15-826

Carnegie Mellon

15-826: Multimedia Databases
and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees

C. Faloutsos

Must-read material

* MM-Textbook, Chapter 5.2

» Ramakrinshan+Gehrke, Chapter 28.6

* Guttman, A. (June 1984). R-Trees: A Dynamic
Index Structure for Spatial Searching. Proc. ACM
SIGMOD, Boston, Mass.

15-826 Copyright: C. Faloutsos (2019) #2

C. Faloutsos

http://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/r-trees.PDF

15-826

Carnegie Mellon

/

R-trees — impact: \

* Popular method; like multi-d B-trees
« guaranteed utilization; fast search (low dim’ s)
» Used in practice:

Oracle spatial (R-tree default; z-order, too)
docs.oracle.com/html/A88805 01/sdo_intr.htm

IBM-DB?2 spatial extender
POStgl‘CSI create index .. using [rtree | gist]

Sqlit€32 www.sqglite.orqg/rtree.html

Copyright: C. Faloutsos (2019) J

Carnegie Mellon

15-826

Outline

Goal: ‘Find similar / interesting things’
* Intro to DB

* Indexing - similarity search
« Data Mining

Copyright: C. Faloutsos (2019) #4

C. Faloutsos

http://www.sqlite.org/rtree.html

15-826

Carnegie Mellon

Indexing - Detailed outline

 primary key indexing
 secondary key / multi-key indexing
* spatial access methods

— problem dfn
— z-ordering

— R-trees

* text

L]
15-826 Copyright: C. Faloutsos (2019) #5

Carnegie Mellon

Indexing - more detailed

outline
* R-trees
— main 1dea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #6

C. Faloutsos

15-826

Spatial Access Methods -

problem

* Given a collection of geometric objects
(points, lines, polygons, ...)

* Find cities within 100mi1 from Pittsburgh

04

e I/

15-826 Copyright: C. Faloutsos (2019)

®?
&

Solution#2: R-trees

* multi-dim trees
» Allow nodes to overlap
* Guaranteed 50% utilization

15-826 Copyright: C. Faloutsos (2019)

C. Faloutsos

15-826

Carnegie Mellon

R-trees

 z-ordering: cuts regions to pieces -> dup.
elim.
* how could we avoid that?

* Idea: try to extend/merge B-trees and k-d
trees

15-826 Copyright: C. Faloutsos (2019) #9

Carnegie Mellon

R-trees

* [Guttman 84] Main idea: allow parents to
overlap!

Antonin Guttman
[http:// www.baymoon.com/~tg2/]

15-826 Copyright: C. Faloutsos (2019) #10

C. Faloutsos

15-826

Carnegie Mellon

R-trees

* [Guttman 84] Main idea: allow parents to
overlap!
— => guaranteed 50% utilization
— => easier insertion/split algorithms.

— (only deal with Minimum Bounding Rectangles

- MBRs)
> X

15-826 Copyright: C. Faloutsos (2019) #11

Carnegie Mellon

R-trees

* eg., w/ fanout 4: group nearby rectangles to
parent MBRs; each group -> disk page

4 I
[Jacll OdU
b P
E|:| !
D
15-826 Copyright: C. Faloutsos (2019) #12

C. Faloutsos

15-826

Carnegie Mellon

R-trees

* eg., w/ fanout 4:

A Pl P3 I i
[Jacl DOgd)
B L 2
E|:| P4 J :A B| C H| 1]
P2||ID |
\ [ofel [] [¥lc[||
15-826 Copyright: C. Faloutsos (2019) #13
R-trees
* eg., w/ fanout 4:
4 Pl P3 1 i
: P1| P2| P3| P4
[Jacl g
B FooHy
E|:| P4 J :A B| C [HfI]J
P2|ID I
. [ofel [] [#lc[||
15-826 Copyright: C. Faloutsos (2019) #14

C. Faloutsos

15-826 C. Faloutsos

Carnegie Mellon

R-trees - format of nodes

* {(MBR; obj-ptr)} for leaf nodes

x-low; x-high b
y-low; y-high Otﬂ "

15-826 Copyright: C. Faloutsos (2019) #15

Carnegie Mellon

R-trees - format of nodes

* {(MBR; node-ptr)} for non-leaf nodes

x-low; x-high AN
y-low; y-high ¢ C)

15-826 Copyright: C. Faloutsos (2019) #16

15-826

Carnegie Mellon

R-trees - range search?

