15-826: Multimedia Databases and Data Mining

(Project lecture #1)
Lecture #26: Graph mining - patterns

Christos Faloutsos

1

Carnegie Mellon

Must-read Material – 1-of-2

- [Graph minining textbook] Deepayan
 Chakrabarti and Christos Faloutsos <u>Graph</u> <u>Mining: Laws, Tools and Case Studies</u>,
 Morgan Claypool, 2012
 - Part I (patterns)

15-826

(c) C. Faloutsos, 2019

2

Must-read Material 2-of-2

- Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On Power-Law Relationships of the Internet Topology, SIGCOMM 1999.
- R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World Wide Web Nature, 401, 130-131 (1999).
- Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47 (2002).
- Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005, Chicago, IL, USA

15-826

(c) C. Faloutsos, 2019

3

3

Carnegie Mellon

Problem

• Are real graphs random?

15-826

Copyright: C. Faloutsos (2019)

4

Conclusions • Are real graphs random? • NO! - Static patterns • Small diameters • Skewed degree distribution • Shrinking diameters - Weighted - Time-evolving

Conclusions

• Are real graphs random?

• NO!

- Static patterns

• Small diameter Laws

• Sker power laws

• Take logarithms

• Take logarithms

Main outline

- Introduction
- Indexing
- Mining
 - Graphs patterns
 - Graphs generators and tools
 - Association rules

15-826

(c) C. Faloutsos, 2019

7

Carnegie Mellon

Outline

- → Introduction Motivation
 - Problem: Patterns in graphs
 - Problem#2: Scalability
 - Conclusions

15-826

(c) C. Faloutsos, 2019

8



Graphs - why should we care? • IR: bi-partite graphs (doc-terms) $D_1 = T_1$ $D_N = T_1$ • web: hyper-text graph • ... and more:

Graphs - why should we care?

- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
-

15-826

(c) C. Faloutsos, 2019

11

11

Carnegie Mellon

Outline

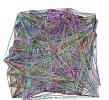
- Introduction Motivation
- → Problem: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
 - Problem#2: Scalability
 - Conclusions

15-826

(c) C. Faloutsos, 2019

12

Problem #1 - network and graph mining



- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?

15-826

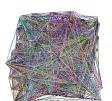
(c) C. Faloutsos, 2019

13

13

Carnegie Mellon

Problem #1 - network and graph mining



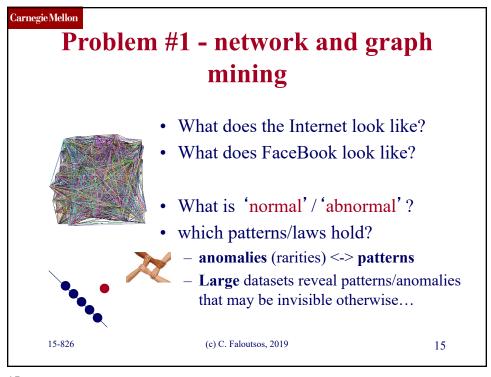
- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?
 - anomalies (rarities) <-> patterns

•

15-826

(c) C. Faloutsos, 2019

14



Carnegie Mellon

Graph mining

• Are real graphs random?

15-826 (c) C. Faloutsos, 2019 16

Laws and patterns

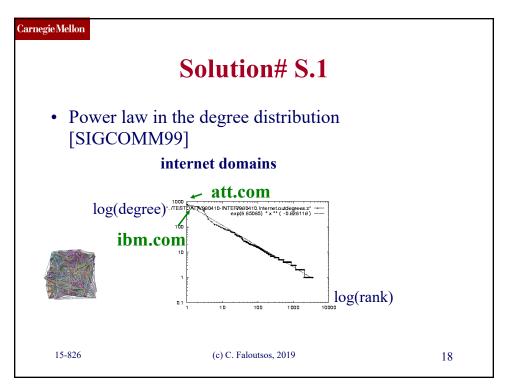
(c) C. Faloutsos, 2019

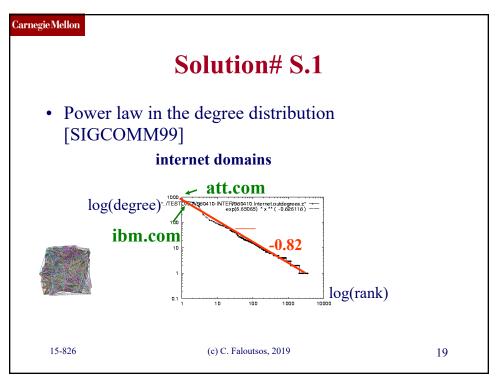
- Are real graphs random?
- A: NO!!
 - Diameter ('6 degrees', 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns

