Carnegie Mellon

15-826: Multimedia Databases and Data Mining

Lecture #10: Fractals - case studies

C. Faloutsos

Carnegie Mellon

Must-read Material - I

Christos Faloutsos and Ibrahim Kamel,
 <u>Beyond Uniformity and Independence:</u>
 <u>Analysis of R-trees Using the Concept of Fractal Dimension</u>, Proc. ACM SIGACT-SIGMOD-SIGART PODS, May 1994, pp. 4-13, Minneapolis, MN.

15-826

(c) 2019 C. Faloutsos

Carnegie Mellon

Must-read Material - II

 Bernd-Uwe Pagel, Flip Korn and Christos Faloutsos, <u>Deflating the Dimensionality</u> <u>Curse using Multiple Fractal Dimensions</u>, ICDE 2000, San Diego, CA, Feb. 2000.

15-826 (c) 2019 C. Faloutsos

Carnegie Mellon

Optional Material

Optional, but **very** useful: Manfred Schroeder *Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise* W.H. Freeman and Company, 1991 (on reserve in the WeH library)

15-826

(c) 2019 C. Faloutsos

4

Carnegie Mellon

Reminder

• Code at

www.cs.cmu.edu/~christos/SRC/fdnq_h.zip

Also, in 'R' > library(fdim);

15-826

(c) 2019 C. Faloutsos

5

Carnegie Mellon

Outline

Goal: 'Find similar / interesting things'

• Intro to DB

- Indexing similarity search
- Data Mining

15-826

(c) 2019 C. Faloutsos

Carnegie Mellon

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - z-ordering
 - R-trees
 - misc
- fractals
 - intro

applications

text

•15-826

(c) 2019 C. Faloutsos

7

Carnegie Mellon

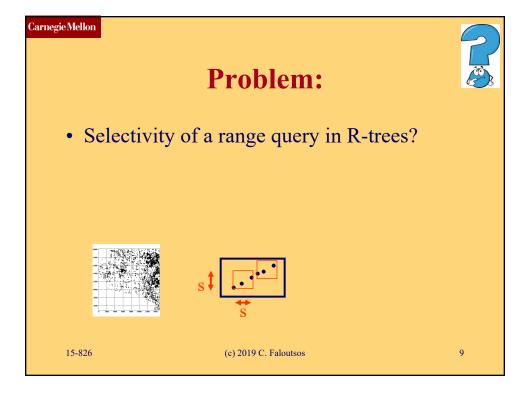
Indexing - Detailed outline

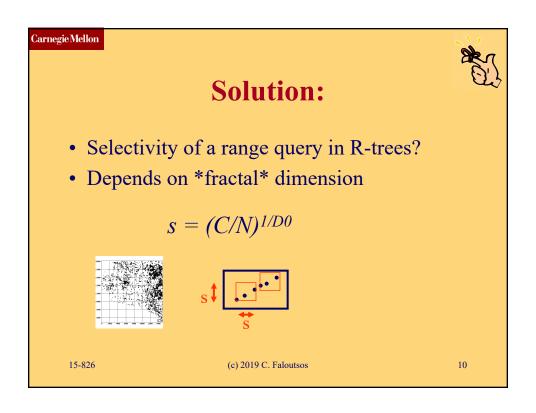
- fractals
 - intro

- applications
 - disk accesses for R-trees (range queries)
 - · dim. curse revisited
 - nearest neighbors estimation

15-826

(c) 2019 C. Faloutsos





Carnegie Mellon

Case study#1: R-tree performance

Problem

- Given
 - N points in E-dim space

• Estimate # disk accesses for a range query (q1 x ... x q_E)

(assume: 'good' R-tree, with tight, cube-like MBRs)

15-826

(c) 2019 C. Faloutsos

11

Carnegie Mellon

Case study#1: R-tree performance

Problem

- Given
 - N points in E-dim space

• Estimate # disk accesses for a range query (q1 x ... x q_E)

(assume: 'good' R-tree, with tight, cube-like MBRs) Typically, in DB Q-opt?

15-826

(c) 2019 C. Faloutsos

Carnegie Mellon

Case study#1: R-tree performance

Problem

- Given
 - N points in E-dim space

 Estimate # disk accesses for a range query (q1 x ... x q_E)

(assume: 'good' R-tree, with tight, cube-like MBRs)
Typically, in DB Q-opt: uniformity + independence

15-826

(c) 2019 C. Faloutsos

13

Carnegie Mellon

Case study#1: R-tree performance

Problem

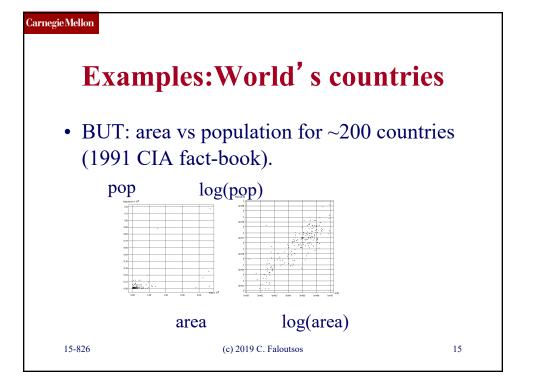
- Given
 - N points in E-dim space

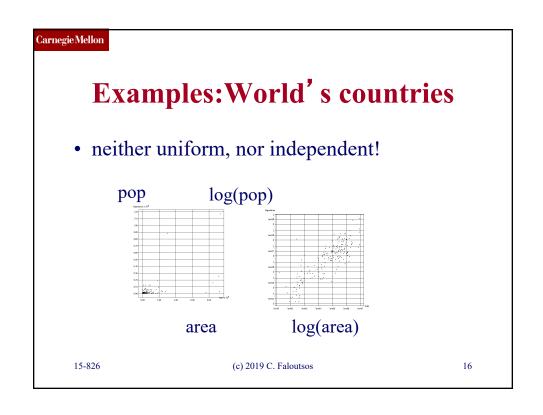
- with fractal dimension D
- Estimate # disk accesses for a range query (q1 x ... x q_E)