A Pl P3 I i
: P1| P2| P3| P4
|jA cll [E=dqEid|
) L___ :
B FA ‘
E|:| P4 J ILA[B] C (HfI]J
P2|[D |
\ [ofel [] [¢le[||
15-826 Copyright: C. Faloutsos (2019) #17
R-trees - range search?
4 Pl P3 I i ~
: P1| P2| P3| P4
|jA cl E=dgEid| |
) L___ :
B F i !
E|:| P4 J LA[B] C [H| 1]
P2|[D |
. [ofel [] [#lc[||
15-826 Copyright: C. Faloutsos (2019) #18

C. Faloutsos

15-826

R-trees - range search

Observations:

 every parent node completely covers its
“children’

+ a child MBR may be covered by more than
one parent - it is stored under ONLY ONE
of them. (ie., no need for dup. elim.)

15-826 Copyright: C. Faloutsos (2019) #19

R-trees - range search

Observations - cont’ d
* a point query may follow multiple branches.

« everything works for any dimensionality

15-826 Copyright: C. Faloutsos (2019) #20

C. Faloutsos

10

15-826

Carnegie Mellon

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019)

#21

Carnegie Mellon

R-trees - insertion

* eg., rectangle ‘X’

3 Pl P3 i
DACD I_IG |:| E P1| P2| P3| P4
B POl
m X E|:| pa || i AlB|C L[1]
P2|ID - e 1] el 1]

C. Faloutsos

11

15-826

Carnegie Mellon

R-trees - insertion

* eg., rectangle ‘X’

A Pl P3 I i
: P1| P2| P3| P4
[Jacl D)
B Foo =l
-XE|:| pa|ld LA[B] C [H[1[]J
P2|ID |
. [olelx] | [¥lc[| |
15-826 Copyright: C. Faloutsos (2019) #23
R-trees - insertion
e eg., rectangle Y’
A P1 P3 1 i
: P1| P2| P3| P4
[Jacl g
B FooHy
\ s E|:| P4 J LA B| C [H| 1|7
P2|ID |
. [ofel [] [#lc[||
15-826 Copyright: C. Faloutsos (2019) #24

C. Faloutsos

12

15-826

Carnegie Mellon

a

R-trees - insertion

* eg., rectangle 'Y’ : extend suitable parent.

Pl P3 [
: P1| P2| P3| P4
[Jacl D)
= 'H :
F1 F !
YPH E pa |9 ||| iLalBlc EIRE
D :
bb_ LR e

n

15-826

» 1

Copyright: C. Faloutsos (2019)

#25

Carnegie Mellon

15-826

R-trees - insertion

 Q: how to measure ‘suitability’ ?

Copyright: C. Faloutsos (2019)

* eg., rectangle 'Y’ : extend suitable parent.

#26

C. Faloutsos

13

15-826

Carnegie Mellon

R-trees - insertion

* eg., rectangle 'Y’ : extend suitable parent.

Q: how to measure ‘suitability’ ?

A: by increase in area (volume) (more

details: later, under ‘performance analysis’)

15-826

Copyright: C. Faloutsos (2019)

Q: what if there is no room? how to split?

#27

Carnegie Mellon

A

R-trees - insertion

* eg., rectangle ‘W’

P1

K

P3

W

prise
B

P2

D

i

I
: P1| P2| P3| P4
el
F "HIf
P4 J i Al B| c[K |H| 1]
. [ofel [] [#lc[||

o

15-826

» 1

Copyright: C. Faloutsos (2019)

#28

C. Faloutsos

14

15-826 C. Faloutsos

Carnegie Mellon

R-trees - insertion

* eg., rectangle ‘W’ - focus on ‘P1’ - how

to split?
2 Pl Kp

U
[Jaclly
B

n
»

