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15-826: Multimedia Databases 
and Data Mining

Lecture #21: DSP tools –
DFT – Discrete Fourier Transform

C. Faloutsos
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Problem

Goal: given a signal (eg., sales over time 
and/or space)

Q: Find patterns and/or compress

year

count

2
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Solutions:

Goal: given a signal (eg., sales over time 
and/or space)

Q: Find patterns and/or compress

year

count

actual mean mean+freq12

A1: Fourier (DFT)

A2: Wavelets (DWT)
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Must-read Material

• DFT/DCT: In PTVF ch. 12.1, 12.3, 12.4; in 
Textbook Appendix B. 

• Wavelets: In PTVF ch. 13.10; in MM 
Textbook Appendix C 

4

http://www.cs.cmu.edu/~christos/courses/826.S08/readinglist.html
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C. Faloutsos 15-826

3

15-826 Copyright (c) 2019 C. Faloutsos 5

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining
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Indexing - Detailed outline
• primary key indexing
• ..
• Multimedia –

– Digital Signal Processing (DSP) tools
• Discrete Fourier Transform (DFT)
• Discrete Wavelet Transform (DWT)

6
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)
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Introduction

Goal: given a signal (eg., sales over time 
and/or space)

Find: patterns and/or compress

year

count
lynx caught per year

8
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What does DFT do?

A: highlights the periodicities

9
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Why should we care?

A: several real sequences are periodic
Q: Such as?

10



C. Faloutsos 15-826

6

15-826 Copyright (c) 2019 C. Faloutsos 11

Why should we care?

A: several real sequences are periodic
Q: Such as?
A: 

– sales patterns follow seasons;
– economy follows 50-year cycle
– temperature follows daily and yearly cycles

Many real signals follow (multiple) cycles

11
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Why should we care?

For example: human voice!
• Frequency analyzer 

http://www.relisoft.com/freeware/freq.html
• speaker identification
• impulses/noise -> flat spectrum
• high pitch -> high frequency

12

http://www.relisoft.com/freeware/freq.html
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‘Frequency Analyzer’

time

frequency
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DFT: definition

• Discrete Fourier Transform (n-point):

inverse DFT

€ 

X f =1/ n xt *exp(− j2π f t /n)
t=0

n−1

∑ f = 0,...,n −1

( j = −1)

xt =1/ n X f *exp(+ j2π f t /n)
f =0

n−1

∑

14
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(Reminder)

(fun fact: the equation with the 5 most 
important numbers:

)
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€ 

exp(φ * j) = cos(φ) + j *sin(φ)

€ 

e jπ +1 = 0

f

Re

Im

15
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DFT: definition

• Good news: Available in all symbolic math 
packages, eg., in ‘mathematica’
x = [1,2,1,2];
X = Fourier[x];
Plot[ Abs[X] ];

17
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DFT: examples

flat
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1.2
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time freq

Amplitude
Plot[ Abs[Fourier[x]] ];

18

15-826 Copyright (c) 2019 C. Faloutsos 19

DFT: examples

Low frequency sinusoid
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DFT: examples

• Sinusoid - symmetry property: Xf = X*
n-f
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DFT: examples

• Higher freq. sinusoid
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21



C. Faloutsos 15-826

11

15-826 Copyright (c) 2019 C. Faloutsos 22

DFT: examples

examples

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

=

+

+
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DFT: examples

examples

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
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0.4
0.6

0.8
1
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Freq.

Ampl.
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)

24
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How does it work?
Decomposes signal to a sum of sine (and 

cosine) waves.
Q:How to assess ‘similarity’ of x with a 

wave?

0 1 n-1 time

value
x ={x0, x1, ... xn-1}

details

…

25
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How does it work?

A: consider the waves with frequency 0, 1, ...; 
use the inner-product (~cosine similarity)

0 1 n-1 time

value

freq. f=0

0 1 n-1 time

value
freq. f=1 (sin(t * 2 p/n) )

details
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How does it work?