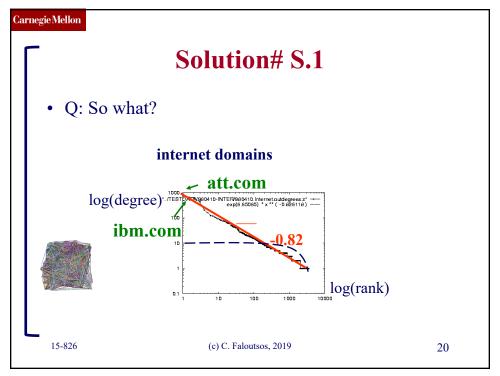
15-826

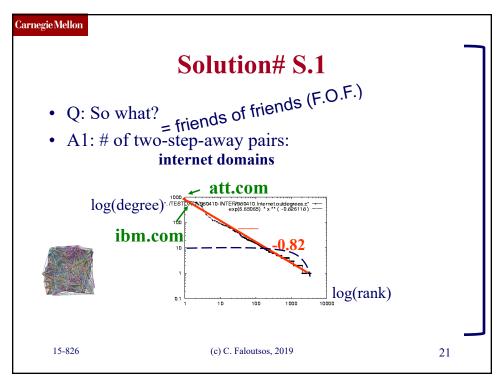
17

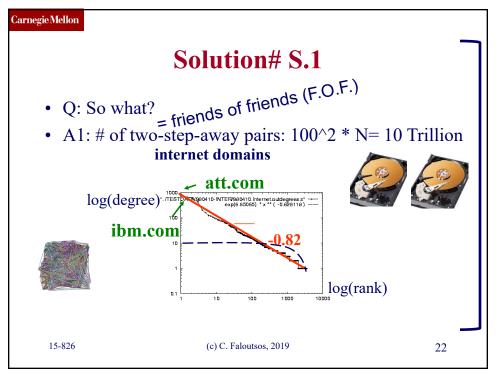
17

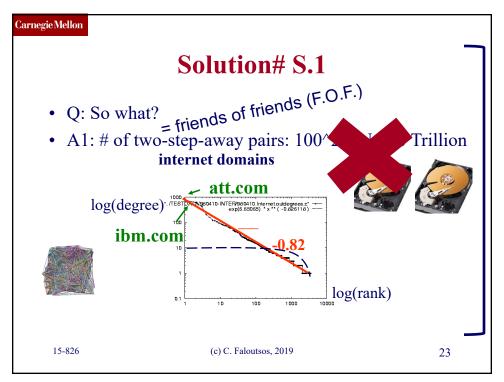


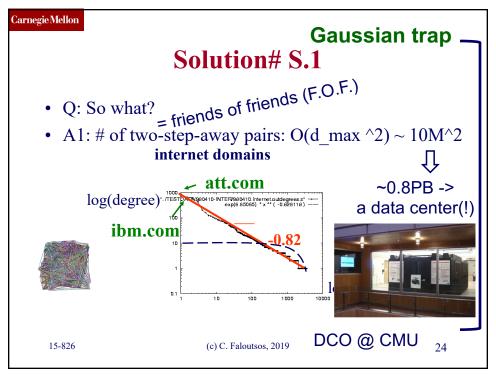


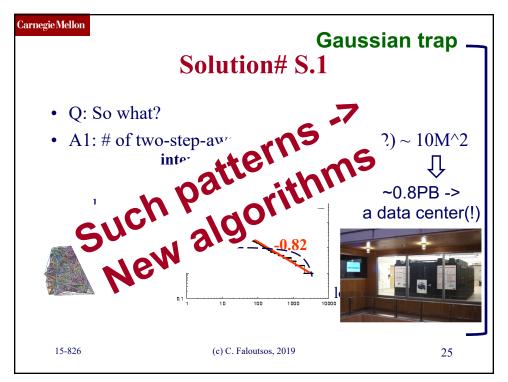


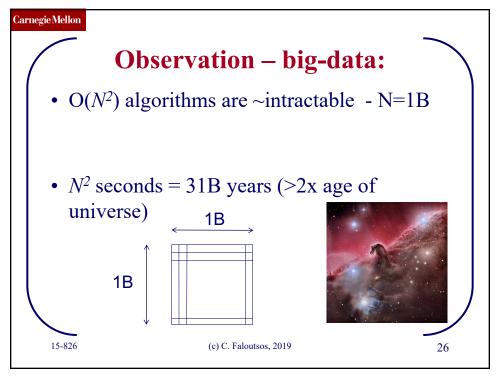


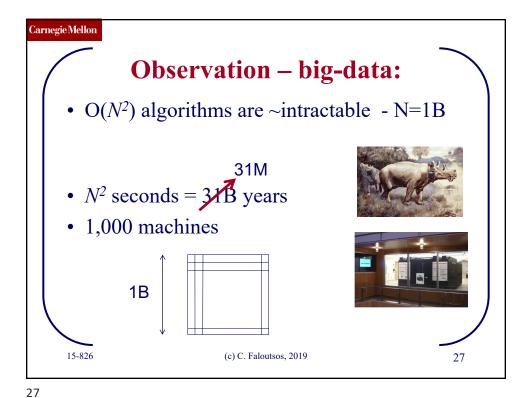


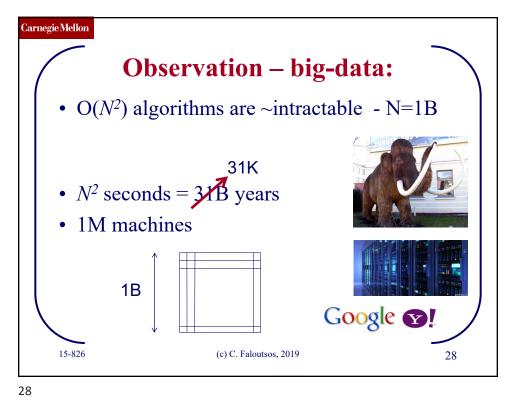


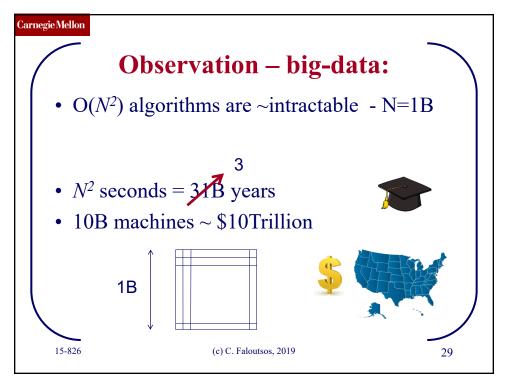


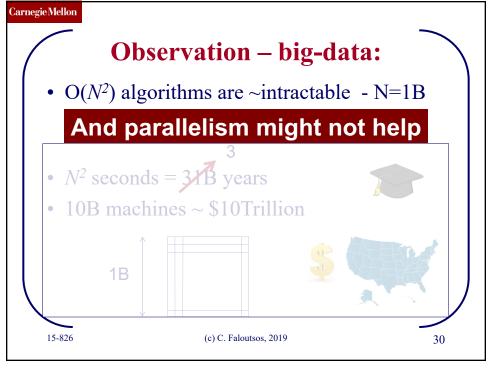


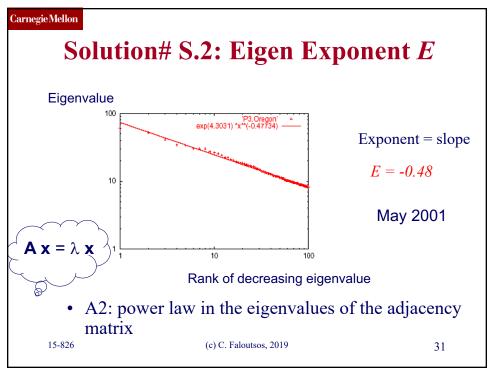


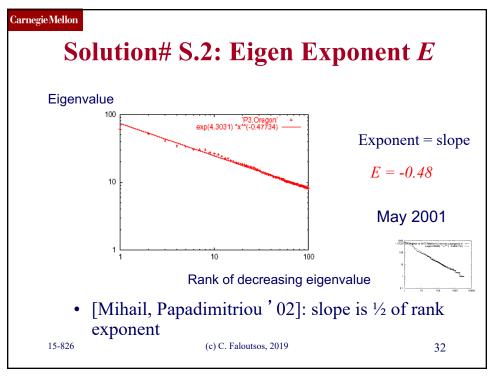








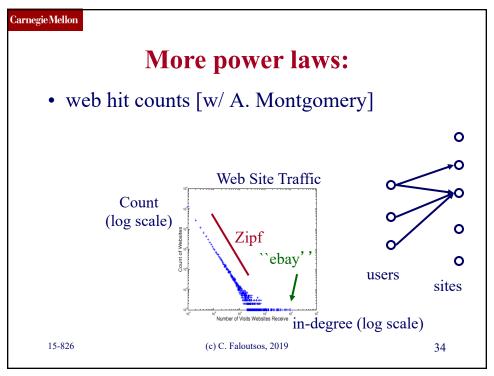


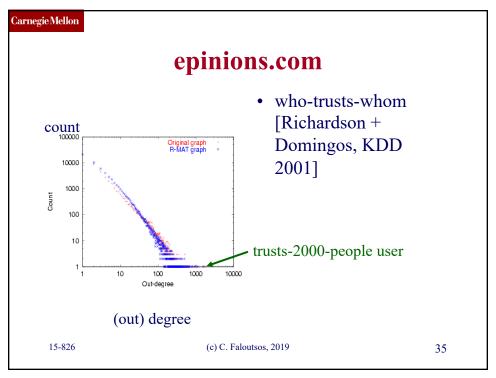


But:
How about graphs from other domains?

15-826 (c) C. Faloutsos, 2019 33

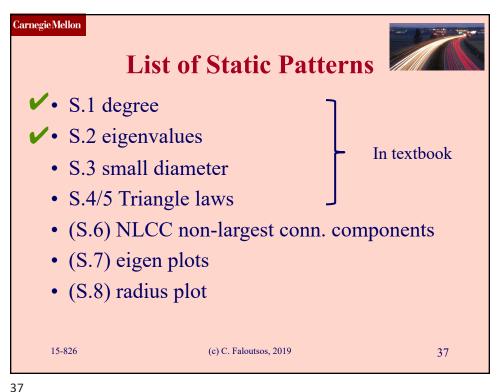
33





And numerous more # of sexual contacts Income [Pareto] —' 80-20 distribution' Duration of downloads [Bestavros+] Duration of UNIX jobs ('mice and elephants') Size of files of a user "Black swans' (c) C. Faloutsos, 2019

36



S.3 small diameters

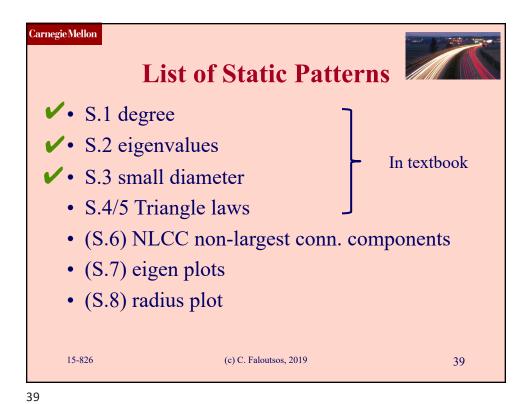
- Small diameter (~ constant!)
 - six degrees of separation / 'Kevin Bacon'
 - small worlds [Watts and Strogatz]

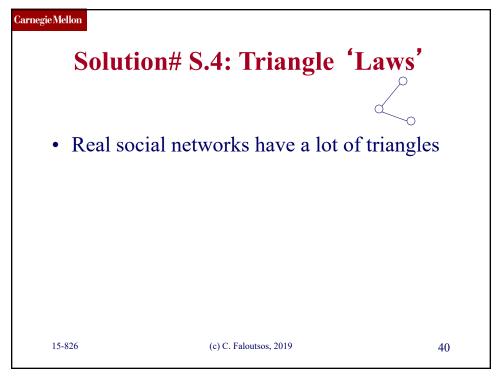
38

(c) C. Faloutsos, 2019

38

15-826



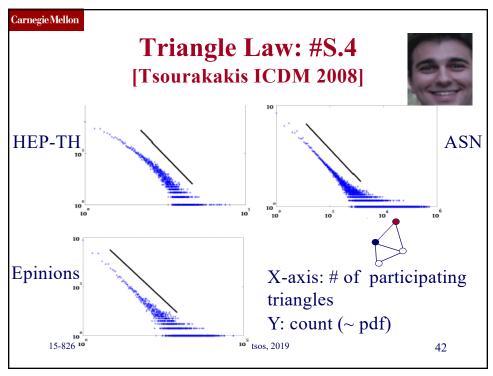


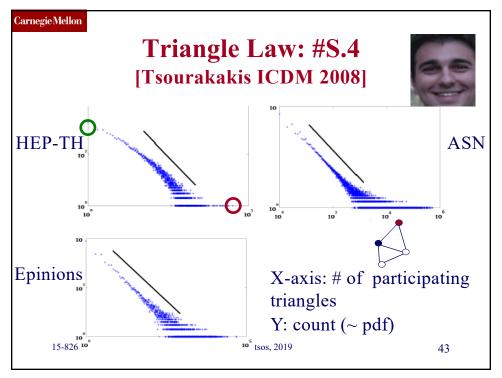
Solution# S.4: Triangle 'Laws'

