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15-826: Multimedia Databases 
and Data Mining

Lecture #27: Graph mining -
Generators & tools

Christos Faloutsos
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Must-read material (1 of 2)

Fully Automatic Cross-Associations,
by D. Chakrabarti, S. Papadimitriou, D. 
Modha and C. Faloutsos, in KDD 2004 
(pages 79-88), Washington, USA
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Must-read material (2 of 2)

J. Leskovec, D. Chakrabarti, J. Kleinberg, and 
C. Faloutsos, Realistic, Mathematically 
Tractable Graph Generation and 
Evolution, Using Kronecker 
Multiplication, in PKDD 2005, Porto, 
Portugal 
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Main outline

• Introduction
• Indexing
• Mining

– Graphs – patterns
– Graphs – generators and tools
– Association rules
– …
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http://www.cs.cmu.edu/~christos/PUBLICATIONS/pkdd05-kronecker.pdf
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Detailed outline

• Graphs – generators
– Erdos-Renyi
– Other generators
– Kronecker

• Graphs - tools
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Problem

• Q: How to generate realistic graphs?
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Answer:

• Q: How to generate realistic graphs?
• A: self-similarity – ‘Kronecker’ graphs
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Generators

• How to generate random, realistic graphs?
– Erdos-Renyi model: beautiful, but unrealistic
– degree-based generators
– process-based generators
– recursive/self-similar generators

15-826 Copyright (c) 2019 C. Faloutsos
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Erdos-Renyi

• random graph – 100 
nodes, avg degree = 2

• Fascinating properties 
(phase transition)

• But: unrealistic 
(Poisson degree 
distribution != power 
law)

15-826 Copyright (c) 2019 C. Faloutsos
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E-R model & Phase transition
• vary avg degree D
• watch Pc =

Prob( there is a giant 
connected component)

• How do you expect it 
to be?

D

Pc

0

1
??
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E-R model & Phase transition
• vary avg degree D
• watch Pc =

Prob( there is a giant 
connected component)

• How do you expect it 
to be?

D

Pc

0

1

N=10^3
N->infty

D0
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Degree-based

• Figure out the degree distribution (eg., 
‘Zipf’)

• Assign degrees to nodes
• Put edges, so that they match the original 

degree distribution

15-826 Copyright (c) 2019 C. Faloutsos
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Process-based

• Barabasi; Barabasi-Albert: Preferential 
attachment -> power-law tails!
– ‘rich get richer’

• [Kumar+]: preferential attachment + 
mimick
– Create ‘communities’

15-826 Copyright (c) 2019 C. Faloutsos
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Process-based (cont’d)

• [Fabrikant+, ‘02]: H.O.T.: connect to 
closest, high connectivity neighbor

• [Pennock+, ‘02]: Winner does NOT take all

15-826 Copyright (c) 2019 C. Faloutsos
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Detailed outline

• Graphs – generators
– Erdos-Renyi
– Other generators
– Kronecker

• Graphs - tools
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Recursive generators

• (RMAT [Chakrabarti+,’04])
• Kronecker product

15-826 Copyright (c) 2019 C. Faloutsos
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Wish list for a generator:
• Power-law-tail in- and out-degrees
• Power-law-tail scree plots
• shrinking/constant diameter
• Densification Power Law
• communities-within-communities
Q: how to achieve all of them?
A: Kronecker matrix product [Leskovec+05b]

15-826 Copyright (c) 2019 C. Faloutsos
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Graph gen.: Problem dfn
• Given a growing graph with count of nodes N1, 

N2, …
• Generate a realistic sequence of graphs that will 

obey all the patterns 
– Static Patterns

S1 Power Law Degree Distribution
S2 Power Law eigenvalue and eigenvector distribution

Small Diameter
– Dynamic Patterns

T2 Growth Power Law (2x nodes; 3x edges)
T1 Shrinking/Stabilizing Diameters

18
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Graph Patterns

Count vs Indegree Count vs Outdegree

Power Laws

Eigenvalue vs Rank

15-826 Copyright (c) 2019 C. Faloutsos

How to match all these properties (+ small diameters, etc)?
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Hint: self-similarity
• A: RMAT/Kronecker generators

– With self-similarity, we get all power-laws, 
automatically,

– And small/shrinking diameter
– And `no good cuts’

15-826 Copyright (c) 2019 C. Faloutsos 20

R-MAT: A Recursive Model for Graph Mining, 
by D. Chakrabarti, Y. Zhan and C. Faloutsos, 
SDM 2004, Orlando, Florida, USA
Realistic, Mathematically Tractable Graph Generation 
and Evolution, Using Kronecker Multiplication,
by J. Leskovec, D. Chakrabarti, J. Kleinberg, 
and C. Faloutsos, in PKDD 2005, Porto, Portugal 
20
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Kronecker Graphs