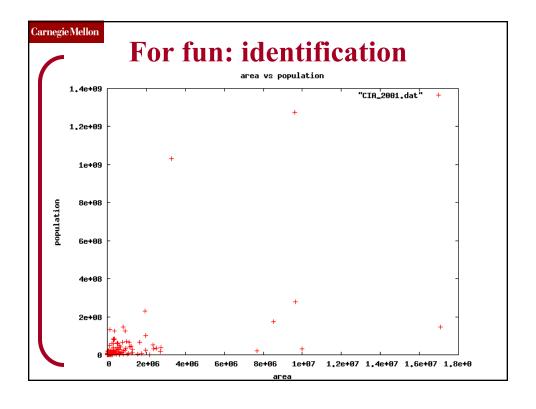
(assume: 'good' R-tree, with tight, cube-like MBRs)
Typically, in DB Q-opt: uniform independence

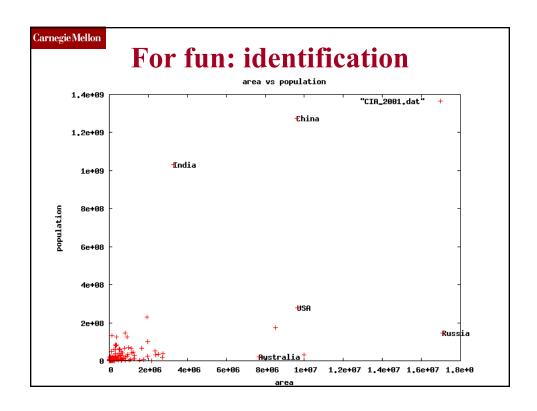
15-826

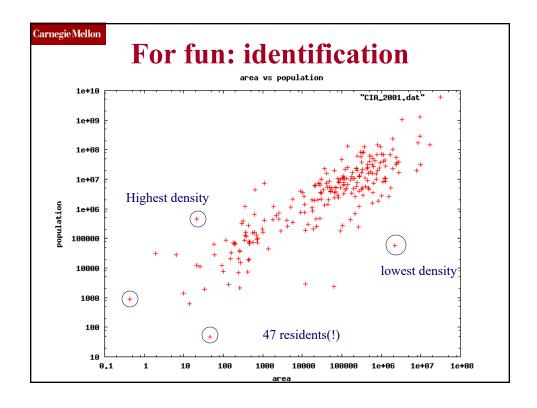
(c) 2019 C. Faloutsos

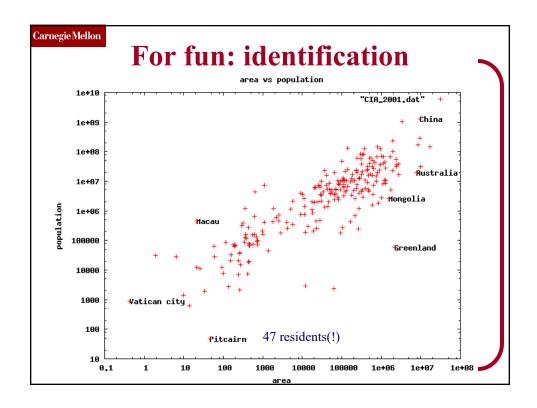










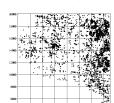


Carnegie Mellon

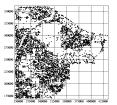
Examples: TIGER files

• neither uniform, nor independent!

MG county



LB county



15-826

(c) 2019 C. Faloutsos

21

Carnegie Mellon

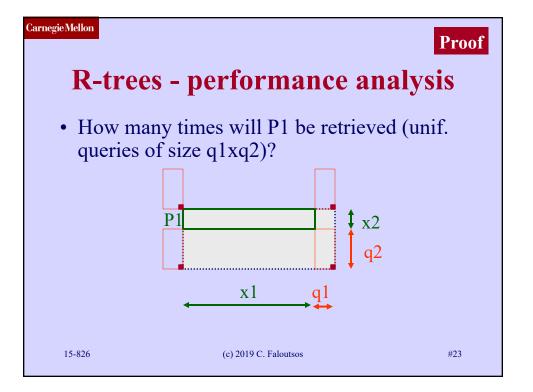
How to proceed?

• recall the [Pagel+] formula, for range queries of size q1 x q2

$$\#DiskAccesses(q1,q2) =$$
 $sum(x_{i,1} + q1) * (x_{i,2} + q2)$

15-826

(c) 2019 C. Faloutsos



Carnegie Mellon

How to proceed?

• recall the [Pagel+] formula, for range queries of size q1 x q2

$$\#DiskAccesses(q1,q2) = sum(x_{i,1} + q1) * (x_{i,2} + q2)$$

But:

formula needs to know the $x_{i,j}$ sizes of MBRs!

24

15-826 (c) 2019 C. Faloutsos

Carnegie Mellon

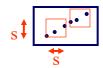
How to proceed?

But:

formula needs to know the $x_{i,j}$ sizes of MBRs!