15-826 Copyright: C. Faloutsos (2019) #29

Carnegie Mellon

R-trees - insertion
* eg., rectangle ‘W’ - focus on ‘P1’ - how
to split?
« Pl K * (Al: plane sweep,
I] ALICD until 50% of rectangles)
| W
B « A2: ‘linear’ split
mm) - A3: quadratic split
» A4: exponential split
15-826 Copyright: C. Faloutsos (2019) #30

15

15-826

Carnegie Mellon

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

« assign each rectangle ‘R’ to the ‘closest’

‘ ’
seed 4
I:I U . seed2
R
1
seedl I
15-826 Copyright: C. Faloutsos (2019) g #31

Carnegie Mellon

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

« assign each rectangle ‘R’ to the ‘closest’
"seed’

« Q: how to measure ‘closeness’ ?

15-826 Copyright: C. Faloutsos (2019) #32

C. Faloutsos

16

15-826

Carnegie Mellon

15-826

R-trees - insertion & split

pick two rectangles as ‘seeds’ ;

assign each rectangle ‘R’ to the ‘closest’
“seed’

Q:
A:

how to measure ‘closeness’ ?

by increase of area (volume)

Copyright: C. Faloutsos (2019) #33

Carnegie Mellon

R-trees - insertion & split

« pick two rectangles as ‘seeds’ ;
« assign each rectangle ‘R’ to the ‘closest’

‘seed” 4
I;I O . seed2
: R
seed| ' ______ i
15-826 Copyright: C. Faloutsos (2019) > #34

C. Faloutsos

17

15-826

R-trees - insertion & split
« pick two rectangles as ‘seeds’ ;

« assign each rectangle ‘R’ to the ‘closest’
‘seed”

>

. '"'. seed?2

[

seed

v

15-826 Copyright: C. Faloutsos (2019) #35

Carnegie Mellon

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

« assign each rectangle ‘R’ to the ‘closest’
"seed’

 smart i1dea: pre-sort rectangles according to
delta of closeness (ie., schedule easiest
choices first!)

15-826 Copyright: C. Faloutsos (2019) #36

C. Faloutsos

18

15-826

Carnegie Mellon

R-trees - insertion - pseudocode

 decide which parent to put new rectangle
into (‘closest’ parent)

« if overflow, split to two, using (say,) the
quadratic split algorithm

— propagate the split upwards, if necessary

» update the MBRs of the affected parents.

15-826 Copyright: C. Faloutsos (2019) #37

Carnegie Mellon

R-trees - insertion -
observations

* many more split algorithms exist (see refs)

15-826 Copyright: C. Faloutsos (2019) #38

C. Faloutsos

19

15-826

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019)

#39

Carnegie Mellon

R-trees - deletion
* delete rectangle

e 1f underflow
— 77

15-826 Copyright: C. Faloutsos (2019)

#40

C. Faloutsos

20

15-826 C. Faloutsos

Carnegie Mellon

R-trees - deletion

* delete rectangle

* if underflow
— temporarily delete all siblings (!);
— delete the parent node and
— re-insert them

15-826 Copyright: C. Faloutsos (2019) #41

Carnegie Mellon

Indexing - more detailed

outline
* R-trees

— main 1dea; file structure
— algorithms: insertion/split
— deletion

— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #42

21

15-826

Carnegie Mellon

R-trees - range search

pseudocode:
check the root
for each branch,
if its MBR intersects the query rectangle
apply range-search (or print out, if this

is a leaf)

15-826 Copyright: C. Faloutsos (2019) #43

Carnegie Mellon

R-trees - nn search

A Pl P3 1
[Jacl O
B Fo
. o E|:| P4 |
P2|ID
15-826 Copyright: C. Faloutsos (2019) #44

C. Faloutsos

22

15-826

Carnegie Mellon

15-826

R-trees - nn search

y Pl P3 I
I]A cll [T
B F —H
[6) E|:| P4 J
P2|ID

* Q: How? (find near neighbor; refine...)