Intermediate stage

Adjacency matrix
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Kronecker Graphs

Intermediate stage

Adjacency matrix
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Kronecker Graphs

Intermediate stage

Adjacency matrix
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Kronecker product

N N*N N**4
15-826 Copyright (c) 2019 C. Faloutsos
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Kronecker Graphs
• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix

25
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Kronecker Graphs
• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Kronecker Graphs
• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Kronecker Graphs
• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Holes within holes;
Communities 
within communities

28



C. Faloutsos 15-826

15

15-826 Copyright (c) 2019 C. Faloutsos 29

Properties:

• We can PROVE that
– Degree distribution is multinomial ~ power law
– Diameter: constant
– Eigenvalue distribution: multinomial
– First eigenvector: multinomial

new

Self-similarity -> power laws

29
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Problem Definition
• Given a growing graph with nodes N1, N2, …
• Generate a realistic sequence of graphs that will obey all 

the patterns 
– Static Patterns

Power Law Degree Distribution
Power Law eigenvalue and eigenvector distribution
Small Diameter

– Dynamic Patterns
Growth Power Law
Shrinking/Stabilizing Diameters

• First generator for which we can prove all these 
properties

ü
ü
ü

ü
ü

30
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Impact: Graph500
• Based on RMAT (= 2x2 Kronecker)
• Standard for graph benchmarks
• http://www.graph500.org/
• Competitions 2x year, with all major 

entities: LLNL, Argonne, ITC-U. Tokyo, 
Riken, ORNL, Sandia, PSC, …

15-826 Copyright (c) 2019 C. Faloutsos 31

R-MAT: A Recursive Model for Graph Mining, 
by D. Chakrabarti, Y. Zhan and C. Faloutsos, 
SDM 2004, Orlando, Florida, USA

To iterate is human, to recurse is devine

31
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Conclusions - Generators

• Erdos-Renyi: phase transition
• Preferential attachment (Barabasi)

– Power-law-tail in degree distribution
• Variations
• Recursion – Kronecker graphs

– Numerous power-laws, + small diameters

15-826 Copyright (c) 2019 C. Faloutsos
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Answer:

• Q: How to generate realistic graphs?
• A: self-similarity – ‘Kronecker’ graphs
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Resources

Generators:
• Kronecker (christos@cs.cmu.edu)
• BRITE  http://www.cs.bu.edu/brite/
• INET: http://topology.eecs.umich.edu/inet

15-826 Copyright (c) 2019 C. Faloutsos
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Other resources

Visualization - graph algo’s:
• Graphviz: http://www.graphviz.org/
• pajek: http://vlado.fmf.uni-

lj.si/pub/networks/pajek/

Kevin Bacon web site:        
http://www.cs.virginia.edu/oracle/

15-826 Copyright (c) 2019 C. Faloutsos
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Graph mining: 
tools

45

Main outline

• Introduction
• Indexing
• Mining

– Graphs – patterns
– Graphs – generators and tools
– Association rules
– …

15-826 Copyright (c) 2019 C. Faloutsos 46
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Detailed outline
• Graphs – generators
• Graphs – tools

– Community detection / graph partitioning
• Algo’s
• Observation: ‘no good cuts’

– Node proximity – personalized RWR
– Influence/virus propagation & immunization
– ‘Belief Propagation’ & fraud detection
– Anomaly detection

15-826 Copyright (c) 2019 C. Faloutsos 47
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Problem

• Given a graph, and k
• Break it into k (disjoint) communities

48
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Short answer

• METIS [Karypis, Kumar]

49

15-826 Copyright (c) 2019 C. Faloutsos -50

Problem

• Given a graph, and k
• Break it into k (disjoint) communities
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Problem

• Given a graph, and k
• Break it into k (disjoint) communities

k = 2

51
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Solution #1: METIS

• Arguably, the best algorithm
• Open source, at

– http://www.cs.umn.edu/~metis
• and *many* related papers, at same url
• Main idea: 

– coarsen the graph; 
– partition; 
– un-coarsen

52
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Solution #1: METIS
• G. Karypis and V. Kumar. METIS 4.0: 

Unstructured graph partitioning and sparse 
matrix ordering system. TR, Dept. of CS,  
Univ. of Minnesota, 1998.

