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15-826: Multimedia Databases 
and Data Mining

Lecture #29: Graph mining -
virus propagation & immunization

Christos Faloutsos
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Must-read material

• [Graph-Textbook], Ch.18: virus propagation
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Main outline

• Introduction
• Indexing
• Mining

– Graphs – patterns
– Graphs – generators and tools
– Association rules
– …
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Detailed outline
• Graphs – generators
• Graphs – tools

– Community detection / graph partitioning
– ‘Belief Propagation’ & fraud detection
– Influence/virus propagation & immunization

• Will we have an epidemic?
• Whom to immunize?
• (two competing viruses – what will happen?)
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Problem
• Q1: epidemic?

• Q2: whom to immunize

• (Q3: 2 competing viruses – end 
result?)
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Short answers
• Q1: epidemic?
• A1: tipping point: eigenvalue
• Q2: whom to immunize
• A2: eigen-drop
• (Q3: 2 competing viruses – end 

result?)
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Influence propagation in large 
graphs - theorems and 

algorithms

Prof. B. Aditya Prakash
http://people.cs.vt.edu/~badityap/
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Networks are everywhere!

Human Disease Network 
[Barabasi 2007]

Gene Regulatory Network 
[Decourty 2008]

Facebook Network [2010]

The Internet [2005]
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Dynamical Processes over networks are 
also everywhere!
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Why do we care?
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Why do we care?
• Information Diffusion
• Viral Marketing
• Epidemiology and Public Health
• Cyber Security
• Human mobility 
• Games and Virtual Worlds 
• Ecology
• Social Collaboration
........ Copyright (c) 2019 A. Prakash and C. 
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Why do we care? (1: 
Epidemiology)

• Dynamical Processes over networks [AJPH 2007]

CDC data: Visualization of the 
first 35 tuberculosis (TB) 
patients and their 1039 
contacts 

Diseases over contact networks
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Why do we care? (2: Online Diffusion)
> 800m users, ~$1B 
revenue [WSJ 2010]

~100m active users

> 50m users
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Why do we care? (2: Online Diffusion) 

• Dynamical Processes over networks

Celebrity

Buy Versace™!

Followers

Social Media Marketing
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Outline

• Motivation
• Q1: Epidemics: what happens? (Theory)
• Q2: Action: Whom to immunize? (Algorithms)
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A fundamental questionStrong 
Virus

Epidemic?
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example (static graph) Weak 
Virus

Epidemic?
Copyright (c) 2019 A. Prakash and C. 
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Problem Statement

Find, a condition under which
– virus will die out exponentially quickly
– regardless of initial infection condition

above (epidemic)

below (extinction)

# Infected 

time

Separate the 
regimes?
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Threshold (static version)
Problem Statement
• Given: 

–Graph G, and
–Virus specs (attack prob. etc.)

• Find: 
–A condition for virus extinction/invasion
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Threshold: Why important?

• Accelerating simulations
• Forecasting (‘What-if’ scenarios)
• Design of contagion and/or topology
• A great handle to manipulate the spreading

– Immunization
– Maximize collaboration
…..
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Outline

• Motivation
• Epidemics: what happens? (Theory)

– Background
– Result (Static Graphs)
– Bonus : Competing Viruses

• Action: Who to immunize? (Algorithms)
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“SIR” model: life immunity (mumps)

• Each node in the graph is in one of three states
– Susceptible (i.e. healthy)
– Infected
– Removed (i.e. can’t get infected again)

Prob. β Prob. δ

t = 1 t = 2 t = 3
Copyright (c) 2019 A. Prakash and C. 
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Terminology: continued
• Other virus propagation models (“VPM”)

– SIS : susceptible-infected-susceptible, flu-
like

– SIRS : temporary immunity, like pertussis
– SEIR : mumps-like, with virus incubation

(E = Exposed)
….………….

• Underlying contact-network – ‘who-can-infect-
whom’
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All are about either:

• Structured 
topologies (cliques, 
block-diagonals, 
hierarchies, random) 

• Specific virus 
propagation models

• Static graphs
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Outline

• Motivation
• Epidemics: what happens? (Theory)

– Background
– Result (Static Graphs)
– Bonus: Competing Viruses

• Action: Who to immunize? (Algorithms)
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How should the answer look 
like?

• Answer should depend on:
– Graph
– Virus Propagation Model (VPM)

• But how??
– Graph – average degree? max. degree? diameter?
– VPM – which parameters? 
– How to combine – linear? quadratic? exponential?

