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15-826: Multimedia Databases 
and Data Mining

Lecture #17: SVD – part II – applications
C. Faloutsos
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Problems

• Q1: How to find ‘concepts’ in a document 
collection?

• Q2: how to answer queries in English, when 
documents are in Spanish?

• Q3: how to compress a customer x day 
matrix

• Q4: how to interpret the rules/concepts
• Q5: KL transform?
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Solutions

• Q1: How to find ‘concepts’ in a document 
collection?

• Q2: how to answer queries in English, when 
documents are in Spanish?

• Q3: how to compress a customer x day 
matrix

• Q4: how to interpret the rules/concepts
• Q5: KL transform?

SVD
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Must-read Material

• MM Textbook Appendix D 
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http://www.cs.cmu.edu/~christos/courses/826.S08/readinglist.html
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Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining
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Indexing - Detailed outline
• primary key indexing
• secondary key / multi-key indexing
• spatial access methods
• fractals
• text
• Singular Value Decomposition (SVD)
• multimedia
• ...
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SVD - Detailed outline
• Motivation
• Definition - properties
• Interpretation
• Complexity
• Case studies
• SVD properties
• Conclusions
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SVD - Case studies
• multi-lingual IR; LSI queries 
• compression 
• PCA - ‘ratio rules’
• Karhunen-Lowe transform
• query feedbacks
• google/Kleinberg algorithms
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Case study - LSI
Q1: How to do queries with LSI?
Q2: multi-lingual IR (english query, on 

spanish text?)
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Case study - LSI
Q1: How to do queries with LSI?
Problem: Eg., find documents with ‘data’
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Case study - LSI
Q1: How to do queries with LSI?
A: map query vectors into ‘concept space’ – how?
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Case study - LSI
Q1: How to do queries with LSI?
A: map query vectors into ‘concept space’ – how?

1 0 0 0 0 
 

 

datainf.retrieval
brainlung
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v1

q
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Case study - LSI
Q1: How to do queries with LSI?
A: map query vectors into ‘concept space’ – how?

1 0 0 0 0 
 

 

datainf.retrieval
brainlung

q=

term1

term2

v1

q

v2

A: inner product 
(cosine similarity)
with each ‘concept’ vector vi
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Case study - LSI
Q1: How to do queries with LSI?
A: map query vectors into ‘concept space’ – how?

1 0 0 0 0 
 

 

datainf.retrieval
brainlung

q=

term1

term2

v1

q

v2

A: inner product 
(cosine similarity)
with each ‘concept’ vector vi

q o v1
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Case study - LSI
compactly, we have:

q V= qconcept
Eg:

1 0 0 0 0 
 

 

datainf.retrieval
brainlung
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0.58 0 
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0.58 0 
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0 0.71 
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similarities

= 0.58 0 
 

 

CS-concept
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Case study - LSI
Drill: how would the document (‘information’, 
‘retrieval’) be handled by LSI?
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Case study - LSI
Drill: how would the document (‘information’, 
‘retrieval’) be handled by LSI? A: SAME:

dconcept = d V
Eg:

0 1 1 0 0 
 

 

datainf.retrieval
brainlung

d=

0.58 0 
0.58 0 
0.58 0 
0 0.71 
0 0.71 

 

 

term-to-concept
similarities

= 1.16 0 
 

 

CS-concept
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Case study - LSI
Observation: document (‘information’, 
‘retrieval’) will be retrieved by query (‘data’),  
although it does not contain ‘data’!!

0 1 1 0 0 
 

 

datainf.retrieval
brainlung

d=
1.16 0 

 

 

CS-concept

1 0 0 0 0 
 

 

0.58 0 
 

 q=
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Solutions

• Q1: How to find ‘concepts’ in a document 
collection?

• Q2: how to answer queries in English, when 
documents are in Spanish?

• Q3: how to compress a customer x day 
matrix

• Q4: how to interpret the rules/concepts
• Q5: KL transform?

✔
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Case study - LSI
Q1: How to do queries with LSI?
Q2: multi-lingual IR (english query, on 

spanish text?)
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Case study - LSI
• Problem:

– given many documents, translated to both 
languages (eg., English and Spanish)

– answer queries across languages
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Case study - LSI
• Solution: ~ LSI

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1

datainf.retrieval
brainlung

CS

MD

1 1 1 0 0
1 2 2 0 0
1 1 1 0 0
5 5 4 0 0
0 0 0 2 2
0 0 0 2 3
0 0 0 1 1

datos
informacion

22



C. Faloutsos 15-826

12

15-826 Copyright (c) 2019 C. Faloutsos 23

Solutions

• Q1: How to find ‘concepts’ in a document 
collection?

• Q2: how to answer queries in English, when 
documents are in Spanish?

• Q3: how to compress a customer x day 
matrix

• Q4: how to interpret the rules/concepts
• Q5: KL transform?