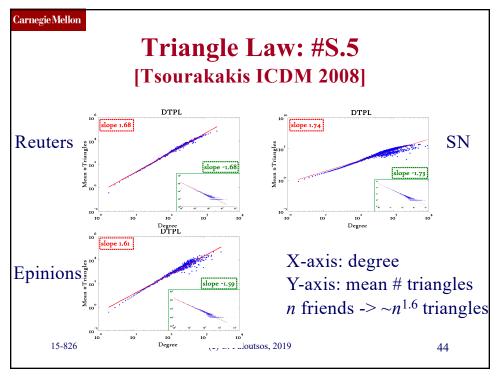
- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?

15-826 (c) C. Faloutsos, 2019 41

41







Triangle Law: Computations

[Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos) Q: Can we do that quickly?

15-826

(c) C. Faloutsos, 2019

45

details

45

Carnegie Mellon

Triangle Law: Computations

[Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)

Q: Can we do that quickly?

A: Yes!

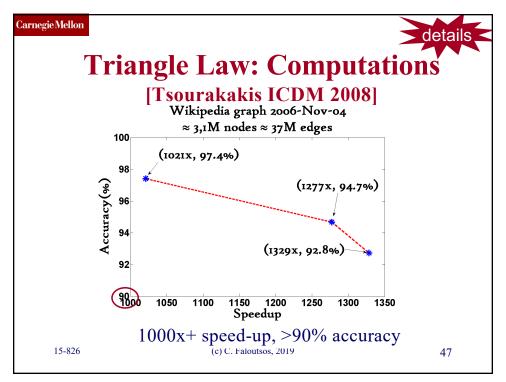
#triangles = 1/6 Sum (λ_i^3)

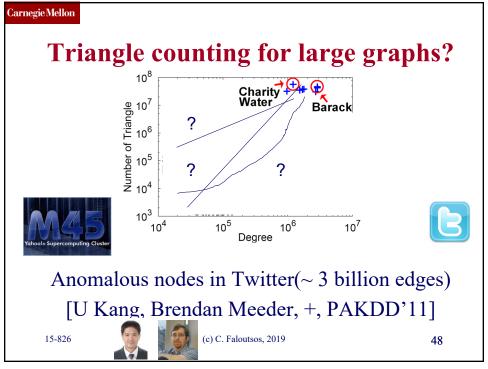
(and, because of skewness (S2), we only need the top few eigenvalues!

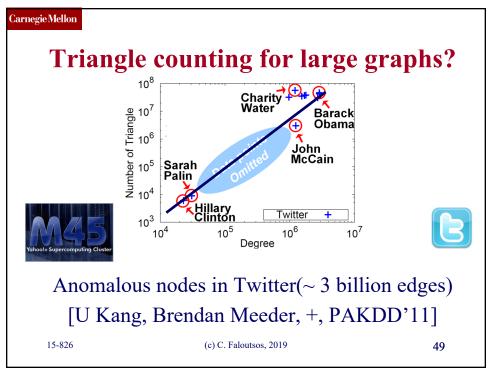
15-826

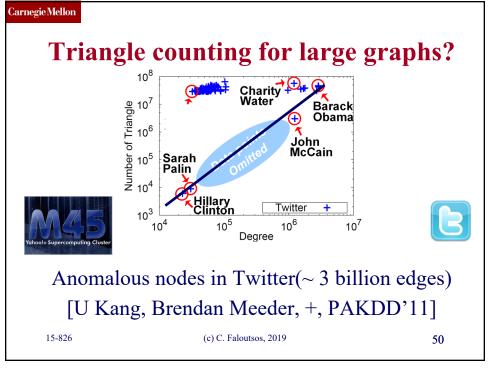
(c) C. Faloutsos, 2019

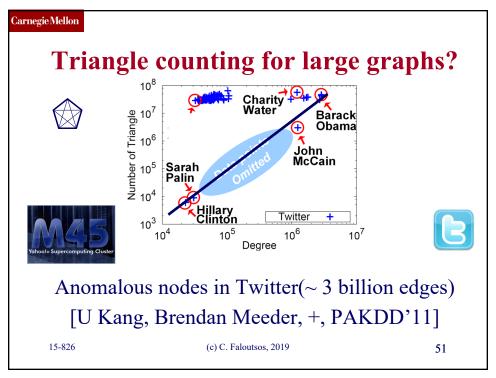
46

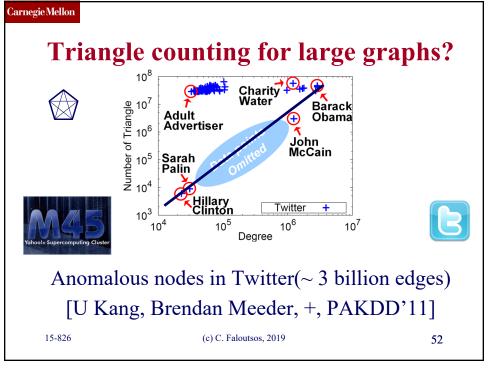


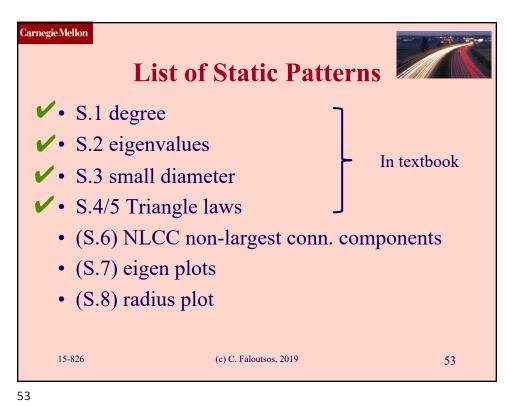












Generalized Iterated Matrix

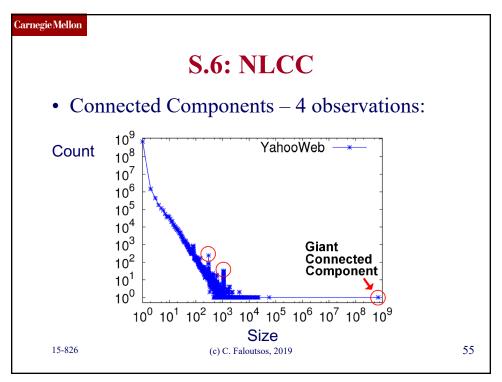
Vector Multiplication (GIMV)

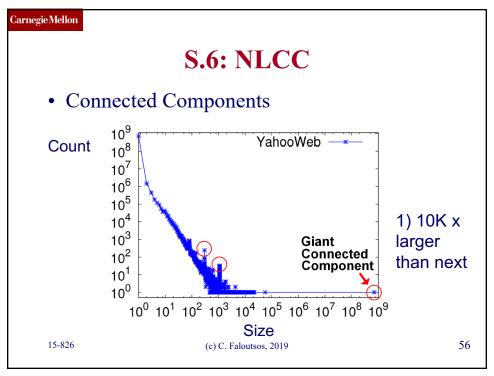
<u>PEGASUS: A Peta-Scale Graph Mining</u> <u>System - Implementation and Observations</u>. U Kang, Charalampos E. Tsourakakis,

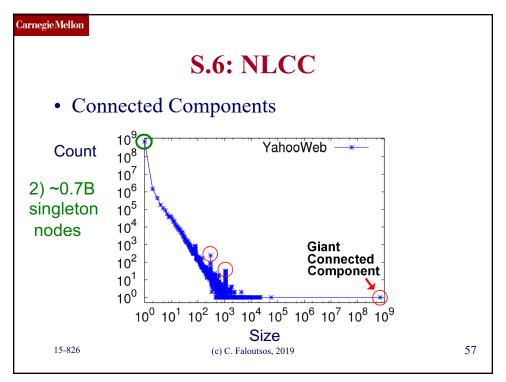
and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).