Answer (jumping ahead):

$$s = (C/N)^{1/D0}$$



15-826

(c) 2019 C. Faloutsos

25

Carnegie Mellon

How to proceed?

But:

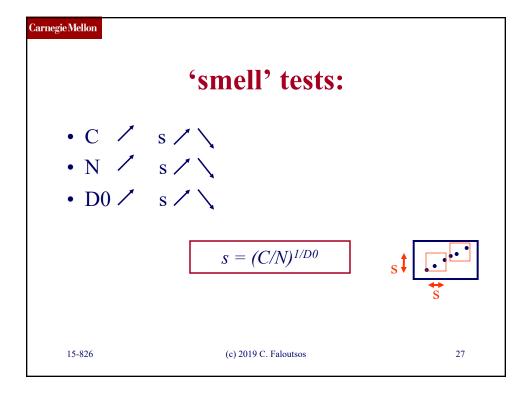
formula needs to know the $x_{i,j}$ sizes of MBRs!

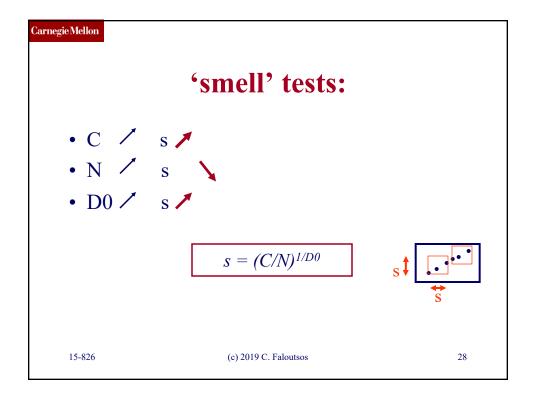
Answer (jumping ahead):

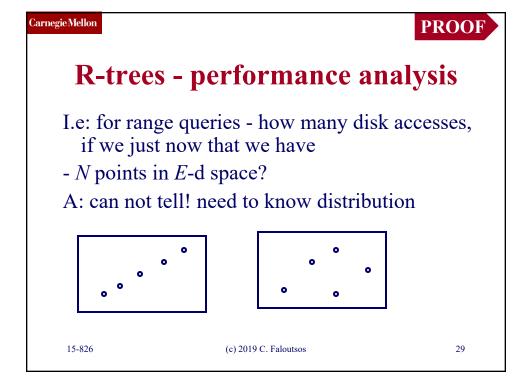
$$S = (C/N)^{1/D0} \leftarrow \text{Hausdorff fd}$$
side of (parent) MBR # of data points
page capacity

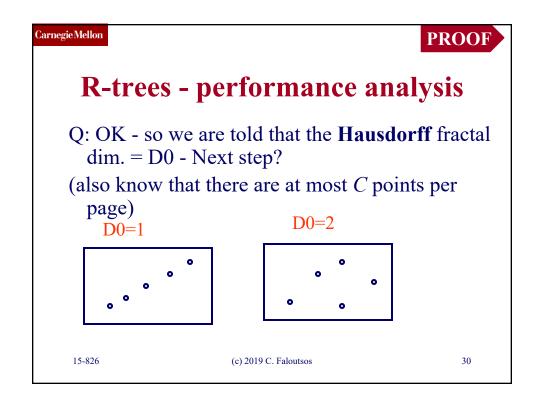
15-826

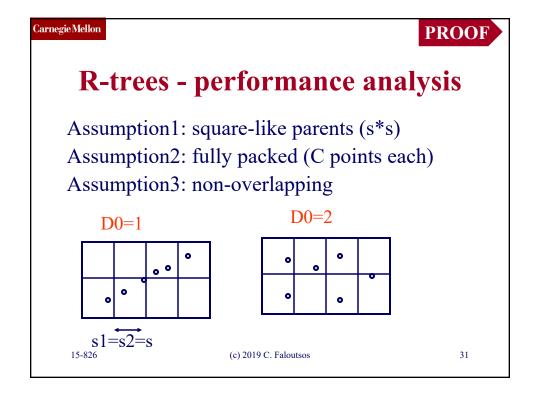
(c) 2019 C. Faloutsos

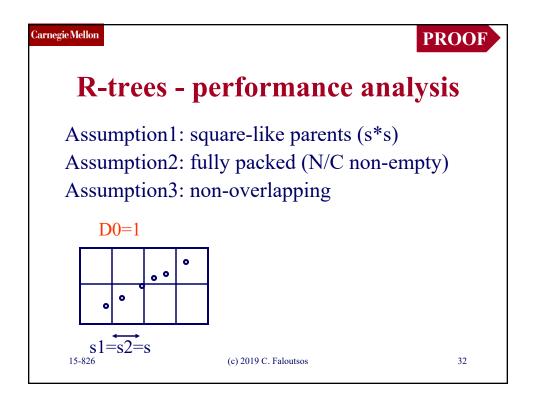












Carnegie Mellon

R-trees - performance analysis

Hint: dfn of Hausdorff f.d.:

Felix Hausdorff (1868-1942)

15-826

(c) 2019 C. Faloutsos

33

Carnegie Mellon

PROOF

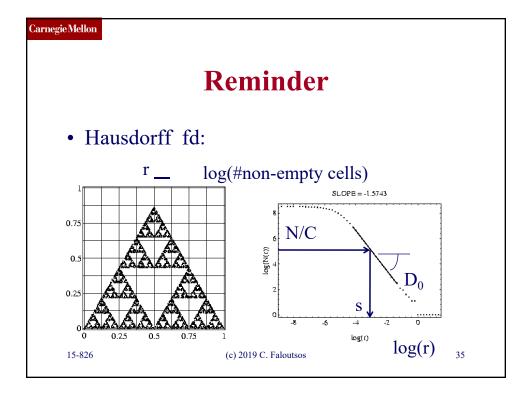
Reminder: Hausdorff or box-counting fd:

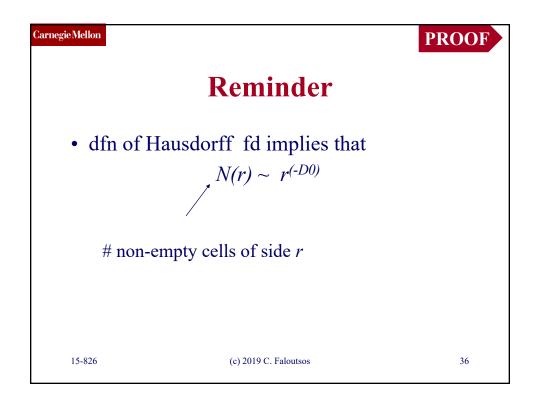
- Box counting plot: Log(N (r)) vs Log (r)
- r: grid side
- N (r): count of non-empty cells
- (Hausdorff) fractal dimension D0:

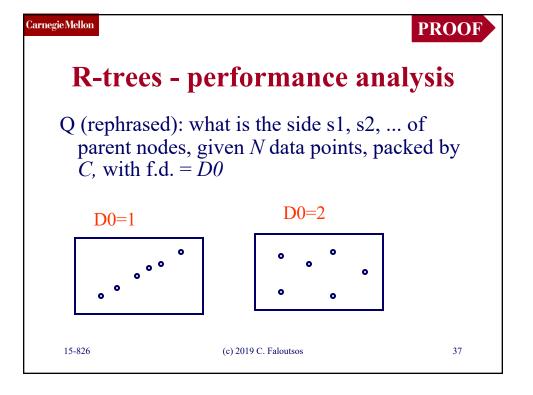
$$D_0 = -\frac{\partial \log(N(r))}{\partial \log(r)}$$

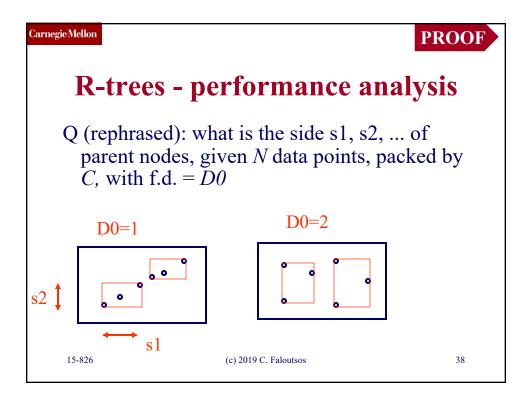
15-826

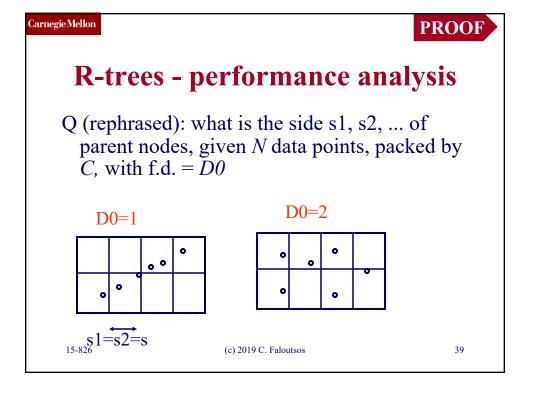
(c) 2019 C. Faloutsos

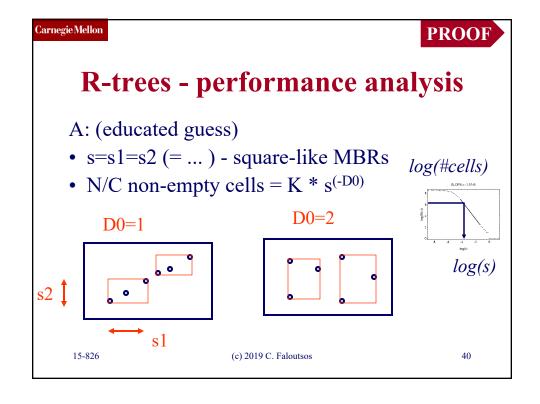












Carnegie Mellon

R-trees - performance analysis

PROOF of derivations: in [PODS 94]. Finally, expected side s of parent MBRs: $s = (C/N)^{1/D\theta}$

Q: sanity check: how does s change with D0?

A:

15-826

(c) 2019 C. Faloutsos

41

Carnegie Mellon

R-trees - performance analysis

PROOF of derivations: in [Kamel+, PODS 94]_s Finally, expected side *s* of parent MBRs:

$$s = (C/N)^{1/D\theta}$$

Q: sanity check: how does s change with D0?