✔

✔
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Case study: compression

[Korn+97]
Problem:
• given a matrix
• compress it, but maintain ‘random access’
(surprisingly, its solution leads to data mining 

and visualization...)
Flip Korn, H. V. Jagadish, and Christos Faloutsos. Efficiently 
supporting ad hoc queries in large datasets of time 
sequences. SIGMOD '97, 289-300.
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Problem - specs

• ~10**6 rows; ~10**3 columns; no updates;
• random access to any cell(s) ; small error: OK
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Idea
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SVD - reminder

• space savings: 2:1
• minimum RMS error

first singular

vector
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Case study: compression
outliers?
A: treat separately

(SVD with ‘Deltas’) first singular

vector

29
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Compression - Performance

• 3 pass algo (-> scalability) (HOW?)
• random cell(s) reconstruction
• 10:1 compression with < 2% error
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Performance - scaleup

space

error
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Compression - Visualization

• no Gaussian clusters; Zipf-like distribution
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Solutions

• Q1: How to find ‘concepts’ in a document 
collection?

• Q2: how to answer queries in English, when 
documents are in Spanish?

• Q3: how to compress a customer x day 
matrix

• Q4: how to interpret the rules/concepts
• Q5: KL transform?

✔

✔

✔
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PCA - ‘Ratio Rules’

[Korn+98]
Typically: ‘Association Rules’ (eg.,

{bread, milk} -> {butter}
But, can we discover more details? like:

$-bread : $-milk : $-butter ~ $2 : $4 : $3

Flip Korn, Alexandros Labrinidis, Yannis Kotidis, and 
Christos Faloutsos. Ratio Rules: A New Paradigm for Fast, 
Quantifiable Data Mining. (VLDB '98), 582-593. 
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PCA - ‘Ratio Rules’

Idea: try to find ‘concepts’:
• singular vectors dictate rules about ratios:

bread:milk:butter = 2:4:3 

$ on bread

$ on milk

$ on butter

2

3 4

36



C. Faloutsos 15-826

18

15-826 Copyright (c) 2019  C. Faloutsos 37

PCA - ‘Ratio Rules’

Identical to PCA = Principal Components 
Analysis
– Q1: which set of rules is ‘better’?
– Q2: how to reconstruct missing/corrupted 

values?
– Q3: is there need for binary/bucketized values?
– Q4: how to interpret the rules (= ‘principal 

components’)?

NO
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PCA - Ratio Rules
NBA dataset
~500 players;
~30 attributes

38
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PCA - Ratio Rules

• PCA: get singular vectors v1, v2, ...
• ignore entries with small abs. value
• try to interpret the rest

39
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PCA - Ratio Rules
NBA dataset - V matrix (term to ‘concept’ similarities)

v1
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Ratio Rules - example

• RR1: minutes:points = 2:1
• corresponding concept?

v1
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Ratio Rules - example

• RR1: minutes:points = 2:1
• corresponding concept?

v1
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Ratio Rules - example

• RR1: minutes:points = 
2:1

• corresponding 
concept?

v1
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Ratio Rules - example

• RR1: minutes:points = 2:1
• corresponding concept? 
• A: ‘goodness’ of player
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Ratio Rules - example

• RR2: points: rebounds negatively 
correlated(!) 
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Ratio Rules - example

• RR2: points: rebounds negatively 
correlated(!) - concept?

v2
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Ratio Rules - example

• RR2: points: rebounds negatively 
correlated(!) - concept?

• A: position: offensive/defensive
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Solutions

• Q1: How to find ‘concepts’ in a document 
collection?

• Q2: how to answer queries in English, when 
documents are in Spanish?

• Q3: how to compress a customer x day 
matrix

• Q4: how to interpret the rules/concepts
• Q5: KL transform?

✔

✔

✔

✔
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K-L transform
[Duda & Hart]; [Fukunaga]

A subtle point:
SVD will give vectors that
go through the origin

v1
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K-L transform
A subtle point:
SVD will give vectors that
go through the origin
Q: how to find v1’ ?

v1

v1’
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K-L transform
A subtle point:
SVD will give vectors that
go through the origin
Q: how to find v1’ ?

A: ‘centered’ PCA, ie.,
move the origin to center
of gravityv1

v1’
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K-L transform
A subtle point:
SVD will give vectors that
go through the origin
Q: how to find v1’ ?

A: ‘centered’ PCA, ie.,
move the origin to center
of gravity
and THEN do SVD

v1’
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K-L transform

• How to ‘center’ a set of vectors (= data 
matrix)?

• What is the covariance matrix?
• A: see textbook
• (‘whitening transformation’)
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Conclusions

• SVD: popular for dimensionality reduction / 
compression

• SVD is the ‘engine under the hood’ for 
PCA (principal component analysis)

• ... as well as the Karhunen-Lowe transform
• (and there is more to come ...)
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Solutions

• Q1: How to find ‘concepts’ in a document 
collection?

• Q2: how to answer queries in English, when 
documents are in Spanish?

• Q3: how to compress a customer x day 
matrix

• Q4: how to interpret the rules/concepts
• Q5: KL transform?

✔

✔

✔

✔
✔

SVD
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