Copyright: C. Faloutsos (2019)

v

#45

Carnegie Mellon

15-826

R-trees - nn search

p PI P3 I

DA cll [Oid

B Food

) E|:| P4 J
P2|D

» Al: depth-first search; then, range query

Copyright: C. Faloutsos (2019)

A 4

#46

C. Faloutsos

23

15-826

Carnegie Mellon

R-trees - nn search

» Al: depth-first search; then, range query

A Pl P3 I
[Jacl O
B FooH
. ® E|:| p4 ||J
P2|ID
15-826 Copyright: C. Faloutsos (2019) #47

Carnegie Mellon

R-trees - nn search

» Al: depth-first search; then, range query
4 Pl P3

1
Acll @O0
F sl

B
e | el
q \ ‘PQLE P4

A 4

15-826 Copyright: C. Faloutsos (2019) #48

C. Faloutsos

24

15-826

Carnegie Mellon

R-trees - nn search

* A2: [Roussopoulos+, sigmod95]:

— priority queue, with promising MBRs, and their
best and worst-case distance

e main idea:

15-826 Copyright: C. Faloutsos (2019) #49

Carnegie Mellon

R-trees - nn search

consider only P2 and P4, for illustration

A Pl P3 1
[Jacl O
B Fo
. o E|:| P4 |
P2|ID
15-826 Copyright: C. Faloutsos (2019) #50

C. Faloutsos

25

15-826

CarnegieMellon

15-826

R-trees - nn search

best of P4 _
=> P4 is useless

Tworst of P2 for 1-nn

v

Copyright: C. Faloutsos (2019) #51

Carnegie Mellon

15-826

R-trees - nn search

best of P4
=> P4 is useless
1 for 1-nn
worst of P2
g1
Copyright: C. Faloutsos (2019) #52

C. Faloutsos

26

15-826 C. Faloutsos

X o

R-trees - nn search

» what is really the worst of, say, P2?

‘ worst of P2

q—’//Eli
P2 |iD

15-826 Copyright: C. Faloutsos (2017) #54

R-trees - nn search

» what is really the worst of, say, P2?
* A: the smallest of the two red segments!

A

LA

A 4

15-826 Copyright: C. Faloutsos (2019) #54

27

15-826

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #55

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

0
a Q

15-826 Copyright: C. Faloutsos (2019) #56

C. Faloutsos

28

15-826

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

0
a Q

15-826 Copyright: C. Faloutsos (2019)

#57

Carnegie Mellon

R-trees - spatial joins
Spatial joins: find (quickly) all
counties intersecting lakes
15-826 Copyright: C. Faloutsos (2019)

#58

C. Faloutsos

29

15-826

Carnegie Mellon

R-trees - spatial joins

O~

15-826

Copyright: C. Faloutsos (2019)

Assume that they are both organized in R-trees:

[N

]

—1

Carnegie Mellon

15-826

R-trees - spatial joins

o=

Copyright: C. Faloutsos (2019)

Assume that they are both organized in R-trees:

C. Faloutsos

30

15-826

Carnegie Mellon

R-trees - spatial joins

for each parent P1 of tree T1
for each parent P2 of tree T2
if their MBRs intersect,
process them recursively (ie., check their
children)

15-826 Copyright: C. Faloutsos (2019) #61

R-trees - spatial joins

Improvements - variations:

- [Seeger+, sigmod 92]: do some pre-filtering; do
plane-sweeping to avoid NI * N2 tests for
intersection

- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees

(FYI, many more papers on spatial joins, without R-
trees: [Koudas+ Sevcik], e.t.c.)

15-826 Copyright: C. Faloutsos (2019) #62

C. Faloutsos

31

15-826

Carnegie Mellon

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #63

Carnegie Mellon

R-trees - performance analysis

« How many disk (=node) accesses we’ 1l
need for

— range
— nn
— spatial joins

* why does it matter?

15-826 Copyright: C. Faloutsos (2019) #64

C. Faloutsos

32

15-826

Carnegie Mellon

R-trees - performance analysis

« How many disk (=node) accesses we’ 1l
need for

— range
— nn
— spatial joins

* why does it matter?

» A: because we can design split etc
algorithms accordingly; also, do query-
optimization

15-826 Copyright: C. Faloutsos (2019) #65

Carnegie Mellon

R-trees - performance analysis

« How many disk (=node) accesses we’ 1l
need for

q — range
— nn
— spatial joins
* why does it matter?
* A: because we can design split etc
algorithms accordingly; also, do query-
optimization

15-826 Copyright: C. Faloutsos (2019) #66

C. Faloutsos

33

15-826

Carnegie Mellon ?

