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15-826: Multimedia Databases
and Data Mining

Lecture #32: BONUS LECTURE
Approximate Counting

C. Faloutsos

NOT IN THE EXAM
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Material
• Christopher Palmer, Phillip B. Gibbons and Christos 

Faloutsos,ANF: A Fast and Scalable Tool for Data Mining 
in Massive Graphs,  KDD 2002

• Efficient and Tunable Similar Set Retrieval, by Aristides 
Gionis, Dimitrios Gunopulos and Nikos Koudas, 
SIGMOD, 2001.

• New sampling-based summary statistics for improving 
approximate query answers, by Phillip B. Gibbons and 
Yossi Matias, ACM SIGMOD, 1998.
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http://www.cs.cmu.edu/~christos/PUBLICATIONS/kdd02-anf.ps.gz
http://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/Research-Gionis-et-al.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/christos/www/courses/826-resources/PAPERS+BOOK/p331-gibbons.pdf
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Outline

• Flajolet-Martin (and Cohen) –
vocabulary size (Problem #1)

• Application: Approximate Neighborhood 
function (ANF)

• other, powerful approximate counting tools 
(Problem #2, #3)
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Problem #1

• Given a multiset (eg., words in a document)
• find the vocabulary size (#, after dup. 

elimination)

A A A B A B A C A B

Voc. Size = 3      = |{A, B, C}|
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Thanks to

• Chris Palmer (Vivisimo->IBM)
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Problem #2

• Given a multiset
• compute approximate high-end histogram = 

hot-list query = (k most common words, and 
their counts)

A A A B A B A C A B D D D D D

(for k=2:
A#: 6
D#: 5)
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Problem #3

• Given two documents
• compute quickly their similarity (#common 

words/ #total-words) == Jaccard coefficient
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Problem #1

• Given a multiset (eg., words in a document)
• find the vocabulary size V (#, after dup. 

elimination)
• using space O(V), or O(log(V))

(Q1: Applications?)
(Q2: How would you solve it?)
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Basic idea (Cohen)

large bit string, initially all zeros

A

A

C

9
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Basic idea (Cohen)

large bit string, initially all zeros

A

A

C

hash!
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Basic idea (Cohen)

large bit string

A

A

C
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Basic idea (Cohen)

large bit string

A

A

C
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Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the 
vocabulary size
(and so does the left-most)

Repeat, with several hashing 
functions, and merge the estimates
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Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the 
vocabulary size
(and so does the left-most)

Can we do it in less space?? 
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Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the 
vocabulary size
(and so does the left-most)

Can we do it in less space??
YES
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How?
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Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

first bit: with prob. ½
second: with prob. ¼
...
i-th: with prob. ½**i
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Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit
‘reveals’ the vocabulary size

18
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Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit
‘reveals’ the vocabulary size

Eg.: V=4, will probably set 
the 2nd bit, etc

19
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Flajolet-Martin

• Hash multiple values of X to same signature
– Hash each x to a bit, using exponential distr.
– ½ map to bit 0, ¼ map to bit 1, …

• Do several different mappings and average
– Gives better accuracy
– Estimate is:    2b / .77351 / BIAS

• b ~ rightmost ‘1’, and actually:

20
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Flajolet-Martin

• Hash multiple values of X to same signature
– Hash each x to a bit, using exponential distr.
– ½ map to bit 0, ¼ map to bit 1, …

• Do several different mappings and average
– Gives better accuracy
– Estimate is:    2b / .77351 / BIAS

• b : average least zero bit in the bitmask
• bias : 1+.31/k for k different mappings

• Flajolet & Martin prove this works

21
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FM Approx. Counting Alg.

• How many bits?  log V + small constant
• What hash functions?