A: consider the waves with frequency 0, 1, ...; 
use the inner-product (~cosine similarity)

0 1 n-1 time

value

freq. f=2

details

27
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How does it work?
‘basis’ functions
(vectors)

0 1 n-1

01 n-1

0 1 n-1sine, freq =1

sine, freq = 2

0 1 n-1

0 1 n-1

cosine, f=1

cosine, f=2

details
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How does it work?

• Basis functions are actually n-dim vectors, 
orthogonal to each other

• ‘similarity’ of x with each of them: inner 
product

• DFT: ~ all the similarities of x with the 
basis functions

details

29
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DFT: definition

• Good news: Available in all symbolic math 
packages, eg., in ‘mathematica’
x = [1,2,1,2];
X = Fourier[x];
Plot[ Abs[X] ];

30
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DFT: definition

(variations:
• 1/n instead of 1/sqrt(n)
• exp(-...) instead of exp(+...)

31
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DFT: definition

Observations:
• Xf   : are complex numbers except

– X0 , who is real
• Im (Xf ): ~ amplitude of sine wave of 

frequency f
• Re (Xf ): ~ amplitude of cosine wave of 

frequency f
• x: is the sum of the above sine/cosine waves

32

Intuition behind Xf - ‘phasors’
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more details

33
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DFT: definition

• Discrete Fourier Transform (n-point):

inverse DFT

€ 

X f =1/ n xt *exp(− j2π f t /n)
t=0

n−1

∑ f = 0,...,n −1

( j = −1)

xt =1/ n X f *exp(+ j2π f t /n)
f =0

n−1

∑

more details

34

Phasors – intuition behind Xf
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n=180

0 1 179

xt

IBM stock

more details

35
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Phasors – intuition behind Xf
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xt

IBM stock

€ 

X f =1/ n xt *exp(− j2π f t /n)
t=0

n−1

∑ f = 0,...,n −1

( j = −1)

xt =1/ n X f *exp(+ j2π f t /n)
f =0

n−1

∑

f

Re

Im

X1: A1 exp(j f)

X1

more details
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Phasors – intuition behind Xf
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xt

IBM stock

€ 

X f =1/ n xt *exp(− j2π f t /n)
t=0

n−1

∑ f = 0,...,n −1

( j = −1)

xt =1/ n X f *exp(+ j2π f t /n)
f =0

n−1

∑

f

Re

Im

X1: A1 exp(j f)

X1

t=1

Rotation
as t =0, …

more details

37
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Phasors – intuition behind Xf
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€ 

X f =1/ n xt *exp(− j2π f t /n)
t=0

n−1

∑ f = 0,...,n −1

( j = −1)

xt =1/ n X f *exp(+ j2π f t /n)
f =0

n−1

∑

f

Re

Im

X1: A1 exp(j f)

X1

t=1

Rotation
as t =0, …

Each Xf: phasor, ie
rotating complex number ->
Generates a wave of
• Amplitude Af
• Phase ff
• Frequency f

more details

38

Phasors – intuition behind Xf
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Re

Im Each Xf: phasor, ie
rotating complex number ->
Generates a wave of
• Amplitude Af
• Phase ff
• Frequency f
• By its projection on Re
• (and another, imaginary, on Im

• But those cancel out

t
Af See en.wikipedia.org/wiki/Phasor

more details

39
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Phasors – intuition behind Xf
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Re

Im

t
Af

R
e

Im

t
A f

more details

40

Phasors – intuition behind Xf
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R
e

Im

t
A 1

X1

X2

R
e

Im

t

A 2

….