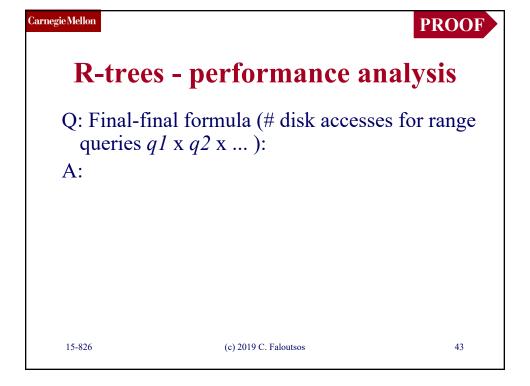
A: s grows with $D\theta$

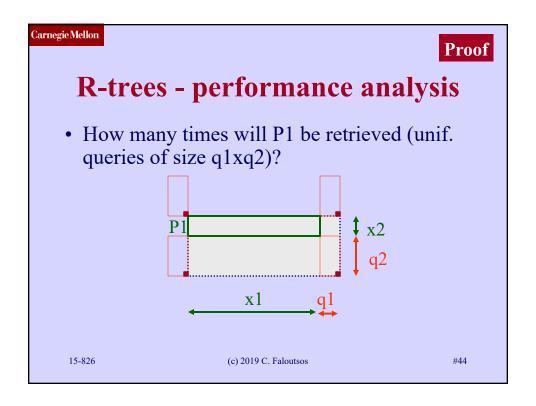
Q: does it make sense?

Q: does it suffer from (intrinsic) dim. curse?

15-826

(c) 2019 C. Faloutsos





Carnegie Mellon

PROOF

R-trees - performance analysis

Q: Final-final formula (# disk accesses for range queries q1 x q2 x ...):

A: # of parent-node accesses:

$$N/C * (s + q1) * (s + q2) * ... (s + q_E)$$

A: # of grand-parent node accesses

15-826

(c) 2019 C. Faloutsos

45

Carnegie Mellon

PROOF

R-trees - performance analysis

Q: Final-final formula (# disk accesses for range queries q1 x q2 x ...):

A: # of parent-node accesses:

$$N/C * (s + q1) * (s + q2) * ... (s + q_E)$$

A: # of grand-parent node accesses

$$N/(C^2) * (s' + q1) * (s' + q2) * ... (s' + qE)$$

 $s' = ??$

15-826

(c) 2019 C. Faloutsos

Carnegie Mellon

PROOF

R-trees - performance analysis

Q: Final-final formula (# disk accesses for range queries q1 x q2 x ...):

A: # of parent-node accesses:

$$N/C * (s + q1) * (s + q2) * ... (s + q_E)$$

A: # of grand-parent node accesses

$$N/(C^2) * (s' + q1) * (s' + q2) * ... (s' + qE)$$

$$s' = (C^2/N)^{1/D0}$$

15-826

(c) 2019 C. Faloutsos

47

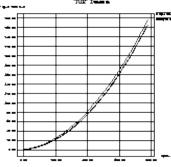
Carnegie Mellon

R-trees - performance analysis

Results:

IUE (x-y star coordinates)