R-trees - performance analysis

* motivating question: on, e.g., split, should
we try to minimize the area (volume)? the
perimeter? the overlap? or a weighted
combination? why?

15-826 Copyright: C. Faloutsos (2019) #67

x
R-trees - performance analysis
* Thus, given a tree with N nodes (i=1, ... N) we
expect
#DiskAccesses(ql,q2) =
sum (xj; +ql) * (xi2 + q2)
=sum (Xj; *X;5) + —_—
q2 * sum (x;;) + —_—
ql* sum (x5) —
ql*q2 * N —
15826 Copyright: . Faloutsos (2019)

C. Faloutsos

34

15-826

Carnegie Mellon

R-trees - performance analysis

* How many disk accesses for range queries?
— query distribution wrt location?

1 1

— wrt size?

15-826 Copyright: C. Faloutsos (2019) #69

Proof

R-trees - performance analysis

* How many disk accesses for range queries?
— query distribution wrt location? uniform; (biased)

1] 1]

— wrt size? uniform

15-826 Copyright: C. Faloutsos (2019) #70

C. Faloutsos

35

15-826

Carnegie Mellon
Proof

R-trees - performance analysis

* casier case: we know the positions of parent
MBRs, eg:

15-826 Copyright: C. Faloutsos (2019) #71

Proof

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries)?
x1

a
v

Pl | |¥x2

15-826 Copyright: C. Faloutsos (2019) #72

C. Faloutsos

36

15-826

Carnegie Mellon

POINT queries)?

x1

A

v

15-826 Copyright: C. Faloutsos (2019)

R-trees - performance analysis

* How many times will P1 be retrieved (unif.

¢X2

#73

Carnegie Mellon

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
POINT queries)? A: x1*x2

x1

a
v

Pl | |¥x2

15-826 Copyright: C. Faloutsos (2019) #74

C. Faloutsos

37

15-826

Carnegie Mellon
Proof

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)?

1
Pl s+ 1 | |¥x2
2L
0 —
0 | al
15-826 Copyright: C. Faloutsos (2019) #75

Proof

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)?
x1

...

...

15-826 Copyright: C. Faloutsos (2019) #76

C. Faloutsos

38

15-826 C. Faloutsos

Carnegie Mellon
Proof

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)?

e R g
0 ... g
15-826 Copyright: C. Faloutsos (2019) #77

Proof

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)?

x1 ql
< > >
15-826 Copyright: C. Faloutsos (2019) #78

39

15-826

Carnegie Mellon
Proof

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)? A: (x1+ql)*(x2+q2)

Pl - $x
x1 ql
< > >
15-826 Copyright: C. Faloutsos (2019) #79

Proof

R-trees - performance analysis

* Thus, given a tree with N nodes (i=1, ... N) we
expect

#DiskAccesses(ql,q2) =
sum (xi; +ql) * (xi2 +q2)
=sum (Xj; *xjp) +
q2 * sum (X;;)+
ql™® sum (x5)
ql*q2*N

15-826 Copyright: C. Faloutsos (2019) #80

C. Faloutsos

40

15-826

Carnegie Mellon

R-trees - performance analysis
* Thus, given a tree with N nodes (i=1, ... N) we
expect
#DiskAccesses(ql,q2) =
sum (x;; +ql) * (x;2 + q2)
=sum (Xj; * Xjp) + —_—
q2 * sum (x;;) + ———
ql™® sum (x;,) —
ql* g2 * N —
15-826 Copyright: C. Faloutsos (2019)

Carnegie Mellon

R-trees - performance analysis

Observations:
« for point queries: only volume matters

« for horizontal-line queries: (q2=0): vertical
length matters

« for large queries (ql, g2 >> 0): the count N
matters

15-826 Copyright: C. Faloutsos (2019) #82

C. Faloutsos

41

15-826

Carnegie Mellon

R-trees - performance analysis

Observations (cont’ ed)
 overlap: does not seem to matter
» formula: easily extendible to n dimensions

* (for even more details: [Pagel +, PODS93],
[Kamel+, CIKM93])

Berndt-Uwe Pagel

15-826 Copyright: C. Faloutsos (2019) #83

Carnegie Mellon

R-trees - performance analysis

Conclusions:

* splits should try to minimize area and
perimeter

* ie., we want few, small, square-like parent
MBRs

* rule of thumb: shoot for queries with ql=q2 =
0.1 (or =0.5 or so).