(every 2nd tick)

more details

41
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Phasors – intuition behind Xf

15-826 Copyright (c) 2019 C. Faloutsos 42

….
R

e

Im t
A 1

X1

X2
R

e

Im t

A 2
X179

X0

Sum:

more details

42
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DFT: definition

Observation - SYMMETRY property:
Xf   = (Xn-f )*

( “*”: complex conjugate: (a + b j)* = a - b 
j )

details

44
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DFT: definition

Definitions
• Af = |Xf | : amplitude of frequency f
• |Xf |2  = Re(Xf )2 + Im(Xf )2 = energy of 

frequency f 
• phase ff at frequency f

Xf

Re

Im Af
ff

45
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DFT: definition

Amplitude spectrum: | Xf | vs f (f=0, 1, ... n-1)

0 1 n-1

SYMMETRIC  (Thus, we plot the first half only)

details

46
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DFT: definition

Phase spectrum | ff | vs f (f=0, 1, ... n-1):
Anti-symmetric

(Rarely used)

details

47
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)

48
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DFT: examples

examples

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
0.2
0.4
0.6

0.8
1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Freq.

Ampl.
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DFT: Amplitude spectrum

actual mean mean+freq12

1 12 23 34 45 56 67 78 89 10
0

11
1

year

count

Freq.

Ampl.

freq=12

freq=0

)(Im)(Re 222
fff XXA +=Amplitude:

50
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DFT: Amplitude spectrum

actual mean mean+freq12

1 12 23 34 45 56 67 78 89 10
0

11
1

year

count

Freq.

Ampl.

freq=12

freq=0
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1 12 23 34 45 56 67 78 89 10
0

11
1

DFT: Amplitude spectrum

actual mean mean+freq12

year

count

Freq.

Ampl.

freq=12

freq=0
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DFT: Amplitude spectrum

• excellent approximation, with only 2 
frequencies!

• so what?

actual mean mean+freq12

1 12 23 34 45 56 67 78 89 10
0

11
1

Freq.

53
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DFT: Amplitude spectrum

• excellent approximation, with only 2 
frequencies!

• so what?
• A1: compression
• A2: pattern discovery
• (A3: forecasting)

54
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DFT: Amplitude spectrum

• excellent approximation, with only 2 
frequencies!

• so what?
• A1: (lossy) compression
• A2: pattern discovery 1 12 23 34 45 56 67 78 89 10

0

11
1

55
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DFT: Amplitude spectrum

• excellent approximation, with only 2 
frequencies!

• so what?
• A1: (lossy) compression
• A2: pattern discovery

actual mean mean+freq12

56
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)

57
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DFT: Amplitude spectrum

• Let’s see it in action (defunct now…)
• (http://www.dsptutor.freeuk.com/jsanalyser/FFTSpectrumAnalyser.html)

• plain sine
• phase shift
• two sine waves
• the ‘chirp’ function
• http://ion.researchsystems.com/

58
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Plain sine

59

http://www.dsptutor.freeuk.com/jsanalyser/FFTSpectrumAnalyser.html
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Plain sine

60
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Plain sine – phase shift

61
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Plain sine – phase shift

62
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Plain sine

63
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Two sines

64
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Two sines

65
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Chirp

66
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Chirp

67
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)

68

Properties

• Time shift sounds the same
– Changes only phase, not amplitudes

• Sawtooth has almost all frequencies
– With decreasing amplitude

• Spike has all frequencies

15-826 Copyright (c) 2019 C. Faloutsos 69
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DFT: Parseval’s theorem

sum( xt
2 ) = sum ( | X f | 2 )

Ie., DFT preserves the ‘energy’
or, alternatively: it does an axis rotation:

x0

x1
x = {x0, x1}

70
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DFT: Parseval’s theorem

sum( xt
2 ) = sum ( | X f | 2 )

Ie., DFT preserves the ‘energy’
or, alternatively: it does an axis rotation:

x0

x1
x = {x0, x1}

71
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DFT: Parseval’s theorem

sum( xt
2 ) = sum ( | X f | 2 )

= 𝑒"#$%&'

𝑥)
𝑥*
⋮
𝑥'
⋮

𝑋)
𝑋*
⋮
𝑋&
⋮

… equivalently, 
matrix F (= 𝟏

𝒏
𝒆"𝒋𝟐𝝅𝒇𝒕 )

is row-orthonormal
Row: f
Column: t

F

72
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)
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Arithmetic examples
• Impulse function: x = { 0, 1, 0, 0} (n = 4)
• X0=?