?diameterdavg db + ?/)( max
22 ddd avgavg db - …..
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Static Graphs: Our Main 
Result

For,
Ø any arbitrary topology (adjacency 

matrix A)
Ø any virus propagation model (VPM) in 

standard literature

the epidemic threshold depends only 
1.on the λ, first eigenvalue of A, and
2.some constant       , determined by the 
virus propagation model

λ
VPMC
No 

epidemic if                                                                                                              
λ *         < 1VPMCVPMC
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Our thresholds for some 
models• s = effective strength

• s < 1 : below threshold
Models Effective Strength 

(s)
Threshold (tipping 
point)

SIS, SIR, SIRS, SEIR s = λ .   

s = 1
SIV, SEIV s = λ .   

(H.I.V.) s = λ .   
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Our result: Intuition for λ

“Official” definition:
• Let A be the adjacency 

matrix. Then λ is the root 
with the largest magnitude of 
the characteristic polynomial 
of A [det(A – xI)].

• Doesn’t give much intuition!

“Un-official” Intuition 
J
• λ ~ # paths in the graph

u
u≈ .kl

kA

(i, j) = # of paths i à j 
of length k
kA
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Largest Eigenvalue (λ)

λ ≈ 2 λ =   N λ = N-1

N = 1000
λ ≈ 2 λ= 31.67 λ= 999

better connectivity         higher λ

Copyright (c) 2019 A. Prakash and C. 
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Examples: Simulations – SIR (mumps) 

(a) Infection profile                 (b) “Take-off” plot
PORTLAND graph: synthetic population, 

31 million links, 6 million nodes
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Examples: Simulations – SIRS 
(pertusis) 
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(a) Infection profile                 (b) “Take-off” plot
PORTLAND graph: synthetic population, 

31 million links, 6 million nodesCopyright (c) 2019 A. Prakash and C. 
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Outline

• Motivation
• Epidemics: what happens? (Theory)

– Background
– Result (Static Graphs)
– Bonus: Competing Viruses

• Action: Who to immunize? (Algorithms)
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Competing Contagions

iPhone v Android Blu-ray v HD-DVD

3415-826 Copyright (c) 2019 A. Prakash and C. 
FaloutsosBiological common flu/avian flu, pneumococcal inf etc
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A simple model

• Modified flu-like 
• Mutual Immunity (“pick one of the two”)
• Susceptible-Infected1-Infected2-Susceptible

Virus 1 Virus 2
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Question: What happens in the 
end?green: virus 1

red: virus 2

Footprint @ Steady State
Footprint @ Steady State =  ?

Number of 
Infections
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Question: What happens in the 
end?green: virus 1

red: virus 2
Number of 
Infections

Strength 
Strength

??=   
Strength 
Strength

2

Footprint @ Steady State
Footprint @ Steady State
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Answer: Winner-Takes-All
green: virus 1
red: virus 2

Number of 
Infections
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Virus 1 is stronger than Virus 2
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Our Result: Winner-Takes-All

Given our model, and any graph, the 
weaker virus always dies-out completely

1. The stronger survives only if it is above threshold 
2. Virus 1 is stronger than Virus 2, if:

strength(Virus 1) > strength(Virus 2)
3. Strength(Virus) = λ β / δ à same as before!

3915-826 Copyright (c) 2019 A. Prakash and C. 
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Real Examples

Reddit v Digg Blu-Ray v HD-DVD

[Google Search Trends data]
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Outline

• Motivation
• Epidemics: what happens? (Theory)
• Action: Who to immunize? (Algorithms)
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?

?

Given: a graph A, virus prop. model and budget k; 
Find: k ‘best’ nodes for immunization (removal).

k = 2

??

Immunization
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Challenges
• Given a graph A, budget k,

Q1 (Metric) How to measure the ‘shield-
value’ for a set of nodes (S)?
Q2 (Algorithm) How to find a set of k nodes 
with highest ‘shield-value’?
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Proposed vulnerability 
measure: λ

higher λ, higher vulnerability

“Safe” “Vulnerable” “Deadly”
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Original Graph Without {2, 6}

Eigen-Drop(S) 
Δ λ = λ - λs

Δ

A1: “Eigen-Drop”: an ideal shield 
value

Copyright (c) 2019 A. Prakash and C. 
Faloutsos

4515-826

45

Challenges
• Given a graph A, budget k,

Q1 (Metric) How to measure the ‘shield-
value’ for a set of nodes (S)?
Q2 (Algorithm) How to find a set of k nodes 
with highest ‘shield-value’?
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Experiment: Immunization 
quality

Log(fraction of 
infected 
nodes)

NetShield

Degree

PageRank

Eigs (=HITS)
Acquaintance

Betweeness (shortest path)

Lower	
is	better

TimeCopyright (c) 2019 A. Prakash and C. 
Faloutsos
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Short answers
• Q1: epidemic?
• A1: tipping point: eigenvalue
• Q2: whom to immunize
• A2: eigen-drop
• (Q3: 2 competing viruses – end 

result?)
• A3: winner takes all!
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