15-826 Copyright: C. Faloutsos (2019) #84

C. Faloutsos

42

15-826

Carnegie Mellon
Indexing - more detaileE

outline
* R-trees

— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis

q _ variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2019) #85

R-trees - variations

» what about static datasets (no ins/del/upd)?
* Q: Best way to pack points?

15-826 Copyright: C. Faloutsos (2019) #86

C. Faloutsos

43

15-826

Carnegie Mellon
DETAILS

R-trees - variations

» what about static datasets (no ins/del/upd)?
* Q: Best way to pack points?
» Al: plane-sweep
great for queries on ‘x’;
terrible for ‘y’

15-826 Copyright: C. Faloutsos (2019) #87

R-trees - variations

» what about static datasets (no ins/del/upd)?
* Q: Best way to pack points?
« Al: plane-sweep

great for queries on ‘x’;
bad for ‘y’
15-826 Copyright: C. Faloutsos (2019) #88

C. Faloutsos

44

15-826 C. Faloutsos

Carnegie Mellon
DETAILS

R-trees - variations

» what about static datasets (no ins/del/upd)?
* Q: Best way to pack points?
» Al: plane-sweep
great for queries on ‘x’;
terrible for ‘y’
* Q: how to improve?

15-826 Copyright: C. Faloutsos (2019) #89

R-trees - variations
* A: plane-sweep on HILBERT curve!

[t

15-826 Copyright: C. Faloutsos (2019) #90

15-826

R-trees - variations

* A: plane-sweep on HILBERT curve!
* (see [Kamel+, VLDB’ 94]

15-826 Copyright: C. Faloutsos (2019) #91

Solution#2: R-trees

- multi-dim trees
- Allow nodes to overlap

- Guaranteed 50% utilization — fast search (in
low dim’s)

A

15-826 Copyright: C. Faloutsos (2019) 92

C. Faloutsos

46

15-826

Carnegie Mellon

R-trees - conclusions

» Used in practice:

— Oracle spatial (R-tree default; z-order, too)
docs.oracle.com/html/A88805 01/sdo_intr.htm

— IBM-DB?2 spatial extender
- POStgl‘CSI create index .. using [rtree | gist]
— Sqlite3: www.sglite.org/rtree.html

» R* variation is popular

15-826 Copyright: C. Faloutsos (2019) #93

References

* Norbert Beckmann, Hans-Peter Kriegel, Ralf
Schneider, Bernhard Seeger: The R*-Tree: An
Efficient and Robust Access Method for Points
and Rectangles. ACM SIGMOD 1990: 322-331

* QGuttman, A. (June 1984). R-Trees: A Dynamic
Index Structure for Spatial Searching. Proc. ACM
SIGMOD, Boston, Mass.

15-826 Copyright: C. Faloutsos (2019) #94

C. Faloutsos

47

http://www.sqlite.org/rtree.html

15-826

Carnegie Mellon

References

* Jagadish, H. V. (May 23-25, 1990). Linear Clustering of
Objects with Multiple Attributes. ACM SIGMOD Conf.,
Atlantic City, NJ.

* Ibrahim Kamel, Christos Faloutsos: On Packing R-trees,
CIKM, 1993

15-826 Copyright: C. Faloutsos (2019) #95

References, cont’ d

» Pagel, B., H. Six, et al. (May 1993). Towards an Analysis
of Range Query Performance. Proc. of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Washington, D.C.

* Roussopoulos, N, S. Kelley, et al. (May 1995). Nearest
Neighbor Queries. Proc. of ACM-SIGMOD, San Jose, CA.

15-826 Copyright: C. Faloutsos (2019) #96

C. Faloutsos

48

15-826

Carnegie Mellon

15-826

Other resources

* Java applets and more info:

donar.umiacs.umd.edu/quadtree/points/rtrees.html

Copyright: C. Faloutsos (2019)

#97

C. Faloutsos

49