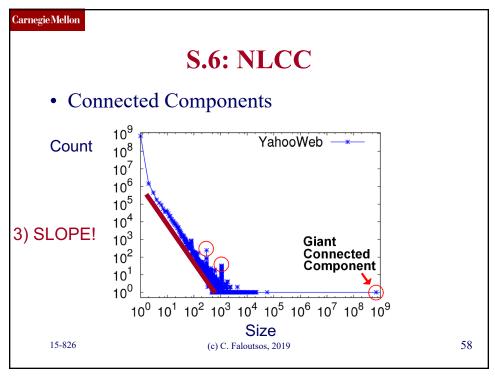
15-826 (c) C. Faloutsos, 2019

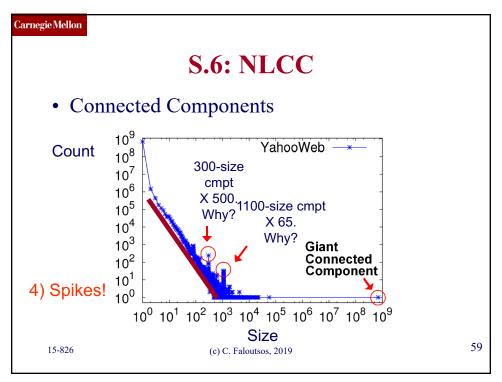
54

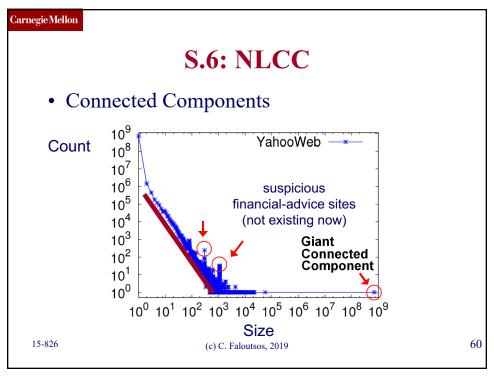


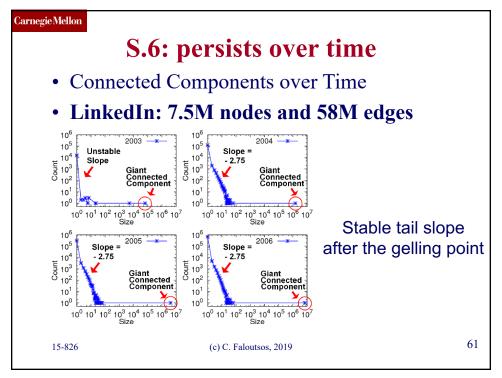


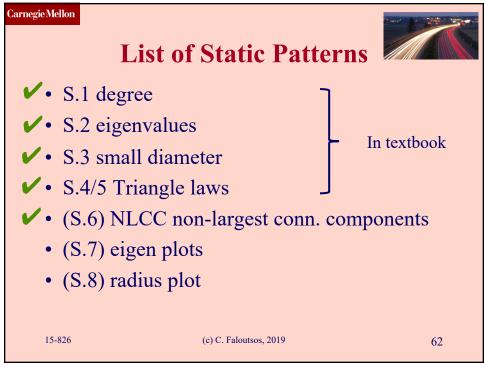












EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: *EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs*, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

Useful for fraud detection!

15-826 (c) C. Faloutsos, 2019 63

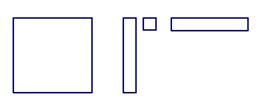
63

Carnegie Mellon

EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

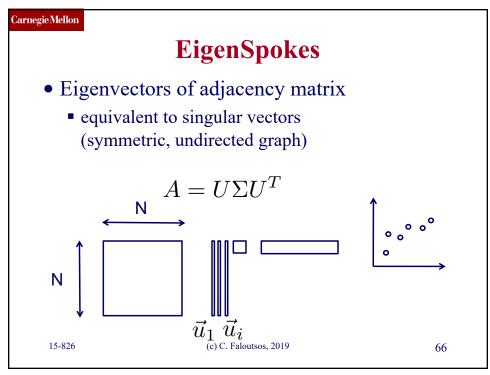
$$A = U\Sigma U^T$$

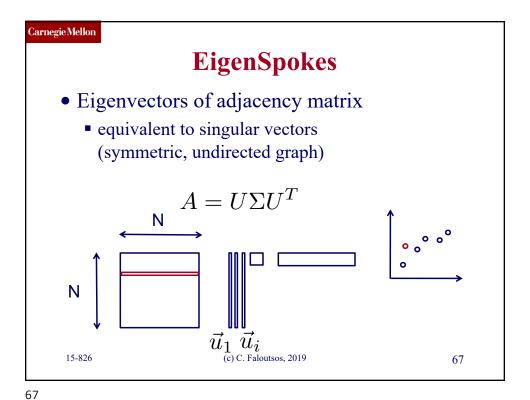


15-826 (c) C. Faloutsos, 2019 64

EigenSpokes • Eigenvectors of adjacency matrix • equivalent to singular vectors (symmetric, undirected graph) $A = U\Sigma U^{T}$ $\vec{u}_{1}\vec{u}_{i}$ (c) C. Faloutsos, 2019 • EigenSpokes • EigenVectors of adjacency matrix • $\vec{u}_{1}\vec{u}_{2}\vec{u}_{3}\vec{u}_{4}\vec{u}_{5}\vec{u}$

65





EigenSpokes

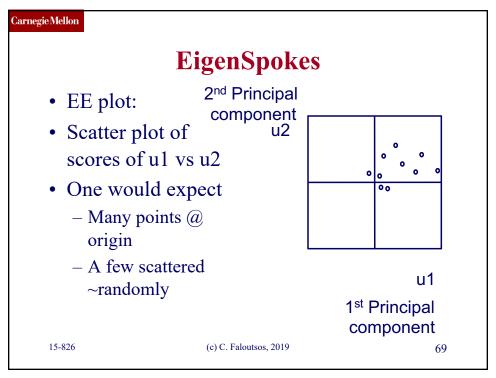
• Eigenvectors of adjacency matrix
• equivalent to singular vectors (symmetric, undirected graph) $A = U\Sigma U^{T}$ $\vec{u}_1 \vec{u}_i$ (c) C. Faloutsos, 2019

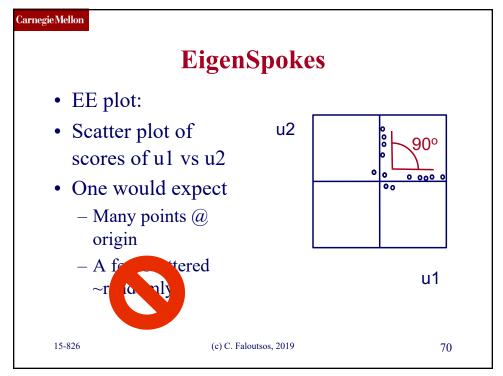
EigenSpokes

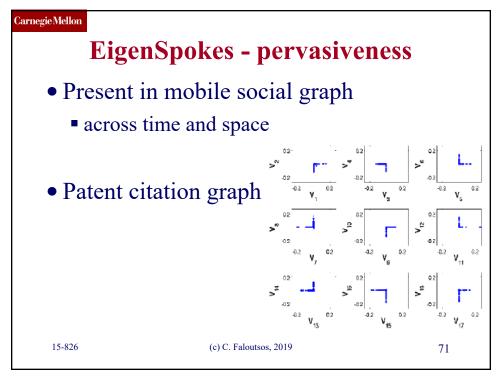
• EigenSpokes

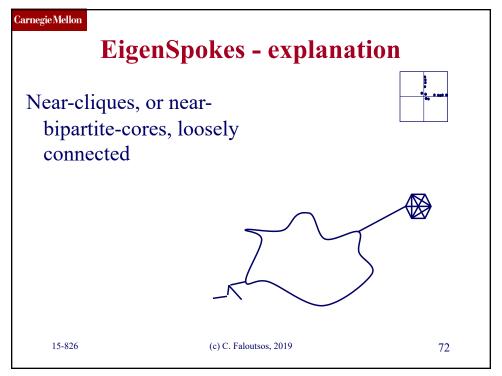
• EigenVectors of adjacency matrix $\vec{u}_1 \vec{u}_i$ (c) C. Faloutsos, 2019

