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15-826: Multimedia Databases
and Data Mining
Lecture #31: Conclusions
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Problem

• Given a large dataset (points; text doc’s; 
time series; images; nodes in a graph)

• Find similar/interesting things
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Summary

• T1: fractals / power laws lead to startling 
discoveries 
– ‘the mean may be meaningless’
– Don’t assume Gaussian (average, k-means, etc)

• T2: SVD: behind PageRank/HITS/tensors/…
• T3: Wavelets: Nature seems to prefer them
• T4: RLS: matrix inversion, without inverting
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Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search

– Points
– Text
– Time sequences; images etc
– Graphs
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Indexing - similarity search
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Indexing - similarity search

• R-trees
• z-ordering / hilbert curves
• M-trees
• (DON’T FORGET … )
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Indexing - similarity search

• R-trees
• z-ordering / hilbert curves
• M-trees
• beware of high intrinsic dimensionality
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Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search

– Points
– Text
– Time sequences; images etc
– Graphs
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Text searching

• ‘find all documents with word bla’
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Text searching

• Full text scanning (‘grep’)
• Inversion (B-tree or hash index)
• signature files – Bloom filters
• Vector space model

– Ranked output
– Relevance feedback

• String editing distance (-> dynamic prog.)
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Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search

– Points
– Text
– Time sequences; images etc
– Graphs
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Multimedia indexing
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‘GEMINI’ - Pictorially

eg, avg

eg,. std
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Multimedia indexing

• Feature extraction for indexing (GEMINI)
– Lower-bounding lemma, to guarantee no false 

alarms
• MDS/FastMap
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Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search

– Points
– Text
– Time sequences; images etc – DFT/DWT
– Graphs
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Time series & forecasting

Goal: given a signal (eg., sales over time 
and/or space)

Find: patterns and/or compress

year

count
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Time series & forecasting

Goal: given a signal (eg., sales over time 
and/or space)

Find: patterns and/or compress

year

count

1 12 23 34 45 56 67 78 89 10
0

11
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DFT
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Wavelets

t
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time

value

• Q: baritone/silence/soprano - DWT?

f

??
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Problem:
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Q: mine/forecast (one, or more)
time sequences
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Answers

• Similarity search: Euclidean/time-warping; 
feature extraction and SAMs

• Linear Forecasting: AR (Box-Jenkins)
• Non-linear forecasting: lag-plots
• Gray-box modeling: Lotka-Volterra
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Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search

– Points
– Text
– Time sequences; images etc
– Graphs
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Graphs

• Real graphs: surprising patterns
– ??
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Graphs

• Real graphs: surprising patterns
– ‘six degrees’
– Skewed degree distribution (‘rich get richer’)
– Super-linearities (2x nodes -> 3x edges )
– Diameter: shrinks (!)
– Might have no good cuts
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Graphs - SVD

• Hubs/Authorities (SVD on adjacency 
matrix)
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Graphs - PageRank

• Hubs/Authorities (SVD on adjacency 
matrix)

• PageRank (fixed point -> eigenvector)
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Belief Propagation
• What color, for the rest?
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Belief Propagation
• What color, for the rest?
• A: Belief Propagation (‘zooBP’)
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www.cs.cmu.edu/~deswaran/code/zoobp.zip
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Tensors

• Eg., time evolving graphs; Subject-verb-
object triplets; etc
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= + +subject
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Tensors

• Eg., time evolving graphs; Subject-verb-
object triplets; etc
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Association Rules

• Given many market baskets
• Find which products sell together
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Association Rules

• Given many market baskets
• Find which products sell together

• Association rules  [‘large itemsets’]
– {Milk, bread} -> butter   [milk,bread,butter: often ]
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Taking a step back:

We saw some fundamental, recurring 
concepts and tools:
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T1: Powerful, recurring tools

• Fractals/ self similarity
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T1: Powerful, recurring tools

• Fractals/ self similarity <-> Power laws
– Zipf, Korcak, Pareto’s laws
– intrinsic dimension (Sierpinski triangle)
– correlation integral
– Barnsley’s IFS compression
– Kronecker graphs

80/20

34



C. Faloutsos 15-826

18

15-826 Copyright (c) 2019 C. Faloutsos 35

T1: Powerful, recurring tools

• Fractals/ self similarity
– Zipf, Korcak, Pareto’s laws
– intrinsic dimension (Sierpinski triangle)
– correlation integral
– Barnsley’s IFS compression
– (Kronecker graphs)

•‘Take logarithms’

• mean-> meaningless

• Gaussian trap
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T2: Powerful, recurring tools

• SVD (optimal L2 approx)

v1

first 
singular

vector
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T2: Powerful, recurring tools

• SVD (optimal L2 approx)
– LSI, KL, PCA, ‘eigenSpokes’, (& in ICA )
– HITS (PageRank)

v1

first 
singular

vector
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~ + +
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T3: powerful, recurring tools

DFT (Discrete Fourier Transform)
DWT (Discrete Wavelet Transform)

year

count
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T3: powerful, recurring tools

DFT (Discrete Fourier Transform)
DWT (Discrete Wavelet Transform)

year

count

actual mean mean+freq12

A1: Fourier (DFT)

A2: Wavelets (DWT)
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T4: Powerful, recurring tools

• Matrix inversion lemma
– Recursive Least Squares
– Sherman-Morrison(-Woodbury)
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Summary of summary

• T1: fractals / power laws lead to startling 
discoveries 
– ‘the mean may be meaningless’
– Don’t assume Gaussian (average, k-means, etc)

• T2: SVD: behind PageRank/HITS/tensors/…
• T3: Wavelets: Nature seems to prefer them
• T4: RLS: matrix inversion, without inverting
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Summary of summary

• T1: fractals / power laws lead to startling 
discoveries 
– ‘the mean may be meaningless’
– Don’t assume Gaussian (average, k-means, etc)

• T2: SVD: behind PageRank/HITS/tensors/…
• T3: Wavelets: Nature seems to prefer them
• T4: RLS: matrix inversion, without inverting

•‘Take logarithms’

• mean -> meaningless

• Gaussian trap
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Thank you!
• Feel free to contact me: 

– Cell#;     christos@cs;   GHC 8019

• Reminder: faculty course eval’s:
– www.cmu.edu/hub/fce/

• Final: as announced in Hub 
• www.cmu.edu/hub/docs/final-exams.pdf

• Have a great holiday!

•‘Take logarithms’

• mean -> meaningless

• Gaussian trap
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