0 1 time

value

1

details

74
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Arithmetic examples
• Impulse function: x = { 0, 1, 0, 0} (n = 4)
• X0=?
• A: X0 = 1/sqrt(4) * 1* exp(-j 2 p 0 / n ) = 

1/2
• X1=?
• X2=?
• X3=?

details

75
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Arithmetic examples
• Impulse function: x = { 0, 1, 0, 0} (n = 4)
• X0=?
• A: X0 = 1/sqrt(4) * 1* exp(-j 2 p 0 / n ) = 

1/2
• X1= -1/2 j
• X2= - 1/2
• X3= + 1/2 j
• Q: does the ‘symmetry’ property hold?

details
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Arithmetic examples
• Impulse function: x = { 0, 1, 0, 0} (n = 4)
• X0=?
• A: X0 = 1/sqrt(4) * 1* exp(-j 2 p 0 / n ) = 1/2
• X1= -1/2 j
• X2= - 1/2
• X3= + 1/2 j
• Q: does the ‘symmetry’ property hold?
• A: Yes (of course)

details

77
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Arithmetic examples
• Impulse function: x = { 0, 1, 0, 0} (n = 4)
• X0=?
• A: X0 = 1/sqrt(4) * 1* exp(-j 2 p 0 / n ) = 

1/2
• X1= -1/2 j
• X2= - 1/2
• X3= + 1/2 j
• Q: check Parseval’s theorem

details
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Arithmetic examples
• Impulse function: x = { 0, 1, 0, 0} (n = 4)
• X0=?
• A: X0 = 1/sqrt(4) * 1* exp(-j 2 p 0 / n ) = 

1/2
• X1= -1/2 j
• X2= - 1/2
• X3= + 1/2 j
• Q: (Amplitude) spectrum?

details

79
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Arithmetic examples
• Impulse function: x = { 0, 1, 0, 0} (n = 4)
• X0=?
• A: X0 = 1/sqrt(4) * 1* exp(-j 2 p 0 / n ) = 1/2
• X1= -1/2 j
• X2= - 1/2
• X3= + 1/2 j
• Q: (Amplitude) spectrum?
• A: FLAT!

80
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Arithmetic examples
• Q: What does this mean?

81
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Arithmetic examples
• Q: What does this mean?
• A: All frequencies are equally important ->

– we need n numbers in the frequency domain to 
represent just one non-zero number in the time 
domain!

– “frequency leak”

82
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)

83
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Observations
• DFT of ‘step’ function: 

x = { 0, 0, ..., 0, 1, 1, ... 1}

t

xt

84
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Observations
• DFT of ‘step’ function: 

x = { 0, 0, ..., 0, 1, 1, ... 1}

t

xt

f = 0

85
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Observations
• DFT of ‘step’ function: 

x = { 0, 0, ..., 0, 1, 1, ... 1}

t

xt

f = 0

f=1

86
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Observations
• DFT of ‘step’ function: 

x = { 0, 0, ..., 0, 1, 1, ... 1}

t

xt

f = 0

f=1
•the more frequencies, 

the better the approx.

•‘ringing’ becomes worse

•reason: discontinuities; trends

87
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Observations
• Ringing for trends: because DFT ‘sub-

consciously’ replicates the signal

t

xt

88
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Observations
• Ringing for trends: because DFT ‘sub-

consciously’ replicates the signal

t

xt
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Observations
• Ringing for trends: because DFT ‘sub-

consciously’ replicates the signal

t

xt
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original
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DC and 1st
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And 2nd

DC and 1st
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And 3rd

DC and 1st

And 2nd
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And 4th

DC and 1st

And 3rd

And 2nd
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Observations
• Q: DFT of a sinusoid, eg.

xt = 3 sin( 2 p / 4 t)
(t = 0, ... , 3)
• Q: X0 = ?
• Q: X1 = ?
• Q: X2 = ? 
• Q: X3 = ?

