why does it matter?
• A: because we can design split etc

algorithms accordingly; also, do query-
optimization

15-826 C. Faloutsos

34

15-826 Copyright: C. Faloutsos (2019) #67

R-trees - performance analysis
• motivating question: on, e.g., split, should

we try to minimize the area (volume)? the
perimeter? the overlap? or a weighted
combination? why?

15-826 Copyright: C. Faloutsos (2019) #68

R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we

expect
#DiskAccesses(q1,q2) =

sum (xi,1 + q1) * (xi,2 + q2)
= sum (xi,1 * xi,2) +

q2 * sum (xi,1) +
q1* sum (xi,2)
q1* q2 * N

�volume�

surface area

count

15-826 C. Faloutsos

35

15-826 Copyright: C. Faloutsos (2019) #69

R-trees - performance analysis
• How many disk accesses for range queries?

– query distribution wrt location?
– � � wrt size?

15-826 Copyright: C. Faloutsos (2019) #70

R-trees - performance analysis
• How many disk accesses for range queries?

– query distribution wrt location? uniform; (biased)
– � � wrt size? uniform

Proof

15-826 C. Faloutsos

36

15-826 Copyright: C. Faloutsos (2019) #71

R-trees - performance analysis
• easier case: we know the positions of parent

MBRs, eg:

Proof

15-826 Copyright: C. Faloutsos (2019) #72

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries)?

P1

x1

x2

Proof

15-826 C. Faloutsos

37

15-826 Copyright: C. Faloutsos (2019) #73

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

POINT queries)?

P1

x1

x2

0 1
0

1

Proof

15-826 Copyright: C. Faloutsos (2019) #74

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

POINT queries)? A: x1*x2

P1

x1

x2

0 1
0

1

Proof

15-826 C. Faloutsos

38

15-826 Copyright: C. Faloutsos (2019) #75

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

x1

x2

0 1
0

1

q1

q2

Proof

15-826 Copyright: C. Faloutsos (2019) #76

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

x1

x2

q1

q2

Proof

15-826 C. Faloutsos

39

15-826 Copyright: C. Faloutsos (2019) #77

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

Proof

15-826 Copyright: C. Faloutsos (2019) #78

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1 x2
q2

x1 q1

Proof

15-826 C. Faloutsos

40

15-826 Copyright: C. Faloutsos (2019) #79

R-trees - performance analysis
• How many times will P1 be retrieved (unif.

queries of size q1xq2)? A: (x1+q1)*(x2+q2)

P1 x2
q2

x1 q1

Proof

15-826 Copyright: C. Faloutsos (2019) #80

R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we

expect
#DiskAccesses(q1,q2) =

sum (xi,1 + q1) * (xi,2 + q2)
= sum (xi,1 * xi,2) +

q2 * sum (xi,1) +
q1* sum (xi,2)
q1* q2 * N

Proof

15-826 C. Faloutsos

41

15-826 Copyright: C. Faloutsos (2019) #81

R-trees - performance analysis
• Thus, given a tree with N nodes (i=1, ... N) we

expect
#DiskAccesses(q1,q2) =

sum (xi,1 + q1) * (xi,2 + q2)
= sum (xi,1 * xi,2) +

q2 * sum (xi,1) +
q1* sum (xi,2)
q1* q2 * N

�volume�

surface area

count

15-826 Copyright: C. Faloutsos (2019) #82

R-trees - performance analysis
Observations:
• for point queries: only volume matters
• for horizontal-line queries: (q2=0): vertical

length matters
• for large queries (q1, q2 >> 0): the count N

matters

15-826 C. Faloutsos

42

15-826 Copyright: C. Faloutsos (2019) #83

R-trees - performance analysis

Observations (cont�ed)
• overlap: does not seem to matter
• formula: easily extendible to n dimensions
• (for even more details: [Pagel +, PODS93],

[Kamel+, CIKM93])

Berndt-Uwe Pagel

15-826 Copyright: C. Faloutsos (2019) #84

R-trees - performance analysis
Conclusions:
• splits should try to minimize area and

perimeter
• ie., we want few, small, square-like parent

MBRs
• rule of thumb: shoot for queries with q1=q2 =

0.1 (or =0.5 or so).

15-826 C. Faloutsos

43

15-826 Copyright: C. Faloutsos (2019) #85

Indexing - more detailed
outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

DETAILS

15-826 Copyright: C. Faloutsos (2019) #86

R-trees - variations
• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?

DETAILS

15-826 C. Faloutsos

44

15-826 Copyright: C. Faloutsos (2019) #87

R-trees - variations
• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep

great for queries on �x�;
terrible for �y�

DETAILS

15-826 Copyright: C. Faloutsos (2019) #88

R-trees - variations
• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep

great for queries on �x�;
bad for �y�

DETAILS

15-826 C. Faloutsos

45

15-826 Copyright: C. Faloutsos (2019) #89

R-trees - variations
• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep

great for queries on �x�;
terrible for �y�

• Q: how to improve?

DETAILS

15-826 Copyright: C. Faloutsos (2019) #90

R-trees - variations
• A: plane-sweep on HILBERT curve!

DETAILS

15-826 C. Faloutsos

46

15-826 Copyright: C. Faloutsos (2019) #91

R-trees - variations
• A: plane-sweep on HILBERT curve!
• (see [Kamel+, VLDB�94]

DETAILS

15-826 Copyright: C. Faloutsos (2019) 92

Solution#2: R-trees
- multi-dim trees
- Allow nodes to overlap
- Guaranteed 50% utilization – fast search (in

low dim’s)

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

15-826 C. Faloutsos

47

15-826 Copyright: C. Faloutsos (2019) #93

R-trees - conclusions
• …
• Used in practice:

– Oracle spatial (R-tree default; z-order, too)
docs.oracle.com/html/A88805_01/sdo_intr.htm

– IBM-DB2 spatial extender
– Postgres: create index … using [rtree | gist]

– Sqlite3: www.sqlite.org/rtree.html
• R* variation is popular

15-826 Copyright: C. Faloutsos (2019) #94

References

• Norbert Beckmann, Hans-Peter Kriegel, Ralf
Schneider, Bernhard Seeger: The R*-Tree: An
Efficient and Robust Access Method for Points
and Rectangles. ACM SIGMOD 1990: 322-331

• Guttman, A. (June 1984). R-Trees: A Dynamic
Index Structure for Spatial Searching. Proc. ACM
SIGMOD, Boston, Mass.

http://www.sqlite.org/rtree.html

15-826 C. Faloutsos

48

15-826 Copyright: C. Faloutsos (2019) #95

References
• Jagadish, H. V. (May 23-25, 1990). Linear Clustering of

Objects with Multiple Attributes. ACM SIGMOD Conf.,
Atlantic City, NJ.

• Ibrahim Kamel, Christos Faloutsos: On Packing R-trees,
CIKM, 1993

15-826 Copyright: C. Faloutsos (2019) #96

References, cont�d

• Pagel, B., H. Six, et al. (May 1993). Towards an Analysis
of Range Query Performance. Proc. of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Washington, D.C.

• Roussopoulos, N., S. Kelley, et al. (May 1995). Nearest
Neighbor Queries. Proc. of ACM-SIGMOD, San Jose, CA.

15-826 C. Faloutsos

49

15-826 Copyright: C. Faloutsos (2019) #97

Other resources

• Java applets and more info:
donar.umiacs.umd.edu/quadtree/points/rtrees.html