leaf accesses

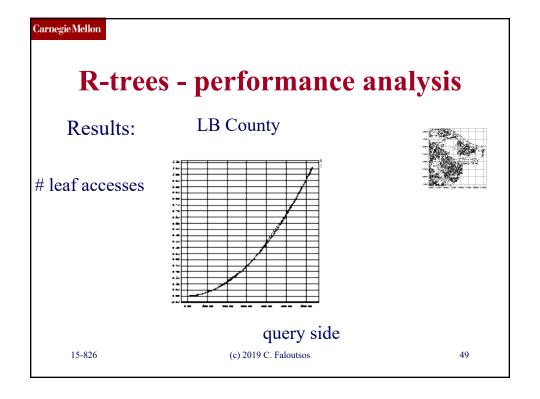


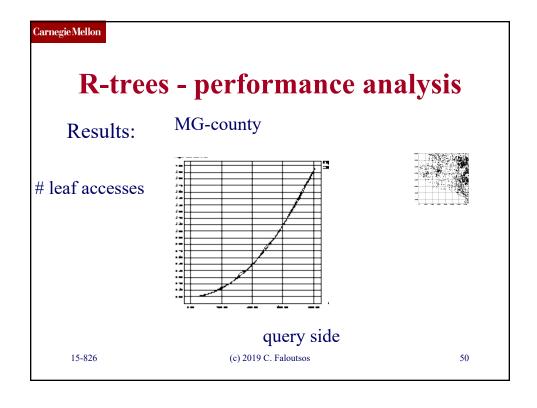
(a) IUE - Leaf accesses vs. query s

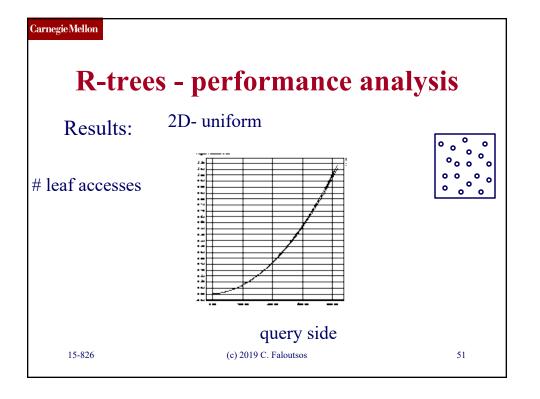
query side

15-826

(c) 2019 C. Faloutsos







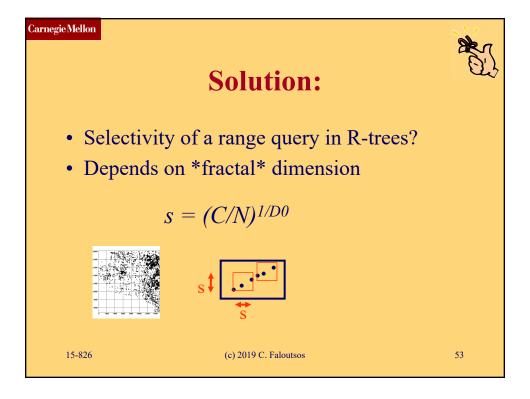
Carnegie Mellon

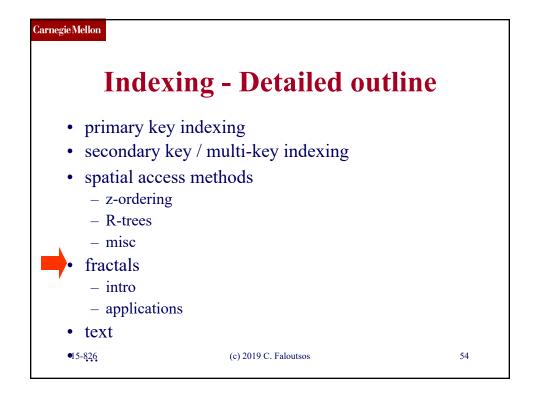
R-trees - performance analysis

Conclusions: usually, <5% relative error, for range queries

15-826

(c) 2019 C. Faloutsos





Carnegie Mellon

Indexing - Detailed outline

- fractals
 - intro
 - applications

- disk accesses for R-trees (range queries)
- · dim. curse revisited
- nearest neighbors estimation

15-826

(c) 2019 C. Faloutsos

55

Carnegie Mellon

Must-read Material

 Bernd-Uwe Pagel, Flip Korn and Christos Faloutsos, <u>Deflating the Dimensionality</u> <u>Curse using Multiple Fractal Dimensions</u>, ICDE 2000, San Diego, CA, Feb. 2000.

15-826

(c) 2019 C. Faloutsos

Carnegie Mellon

Problem:

- Q: Do all S.A.M. suffer in high dimensions?
- Q: what to do?

15-826

(c) 2019 C. Faloutsos

57

Carnegie Mellon

Solutions:

- Q: Do all S.A.M. suffer in high dimensions?
- A: Only in high *fractal* dimensions
- Q: what to do?
- A: dim-reduction; approximate knn; etc

$$P_{all}^{L\infty}(k) \approx \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^{D} \right\}$$

15-826

(c) 2019 C. Faloutsos

Indexing - Detailed outline • fractals - intro - applications • disk accesses for R-trees (range queries) • dim. curse revisited • nearest neighbors estimation

Carnegie Mellon

Dimensionality 'curse'

• Q: What is the problem in high-d?

15-826 (c) 2019 C. Faloutsos

#60

Carnegie Mellon

Dimensionality 'curse'

- Q: What is the problem in high-d?
- A: indices do not seem to help, for many queries (eg., k-nn)
 - in high-d (& uniform distributions), most points are equidistant -> k-nn retrieves too many nearneighbors
 - [Yao & Yao, '85]: search effort $\sim O(N^{(1-1/d)})$

15-826 (c) 2019 C. Faloutsos #61

Carnegie Mellon

Yao, A. C. and F. F. Yao (May 6-8, 1985). A
General Approach to d-Dimensional Geometric
Queries. Proc. of the 17th Annual ACM
Symposium on Theory of Computing (STOC),
Providence, RI.

15-826 (c) 2019 C. Faloutsos #62

Carnegie Mellon

Dimensionality 'curse'

- (counter-intuitive, for db mentality)
- Q: What to do, then?

15-826

(c) 2019 C. Faloutsos

#63

Carnegie Mellon

Dimensionality 'curse'

- A1: switch to seq. scanning
- A2: dim. reduction
- A3: consider the 'intrinsic' /fractal dimensionality
- A4: find approximate nn

15-826

(c) 2019 C. Faloutsos

#64

Carnegie Mellon

Dimensionality 'curse'

- A1: switch to seq. scanning
 - X-trees [Kriegel+, VLDB 96]
 - VA-files [Schek+, VLDB 98], 'test of time' award

15-826

(c) 2019 C. Faloutsos

#65

Carnegie Mellon

Dimensionality 'curse'

- A1: switch to seq. scanning
- →• A2: dim. reduction
 - A3: consider the 'intrinsic' /fractal dimensionality
 - A4: find approximate nn

15-826

(c) 2019 C. Faloutsos

#66

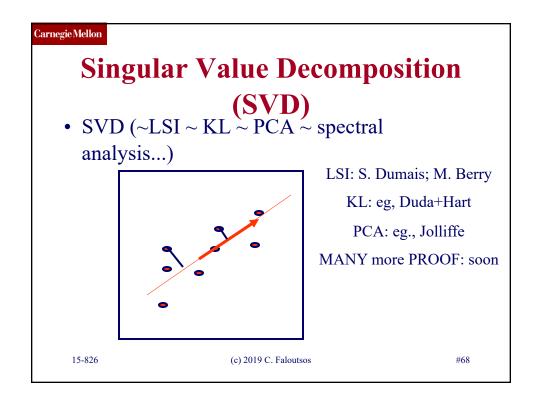
Carnegie Mellon

Dim. reduction

a.k.a. feature selection/extraction:

- SVD (optimal, to preserve Euclidean distances)
- random projections
- using the fractal dimension [Traina+ SBBD2000]

15-826 (c) 2019 C. Faloutsos #67

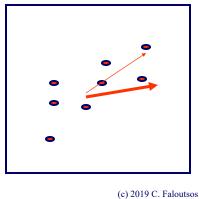


C. Faloutsos 15-826

Carnegie Mellon

Random projections

• random projections(Johnson-Lindenstrauss thm [Papadimitriou+ pods98])