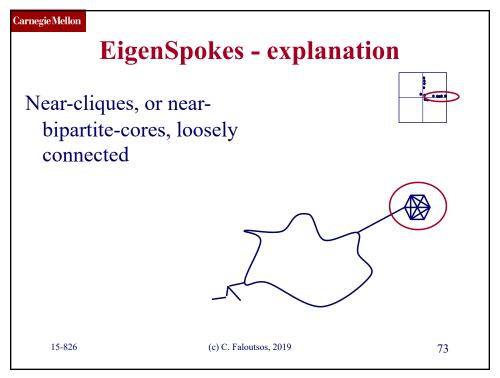
68

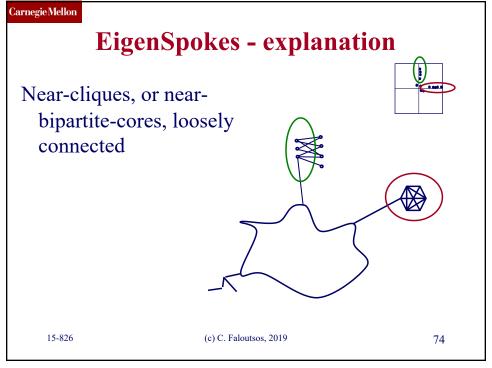


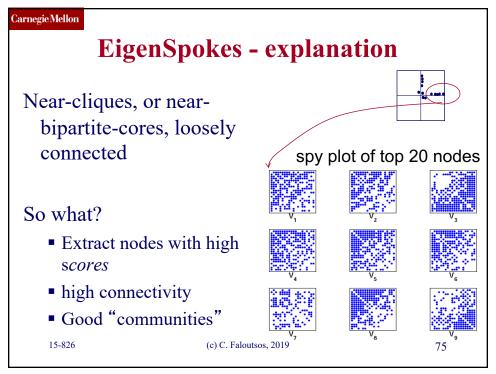


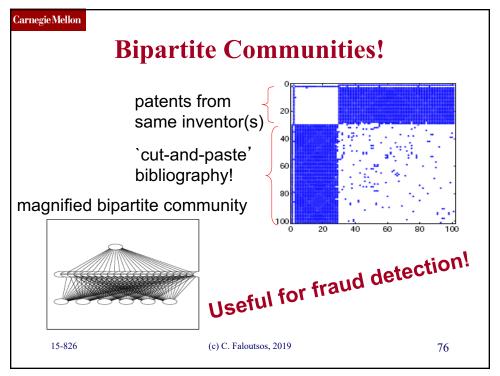


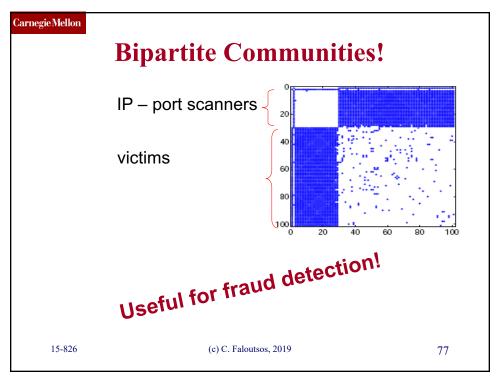


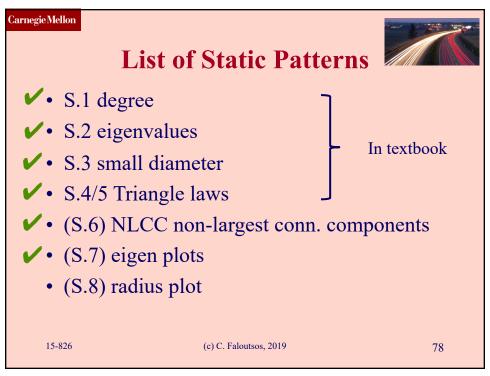












Carnegie Mellon

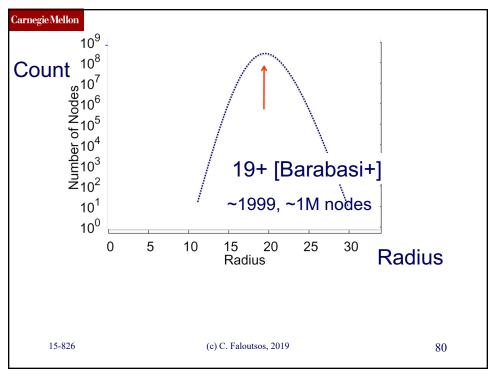
HADI for diameter estimation

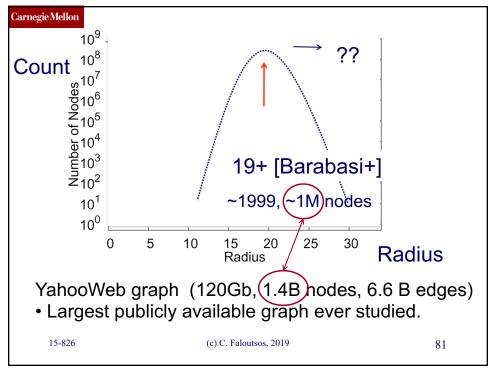
- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs **O(N**2)** space and up to O(N**3) time **prohibitive** (N~1B)
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster

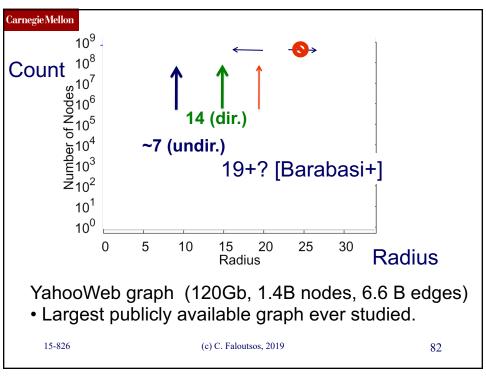
15-826 (c) C. Faloutsos, 2019

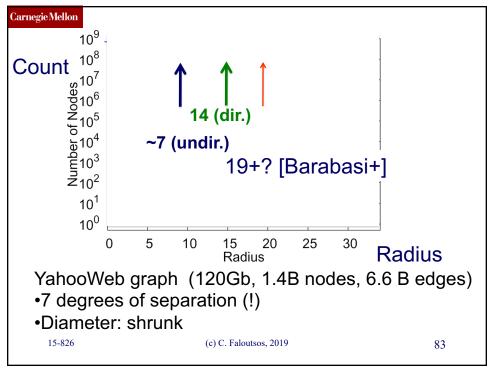
79

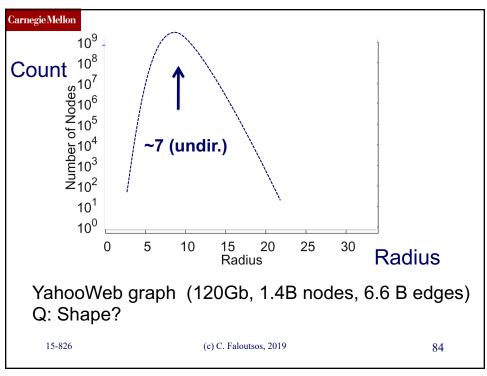
79

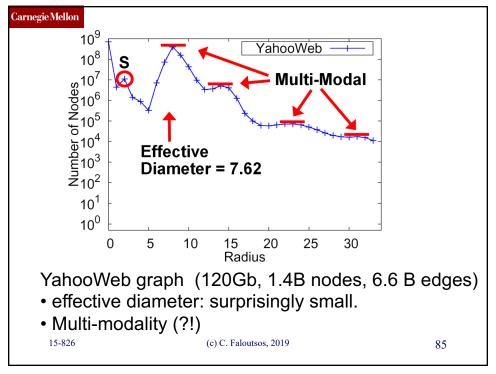


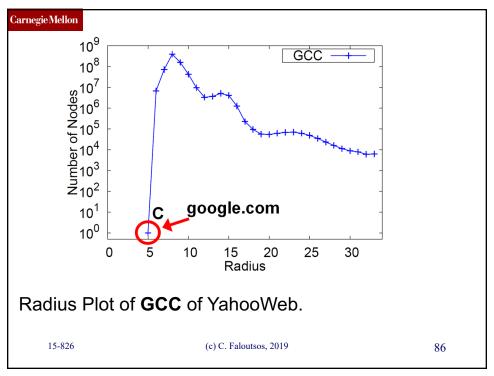


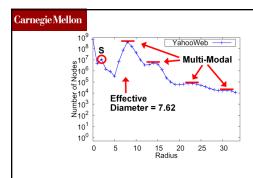










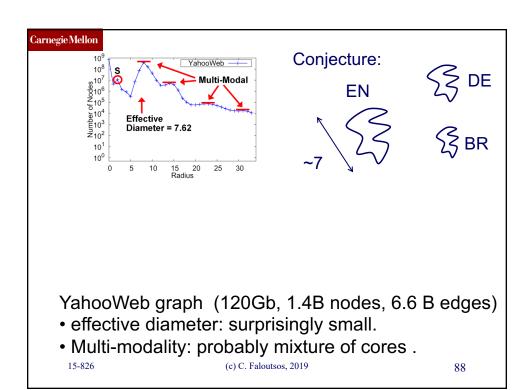


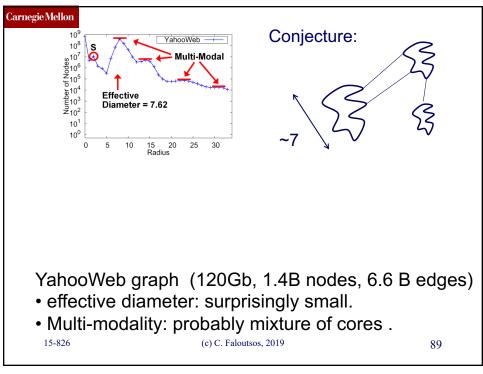
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