• <and many extensions>

53
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Solution #2

(problem: hard clustering, k pieces)
Spectral partitioning:
• Consider the 2nd smallest eigenvector of the 

(normalized) Laplacian

54
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Solutions #3, …

Many more ideas:
• Clustering on the A2 (square of adjacency 

matrix) [Zhou, Woodruff, PODS’04]
• Minimum cut / maximum flow [Flake+, 

KDD’00]
• …

55
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Detailed outline

• Motivation
• Hard clustering – k pieces
• Hard co-clustering – (k,l) pieces
• Hard clustering – optimal # pieces
• Soft clustering – matrix decompositions
• Observations

56
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Problem definition

• Given a bi-partite graph, and k, l
• Divide it into k row groups and l row groups
• (Also applicable to uni-partite graph)

57
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Co-clustering
• Given data matrix and the number of row 

and column groups k and l
• Simultaneously

– Cluster rows into k disjoint groups 
– Cluster columns into l disjoint groups

58
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Co-clustering

• Let X and Y be discrete random variables 
– X  and Y  take values in {1, 2, …, m} and {1, 2, …, n}
– p(X, Y)  denotes the joint probability distribution—if not 

known, it is often estimated based on co-occurrence data
– Application areas: text mining, market-basket analysis, 

analysis of browsing behavior, etc. 

• Key Obstacles in Clustering Contingency Tables 
– High Dimensionality, Sparsity, Noise
– Need for robust and scalable algorithms

Reference:
1. Dhillon et al. Information-Theoretic Co-clustering, KDD’03
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Co-clustering

Observations
• uses KL divergence, instead of L2
• the middle matrix is not diagonal

– Like in the Tucker tensor decomposition
• s/w at:
www.cs.utexas.edu/users/dml/Software/cocluster.html
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Detailed outline

• Motivation
• Hard clustering – k pieces
• Hard co-clustering – (k,l) pieces
• Hard clustering – optimal # pieces
• Soft clustering – matrix decompositions
• Observations

63
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Problem with Information 
Theoretic Co-clustering

• Number of row and column groups must be 
specified

Desiderata:

ü Simultaneously discover row and column groups

Fully Automatic: No “magic numbers”

ü Scalable to large graphs

64
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Graph partitioning

• Documents x terms
• Customers x products
• Users x web-sites

65
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Graph partitioning

• Documents x terms
• Customers x products
• Users x web-sites

• Q: HOW MANY 
PIECES?

66
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Graph partitioning

• Documents x terms
• Customers x products
• Users x web-sites

• Q: HOW MANY 
PIECES?

• A: MDL/ compression

67
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Cross-association

Desiderata:

ü Simultaneously discover row and column groups

ü Fully Automatic: No “magic numbers”

ü Scalable to large matrices

Reference:
1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD’04
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What makes a cross-association 
“good”?

versus

Column groups Column groups

R
ow

 g
ro

up
s

R
ow

 g
ro

up
s

Why is this 
better?
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What makes a cross-association 
“good”?

versus

Column groups Column groups

R
ow

 g
ro

up
s

R
ow

 g
ro

up
s

Why is this 
better?

simpler; easier to describe
easier to compress!

70
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What makes a cross-association 
“good”?

Problem definition: given an encoding scheme
• decide on the # of col. and row groups k and l
• and reorder rows and columns,
• to achieve best compression

71
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Main Idea

sizei * H(xi) + Cost of describing 
cross-associations

Code Cost Description 
Cost

ΣiTotal Encoding Cost =

Good 
Compression

Better 
Clustering

Minimize the total cost (# bits)

for lossless compression

details

72
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Algorithm

k = 5 row
 groups

k=1, 
l=2

k=2, 
l=2

k=2, 
l=3

k=3, 
l=3

k=3, 
l=4

k=4, 
l=4

k=4, 
l=5

l = 5 col groups

73
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Experiments

“CLASSIC”

• 3,893 documents

• 4,303 words

• 176,347 “dots”

Combination of 3 sources:

• MEDLINE (medical)

• CISI (info. retrieval)

• CRANFIELD (aerodynamics)

D
oc

um
en

ts

Words
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Experiments

“CLASSIC” graph of documents & words: 
k=15, l=19

D
oc

um
en

ts

Words
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Experiments

“CLASSIC” graph of documents & words: 
k=15, l=19

MEDLINE
(medical)

insipidus, alveolar, aortic, death, 
prognosis, intravenous

blood, disease, clinical, cell, 
tissue, patient

76
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Experiments

“CLASSIC” graph of documents & words: 
k=15, l=19

CISI
(Information Retrieval)

providing, studying, records, 
development, students, rules

abstract, notation, works, 
construct, bibliographies

MEDLINE
(medical)

77
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Experiments

“CLASSIC” graph of documents & words: 
k=15, l=19

CRANFIELD 
(aerodynamics)

shape, nasa, leading, 
assumed, thin

CISI
(Information Retrieval)