15-826

#69

Carnegie Mellon

Random projections

- pick 'enough' random directions (will be ~orthogonal, in high-d!!)
- distances are preserved probabilistically, within epsilon
- (also, use as a pre-processing step for SVD [Papadimitriou+PODS98]

15-826

(c) 2019 C. Faloutsos

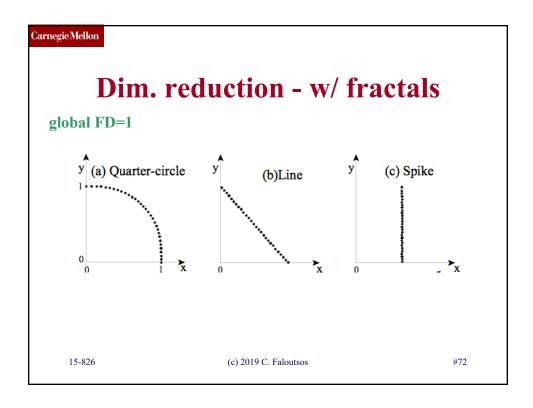
#70

Carnegie Mellon

Dim. reduction - w/ fractals

• Main idea: drop those attributes that don't affect the intrinsic ('fractal') dimensionality [Traina+, SBBD 2000]

15-826 (c) 2019 C. Faloutsos #71



Carnegie Mellon

Dimensionality 'curse'

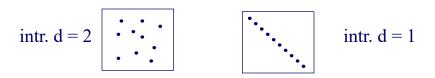
- A1: switch to seq. scanning
- A2: dim. reduction
- → A3: consider the 'intrinsic' /fractal dimensionality
 - A4: find approximate nn

15-826 (c) 2019 C. Faloutsos #73

Carnegie Mellon

Intrinsic dimensionality

- before we give up, compute the intrinsic dim.:
- the lower, the better... [Pagel+, ICDE 2000]
- more PROOF: in a few foils



15-826 (c) 2019 C. Faloutsos #74

Carnegie Mellon

Dimensionality 'curse'

- A1: switch to seq. scanning
- A2: dim. reduction
- A3: consider the 'intrinsic' /fractal dimensionality
- → A4: find approximate nn

15-826

(c) 2019 C. Faloutsos

#75

Carnegie Mellon

Approximate nn

- [Arya + Mount, SODA93], [Patella+ ICDE 2000]
- Idea: find k neighbors, such that the distance of the k-th one is guaranteed to be within epsilon of the actual.

15-826

(c) 2019 C. Faloutsos

#76

C. Faloutsos 15-826

Carnegie Mellon

Dimensionality 'curse'

- A1: switch to seq. scanning
- A2: dim. reduction
- A3: consider the 'intrinsic' /fractal dimensionality
 - A4: find approximate nn

15-826 (c) 2019 C. Faloutsos

Carnegie Mellon

Indexing - Detailed outline

- fractals
 - intro
 - applications
 - disk accesses for R-trees (range queries)
 - · dim. curse revisited
 - · nearest neighbors estimation

15-826

(c) 2019 C. Faloutsos

78

#77

Carnegie Mellon

Estimation of knn effort

- (Q: how serious is the dim. curse, e.g.:)
- Q: what is the search effort for k-nn?
 - given N points, in E dimensions, in an R-tree, with k-nn queries ('biased' model)

[Pagel, Korn + ICDE 2000]

15-826

(c) 2019 C. Faloutsos

79

Carnegie Mellon

(Overview of proofs)

- assume that your points are uniformly distributed in a *d*-dimensional manifold (= hyper-plane)
- derive the formulas
- substitute d for the fractal dimension

15-826

(c) 2019 C. Faloutsos

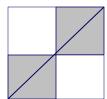
C. Faloutsos 15-826

Carnegie Mellon

PROOF

Reminder: Hausdorff Dimension (D_0)

- r = side length (each dimension)
- B(r) = # boxes containing points $\propto r^{D0}$



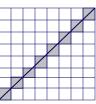
r = 1/2 B = 2

 $\log r = -1$ log B = 115-826

r = 1/4 B = 4

$$log r = -2 \\
log B = 2$$

(c) 2019 C. Faloutsos



$$r = 1/8$$
 $B = 8$

$$\log r = -3$$
$$\log B = 3$$

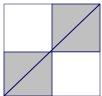
81

Carnegie Mellon

PROOF

Reminder: Correlation Dimension (D_2)

• $S(r) = \sum p_i^2$ (squared % pts in box) $\propto r^{D2}$ \propto #pairs(within $\leq r$)



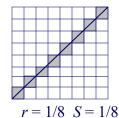
r = 1/2 S = 1/2

log r = -1

logS = -1

15-826

r = 1/4 S = 1/4



$$r = 1/4 \ S = 1/4$$

$$log r = -2
log S = -2
log S = -3$$

(c) 2019 C. Faloutsos

C. Faloutsos 15-826

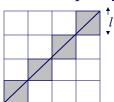
Carnegie Mellon

PROOF

Observation #1

• How to determine avg MBR side *l*?

$$-N = \#pts$$
, $C = MBR$ capacity



Hausdorff dimension: $B(r) \propto r^{D0}$

$$B(l) = N/C = l^{-D0} \implies l = (N/C)^{-1/D0}$$

15-826

(c) 2019 C. Faloutsos

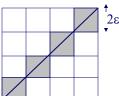
83

Carnegie Mellon

PROOF

Observation #2

- k-NN query $\rightarrow \varepsilon$ -range query
 - For k pts, what radius ε do we expect?