96
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Observations
• Q: DFT of a sinusoid, eg.

xt = 3 sin( 2 p / 4 t)
(t = 0, ... , 3)
• Q: X0 = 0
• Q: X1 = -3 j
• Q: X2 = 0 
• Q: X3 = 3j

•check ‘symmetry’
•check Parseval
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• Q: DFT of a sinusoid, eg.
xt = 3 sin( 2 p / 4 t)

(t = 0, ... , 3)
• Q: X0 = 0
• Q: X1 = -3 j
• Q: X2 = 0 
• Q: X3 = 3j

Observations

•Does this make sense?

f

Af

0 1 2
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• Shifting x in time does NOT change the 
amplitude spectrum

• eg., x = { 0 0 0 1} and x’ = { 0 1 0 0 }: 
same (flat) amplitude spectrum

• (only the phase spectrum changes)
• Useful property when we search for patterns 

that may ‘slide’

Property

99
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Summary of properties
• Spike in time: -> all frequencies

• Step/Trend: -> ringing (~ all frequencies)

• Single/dominant sinusoid: -> spike in spectrum

• Time shift -> same amplitude spectrum
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)
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DCT
Discrete Cosine Transform 
• motivation#1: DFT gives complex numbers
• motivation#2: how to avoid the ‘frequency 

leak’ of DFT on trends?

t

xt

details
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DCT
• brilliant solution to both problems: mirror 

the sequence, do DFT, and drop the 
redundant entries!

t

xt

details
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DCT
• (see Numerical Recipes for exact formulas)

details
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DCT - properties
• it gives real numbers as the result
• it has no problems with trends
• it is very good when xt and x (t+1) are 

correlated 

(thus, is used in JPEG, for image 
compression)
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)
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2-d DFT

• Definition:
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2-d DFT
• Intuition:

n1

n2

do 1-d DFT on each row

and then
1-d DFT
on each 
column
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2-d DFT

• Quiz: how do the basis functions look like?
• for f1= f2 =0
• for f1=1, f2=0
• for f1=1, f2=1
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2-d DFT

• Quiz: how do the basis functions look like?
• for f1= f2 =0   flat
• for f1=1, f2=0 wave on x; flat on y
• for f1=1, f2=1 ~ egg-carton
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2-d DFT

• Quiz: how do the basis functions look like?
• for f1= f2 =0   flat
• for f1=1, f2=0 wave on x; flat on y
• for f1=1, f2=1 ~ egg-carton
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DSP - Detailed outline
• DFT

– what
– why
– how 
– Arithmetic examples
– properties / observations
– DCT
– 2-d DFT
– Fast Fourier Transform (FFT)
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FFT
• What is the complexity of  DFT?
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FFT
• What is the complexity of  DFT?

• A: Naively, O(n2) )/2exp(*/1
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details
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FFT
• However, if n is a power of 2 (or a number 

with many divisors), we can make it 
O(n log n)

Main idea: if we know the DFT of the odd time-ticks, and of 
the even time-ticks, we can quickly compute the whole 
DFT

Details: in Num. Recipes

details
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DFT - Conclusions
• It spots periodicities (with the ‘amplitude 

spectrum’)
• can be quickly computed (O( n log n)), 

thanks to the FFT algorithm.
• standard tool in signal processing (speech, 

image etc signals)
actual mean mean+freq12

1 12 23 34 45 56 67 78 89 10
0

11
1

Freq.
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Solutions:

Goal: given a signal (eg., sales over time 
and/or space)

Q: Find patterns and/or compress

year

count

actual mean mean+freq12

A1: Fourier (DFT)

A2: Wavelets (DWT)

✔
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