MEDLINE
(medical)
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Experiments

“CLASSIC” graph of documents & words: 
k=15, l=19

paint, examination, fall, 
raise, leave, based

CRANFIELD 
(aerodynamics)

CISI
(Information Retrieval)

MEDLINE
(medical)

79
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Algorithm
Code for cross-associations (matlab):

www.cs.cmu.edu/~deepay/mywww/software/CrossAssociations-01-
27-2005.tgz

Variations and extensions:
• ‘Autopart’ [Chakrabarti, PKDD’04]
• www.cs.cmu.edu/~deepay
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Algorithm
• Hadoop implementation [ICDM’08]

Spiros Papadimitriou, Jimeng Sun: DisCo: Distributed Co-clustering with Map-Reduce: 
A Case Study towards Petabyte-Scale End-to-End Mining. ICDM 2008: 512-521

81

15-826 Copyright (c) 2019 C. Faloutsos 82

Detailed outline

• Motivation
• Hard clustering – k pieces
• Hard co-clustering – (k,l) pieces
• Hard clustering – optimal # pieces
• (Soft clustering – matrix decompositions

– PCA, ICA, non-negative matrix factorization, 
…)

• Observations
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Detailed outline

• Motivation
• Hard clustering – k pieces
• Hard co-clustering – (k,l) pieces
• Hard clustering – optimal # pieces
• (Soft clustering)
• Observations
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Observation #1

• Skewed degree distributions – there are 
nodes with huge degree (>O(10^4), in 
facebook/linkedIn popularity contests!)

• TRAP: ‘find all pairs of nodes, within 2 
steps from each other’

1M

… Gaussian trap
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Observation #2

• TRAP: shortest-path between two nodes
• (cheat: look for 2, at most 3-step paths)
• Why:

– If they are close (within 2-3 steps): solved
– If not, after ~6 steps, you’ll have ~ the whole 

graph, and the path won’t be very meaningful, 
anyway.

…
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Observation #3

• Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+’04], 
[Leskovec+,’08]
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Observation #3

• Maybe there are no good cuts: ``jellyfish’’ 
shape [Tauro+’01], [Siganos+,’06], strange 
behavior of cuts [Chakrabarti+,’04], 
[Leskovec+,’08]

? ?
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Jellyfish model [Tauro+]

…

A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos, 
M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L Tauro, 
M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept. 
2006. 
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Strange behavior of min cuts

• ‘negative dimensionality’ (!)

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, 
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information 
Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. 
WWW 2008. 
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“Min-cut” plot

• Do min-cuts recursively.

log (# edges)

log (mincut-size / #edges)

N nodes

Mincut size 
= sqrt(N)
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“Min-cut” plot
• Do min-cuts recursively.

log (# edges)

log (mincut-size / #edges)

N nodes

New min-cut
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“Min-cut” plot
• Do min-cuts recursively.

log (# edges)

log (mincut-size / #edges)

N nodes

New min-cut

Slope = -0.5

For a d-dimensional 
grid, the slope is -1/d
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“Min-cut” plot

log (# edges)

log (mincut-size / #edges)

Slope = -1/d

For a d-dimensional 
grid, the slope is -1/d

log (# edges)

log (mincut-size / #edges)

For a random graph, the 
slope is 0
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“Min-cut” plot

• What does it look like for a real-world 
graph?

log (# edges)

log (mincut-size / #edges)

?
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Experiments
• Datasets:

– Google Web Graph: 916,428 nodes and 
5,105,039 edges

– Lucent Router Graph: Undirected graph of 
network routers from 
www.isi.edu/scan/mercator/maps.html; 112,969 
nodes and 181,639 edges

– User è Website Clickstream Graph: 222,704 
nodes and 952,580 edges

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, 
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy
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Experiments
• Used the METIS algorithm [Karypis, Kumar, 

1995]

log (# edges)

lo
g 
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/ #
ed
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• Google Web graph

• Values along the y-axis 
are averaged

• We observe a “lip” for 
large edges

• Slope of -0.4, 
corresponds to a 2.5-
dimensional grid!

Slope~ -0.4
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Experiments
• Used the METIS algorithm [Karypis, Kumar, 

1995]

log (# edges)
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• Similarly, for 

• Lucent routers

• clickstream

-0.57; -0.45
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Conclusions – Practitioner’s guide

• Hard clustering – k pieces
• Hard co-clustering – (k,l) pieces
• Hard clustering – optimal # pieces
• Observations

METIS
Co-clustering
Cross-associations

‘jellyfish’: 
Maybe, there are
no good cuts

?
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Short answer

• METIS [Karypis, Kumar]

But: maybe there are NO good cuts!
?

99