Correlation dimension:
$$S(r) \propto r^{D2}$$

$$S(\varepsilon) = \frac{k}{N-1} = (2\varepsilon)^{D2}$$
(c) 2019 C. Faloutsos

15-826

(c) 2019 C. Faloutsos

Observation #3

• Estimate avg # query-sensitive anchors:

- How many expected q will touch avg page?

- Page touch: q stabs ε-dilated MBR(p)

p

MBR(p)

p

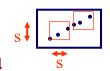
q

q

(c) 2019 C. Faloutsos

85

Carnegie Mellon



Asymptotic Formula

- k-NN page accesses as N $\rightarrow \infty$
 - -C = page capacity
 - $-D = \text{fractal dimension} (=D0 \sim D2)$
 - -h =height of tree

$$P_{all}^{L\infty}(k) \approx \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^{D} \right\}$$

15-826

(c) 2019 C. Faloutsos

Carnegie Mellon

Asymptotic Formula

$$P_{all}^{L\infty}(k) \approx \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^{D} \right\}$$

• Observations?

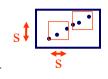
15-826

(c) 2019 C. Faloutsos

87

Carnegie Mellon

Asymptotic Formula

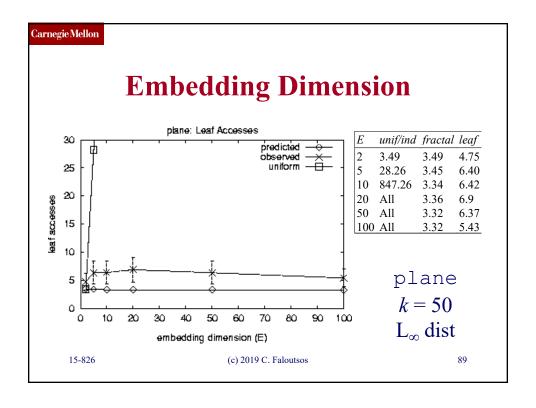


$$P_{all}^{L\infty}(k) \approx \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^{D} \right\}$$

- NO mention of the embedding dimensionality!!
- Still have dim. curse, but on f.d. D

15-826

(c) 2019 C. Faloutsos



Carnegie Mellon

A word of caution:

Nearest neighbors: may be meaningless!

Norio Katayama, Shin'ichi Satoh:

Distinctiveness-Sensitive Nearest Neighbor Search for Efficient Similarity Retrieval of Multimedia Information.

ICDE 2001: 493-502



(c) 2019 C. Faloutsos

15-826

91

Carnegie Mellon

Conclusions

- Dimensionality 'curse':
 - for high-d, indices slow down to $\sim O(N)$
- If the intrinsic dim. is low, there is hope
- otherwise, do seq. scan, or sacrifice accuracy (approximate nn)

15-826

(c) 2019 C. Faloutsos

#92

Carnegie Mellon

Conclusions - cont' d

- Worst-case theory is **over-pessimistic**
- High dimensional data can exhibit good performance if **correlated**, **non-uniform**
- Many real data sets are self-similar
- Determinant is **intrinsic** dimensionality
 - multiple fractal dimensions (D_0 and D_2)
 - indication of how far one can go

15-826

(c) 2019 C. Faloutsos

93

Carnegie Mellon

ake y

Solutions:

- Q: Do all S.A.M. suffer in high dimensions?
- A: Only in high *fractal* dimensions
- Q: what to do?
- A: dim-reduction; approximate knn; etc

$$P_{all}^{L\infty}(k) \approx \sum_{j=0}^{h} \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^{D} \right\}$$

15-826

(c) 2019 C. Faloutsos

Carnegie Mellon

References

• Sunil Arya, David M. Mount: *Approximate Nearest Neighbor Queries in Fixed Dimensions*. SODA 1993: 271-280
ANN library:

http://www.cs.umd.edu/~mount/ANN/

15-826 (c) 2019 C. Faloutsos

#95

Carnegie Mellon

References

• Berchtold, S., D. A. Keim, et al. (1996). The X-tree: An Index Structure for High-Dimensional Data. VLDB, Mumbai (Bombay), India.

15-826 (c) 2019 C. Faloutsos 96

Carnegie Mellon

References cnt' d

- Pagel, B.-U., F. Korn, et al. (2000). Deflating the Dimensionality Curse Using Multiple Fractal Dimensions. ICDE, San Diego, CA.
- Papadimitriou, C. H., P. Raghavan, et al. (1998).
 Latent Semantic Indexing: A Probabilistic
 Analysis. PODS, Seattle, WA.

15-826 (c) 2019 C. Faloutsos

97

Carnegie Mellon

References cnt' d

- Traina, C., A. J. M. Traina, et al. (2000). Distance Exponent: A New Concept for Selectivity
 Estimation in Metric Trees. ICDE, San Diego,
 CA.
- Weber, R., H.-J. Schek, et al. (1998). A
 Quantitative Analysis and Performance Study for Similarity-Search Methods in high-dimensional spaces. VLDB, New York, NY.

15-826 (c) 2019 C. Faloutsos 98

Carnegie Mellon

References cnt' d

Yao, A. C. and F. F. Yao (May 6-8, 1985). A
 General Approach to d-Dimensional Geometric
 Queries. Proc. of the 17th Annual ACM
 Symposium on Theory of Computing (STOC),
 Providence, RI.

15-826

(c) 2019 C. Faloutsos