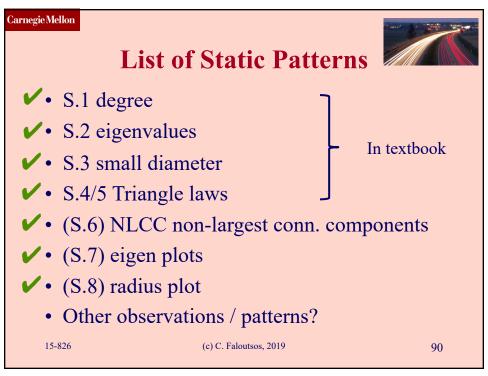
- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

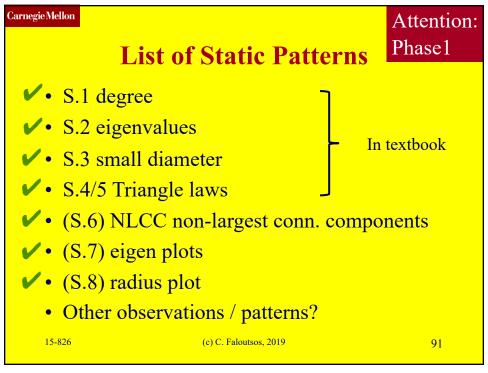
15-826 (c) C. Faloutsos, 2019 87

87

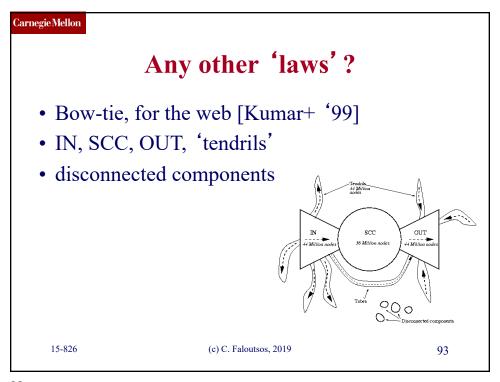


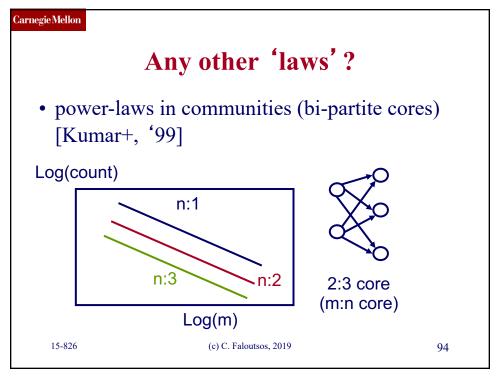






Any other 'laws'? Yes! • Small diameter (~ constant!) — — six degrees of separation / 'Kevin Bacon' — small worlds [Watts and Strogatz]





Any other 'laws'? • "Jellyfish" for Internet [Tauro+ '01] • core: ~clique • ~5 concentric layers • many 1-degree nodes

95

Outline Introduction — Motivation Problem: Patterns in graphs — Static graphs — degree, diameter, eigen, — Triangles Weighted graphs — Time evolving graphs — Problem#2: Scalability Conclusions 15-826 (c) C. Faloutsos, 2019 96

Carnegie Mellon

Observations on weighted graphs?

• A: yes - even more 'laws'!

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

15-826

(c) C. Faloutsos, 2019

97

97

Carnegie Mellon

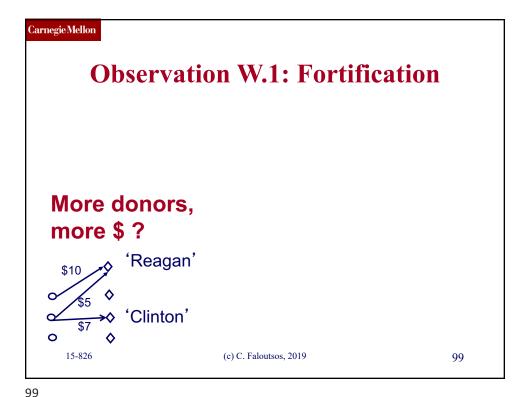
Observation W.1: Fortification

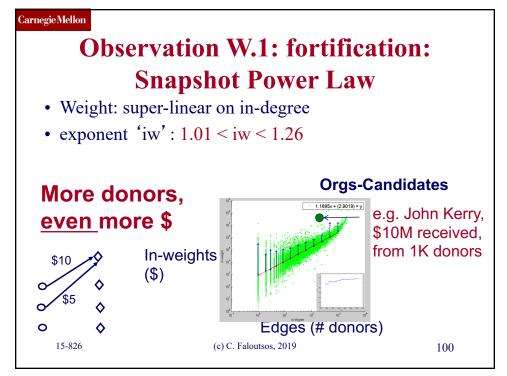
Q: How do the weights of nodes relate to degree?

15-826

(c) C. Faloutsos, 2019

98





Carnegie Mellon

Outline

- Introduction Motivation
- Problem: Patterns in graphs
 - Static graphs
 - Weighted graphs
- Time evolving graphs
- Problem#2: Scalability
- Conclusions

15-826

(c) C. Faloutsos, 2019

101

101

Carnegie Mellon

Problem: Time evolution

• with Jure Leskovec (CMU -> Stanford)

• and Jon Kleinberg (Cornell – sabb. @ CMU)

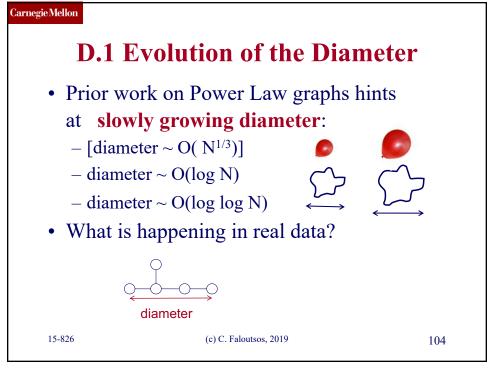
15-826

(c) C. Faloutsos, 2019

102

List of Dynamic Patterns D.1 diameter D.2 densification D.3 gelling point D.4 NLCC over time D.5 Eigenvalue over time D.6 Popularity over time D.7 phonecall duration

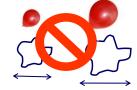
103



Carnegie Mellon

D.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - [diameter $\sim O(N^{1/3})$]
 - − diameter ~ (())
 - diameter $\sim O(\log \log N)$



- What is happening in real data?
- Diameter shrinks over time

15-826 (c) C. Faloutsos, 2019 105

105

Carnegie Mellon D.1 Diameter – "Patents" 35, diameter • Patent citation Full graph · ● - Post '85 subgraph 30 ← Post '85 subgraph, no past network Effective diameter 02 15 • 25 years of data @1999 - 2.9 M nodes 10 - 16.5 M edges 1985 1990 2000 time [years] 15-826 (c) C. Faloutsos, 2019 106



Carnegie Mellon

D.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for

$$E(t+1) = ? 2 * E(t)$$

15-826

(c) C. Faloutsos, 2019

108

Carnegie Mellon

D.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

- Q: what is your guess for E(t+1) * E(t)
- A: over-doubled!
- But obeying the "Densification Power Law"

 15-826 (c) C. Faloutsos, 2019

109

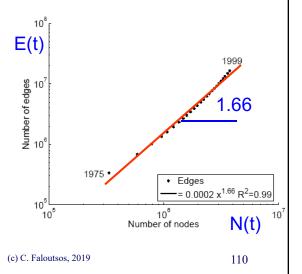
Carnegie Mellon

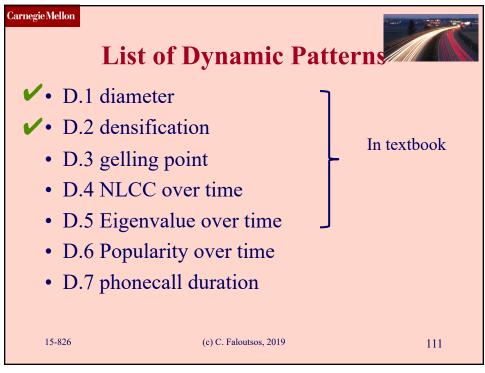
D.2 Densification – Patent Citations

- Citations among patents granted
- @1999

15-826

- 2.9 M nodes
- 16.5 M edges
- Each year is a datapoint



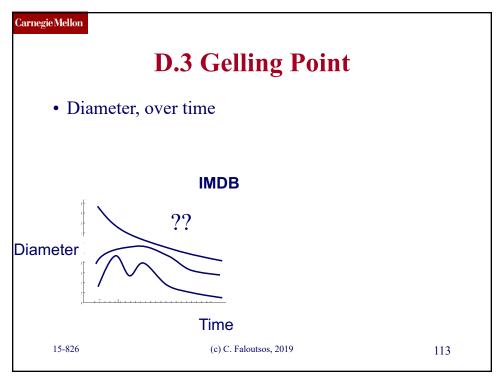


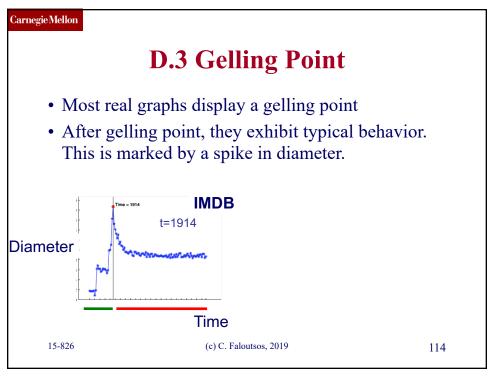
Carnegie Mellon

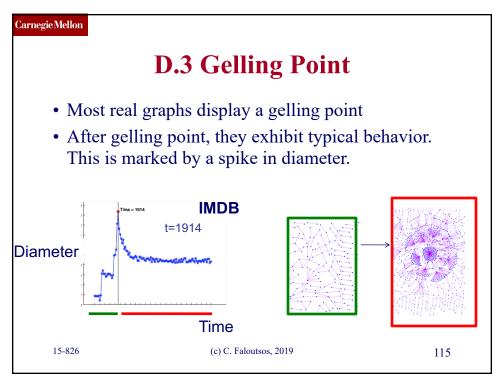
More on Time-evolving graphs

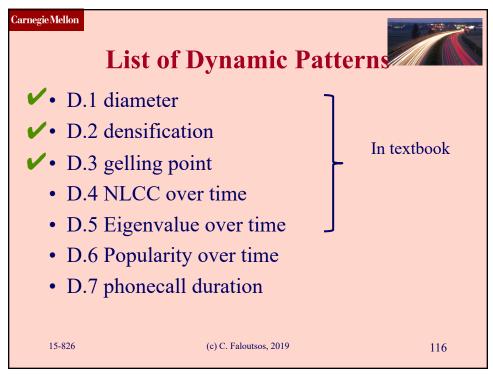
M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

15-826 (c) C. Faloutsos, 2019 112









Carnegie Mellon

Observation D.4: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?

(``NLCC' ' = non-largest conn. components)

- −Do they continue to grow in size?
- or do they shrink?
- or stabilize?

15-826

(c) C. Faloutsos, 2019

117

117

Carnegie Mellon

Observation D.4: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?

(``NLCC' ' = non-largest conn. components)

- −Do they continue to grow in size?
- or do they shrink?
- or stabilize?

15-826

(c) C. Faloutsos, 2019

118

Carnegie Mellon

Observation D.4: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?

(``NLCC' ' = non-largest conn. components)

YES – Do they continue to grow in size?

YES – or do they shrink?

YES – or stabilize?

15-826

(c) C. Faloutsos, 2019

119

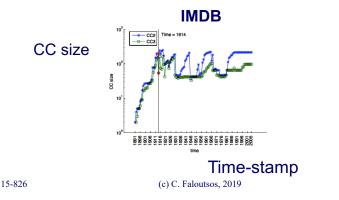
120

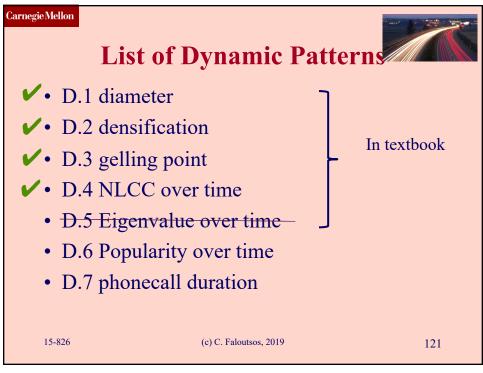
119

Carnegie Mellon

Observation D.4: NLCC behavior

• After the gelling point, the GCC takes off, but NLCC's remain ~constant (actually, **oscillate**).





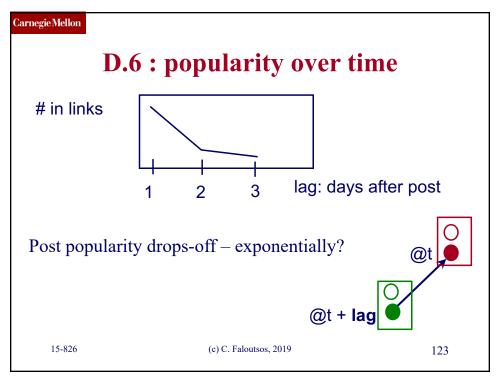
Carnegie Mellon

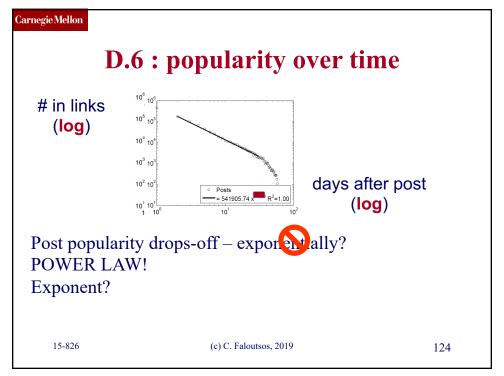
Timing for Blogs

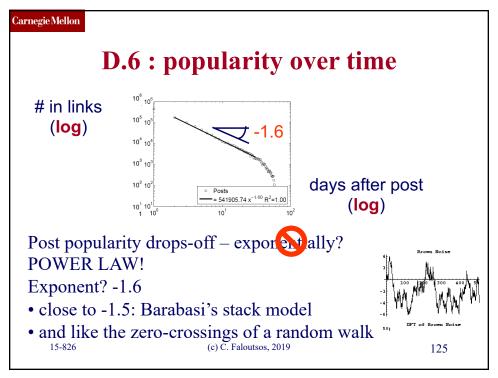
Cascading Behavior in Large Blog Graphs: Patterns and a model

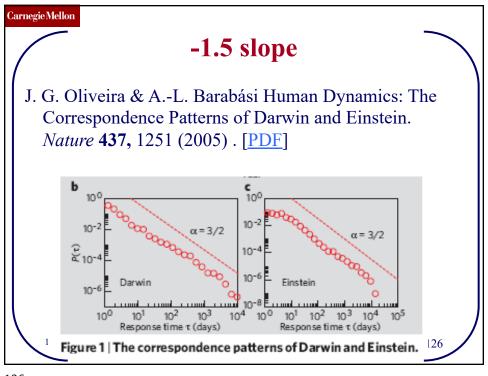
Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie Glance, Matthew Hurst SDM'07

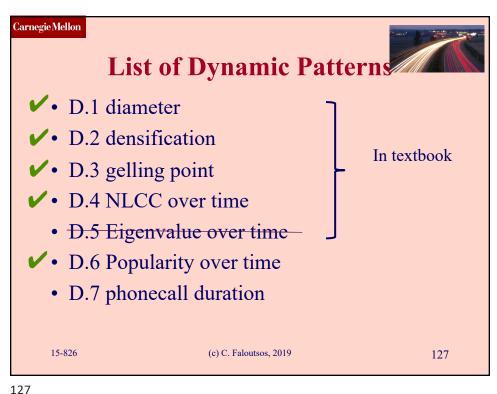
15-826 (c) C. Faloutsos, 2019 122











12/

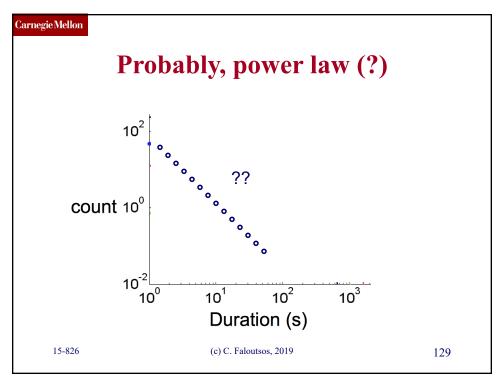
Carnegie Mellon

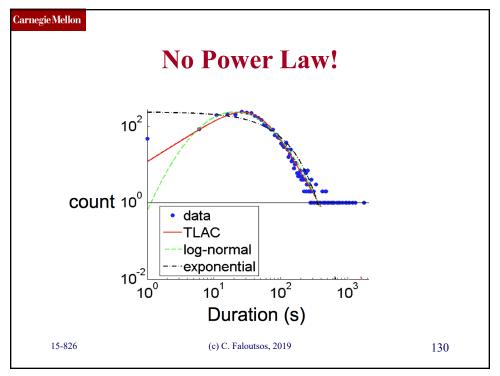
D.7: duration of phonecalls

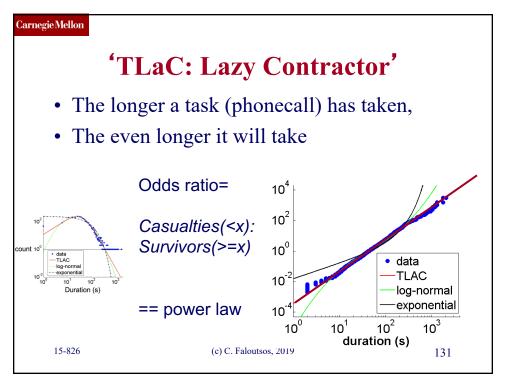
Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

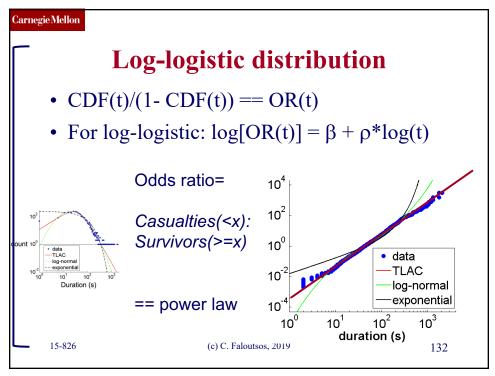
Pedro O. S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, Antonio A. F. Loureiro PKDD 2010

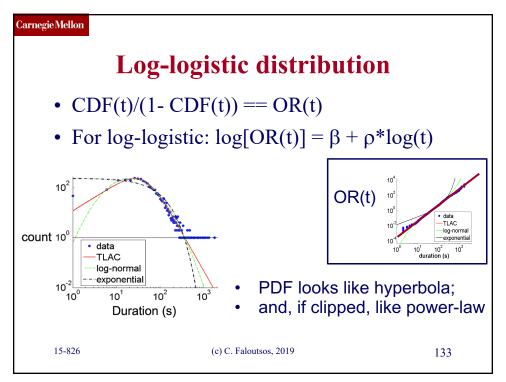
15-826 (c) C. Faloutsos, 2019 128

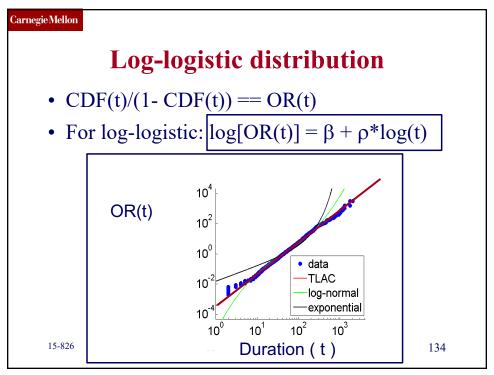


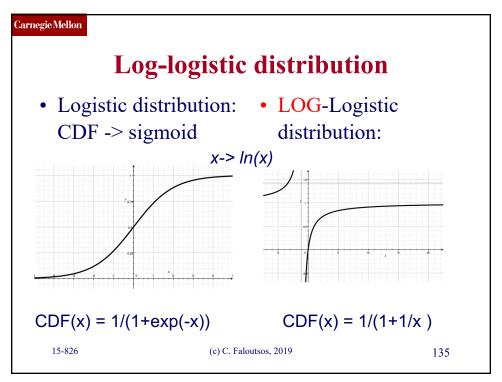


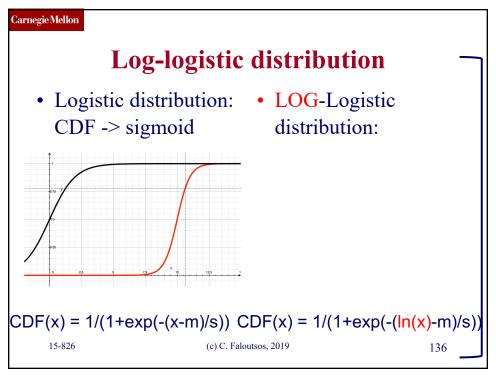


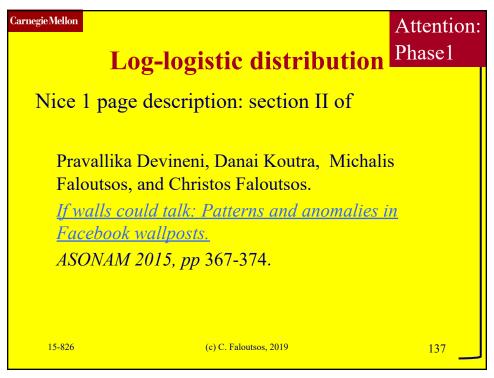


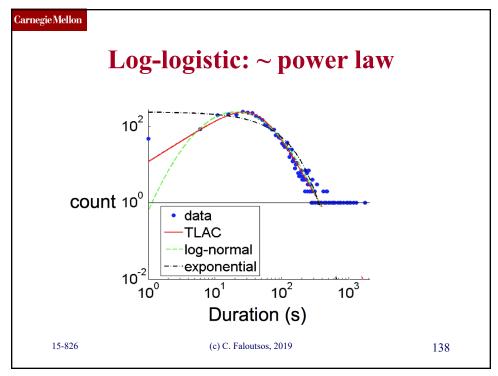


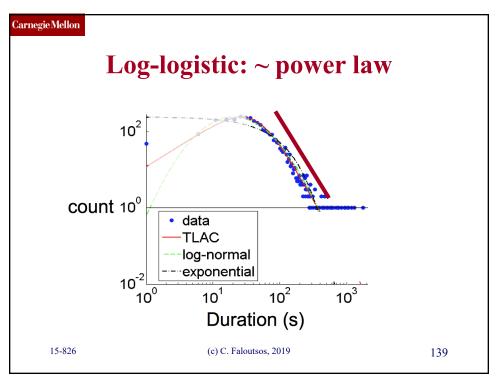












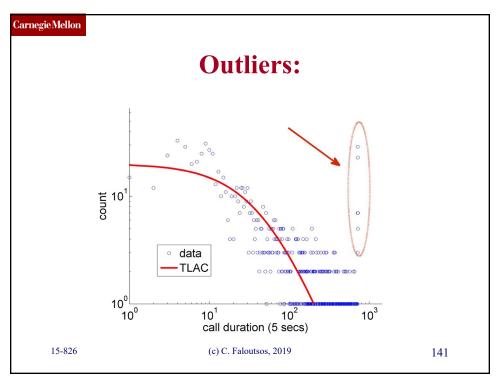
Carnegie Mellon

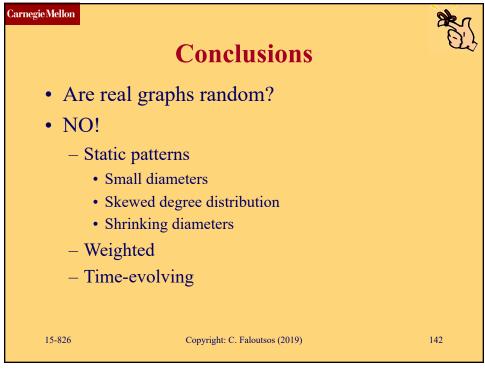
Data Description

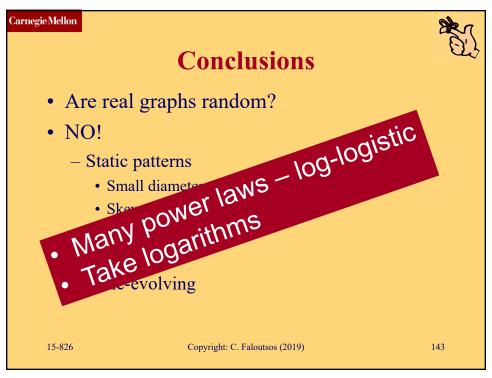
- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC distribution ('talkative': >30 calls)

15-826 (c) C. Faloutsos, 2019

140







Carnegie Mellon

Next lecture: • Anomaly detection tools (OddBall, etc)

Copyright: C. Faloutsos (2019)

144

144

15-826