Assume X = { 0, 1, …, V-1 }
FOR i = 1 to k DO bitmask[i] = 0000…00
Create k random hash functions, hashi
FOR each element x of M DO

FOR i = 1 to k DO
h = hashi(x)
bitmask[i] = bitmask[i] LOR h

Estimate: b = average least zero bit in bitmask[i]
2b/.77351/(1+.31/k)

22
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Random Hash Functions

• Can use linear hash functions.  Pick random 
(ai,, bi) and then the hash function is:
– lhashi(x) = ai * x + bi

• Gives uniform distribution over the bits
• To make this exponential, define

– hashi(x) = least zero bit in lhashi(x)

• Hash functions easy to create and fast to use

23
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Conclusions

• Want to measure # of distinct elements
• Approach #1: (Flajolet-Martin)

– Map elements to random bits
– Keep bitmask of bits
– Estimate is O(2b) for least zero-bit b

• Approach #2: (Cohen)
– Create random permutation of elements
– Keep least element seen
– Estimate is: O(1/le) for least rank le

24
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Approximate counting

• Flajolet-Martin (and Cohen) – vocabulary 
size

• Application: Approximate Neighborhood 
function (ANF)

• other, powerful approximate counting tools

25

Christopher R. Palmer
Phillip B. Gibbons
Christos Faloutsos

KDD 2001

Fast Approximation of the 
“neighborhood” Function for Massive 

Graphs

details
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Motivation

• What is the diameter of the Web?
• What is the effective diameter of the Web?
• Are the telephone caller-callee graphs for 

the U.S. similar to the ones in Europe?
• Is the citation graph for physics different 

from the one for computer science?
• Are users in India further away from the 

core of the Internet than those in the U.S.?

details
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Proposed Tool: neighborhood

Given graph G=(V,E)
N(h) = # pairs within h hops or less

= neighborhood function

details

28
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Proposed Tool: neighborhood

Given graph G=(V,E)
N(h) = # pairs within h hops or less

= neighborhood function
N(u,h) = # neighbors of node u, within h

hops or less

details
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Example of neighborhood
details

30
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Example of neighborhood

~diameter of graph

details
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Requirements (for massive graphs)

• Error guarantees
• Fast: (and must scale linearly with graph)
• Low storage requirements: massive graphs!
• Adapts to available memory
• Sequential scans of the edges
• Also estimates individual neighborhood 

functions |S(u,h)|
– These are actually quite useful for mining

details
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How would you compute it?

• Repeated matrix multiply
– Too slow O(n2.38) at the very least
– Too much memory O(n2)

• Breadth-first search
FOR each node u DO

bf-search to compute S(u,h) for each h
– Best known exact solution!
– We will use this as a reference

• Approximations?  Only 1 that we know of which 
we will discuss when we evaluate it.

details
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• Guess what we’ll use?
– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }
FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) Î S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

details
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• Guess what we’ll use?
– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }
FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) Î S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

# (distinct) neighbors of u, 
within h hops

# (distinct) neighbors of v, 
within h-1 hops

details

35

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}
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1

2

3

4

details
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Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}
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1

2

3

4

h=1

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

details
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Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}
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1

2

3

4

h=1

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

details
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Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}
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1

2

3

4

h=1

{(1,1), (1,2)}
{(2,2)}
{(3,3)}
{(4,4)}

details
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Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}
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1

2

3

4

h=1

{(1,1), (1,2), (1,3)}
{(2,2)}
{(3,3)}
{(4,4)}

details
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Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}
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1

2

3

4

h=1

{(1,1), (1,2), (1,3)}
{(2,2), (2,1), (2,3)}
{(3,3), (3,1), (3,2), (3,4)}
{(4,4), (4,3)}

details
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• Guess what we’ll use?
– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }
FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) Î S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

# (distinct) neighbors of u, 
within h hops

details
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• Guess what we’ll use?
– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }
FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) Î S(v,h-1) }

• Too slow and requires too much memory
• Replace expensive set ops with bit ops

Intuition

initialize to self-only

can reach same things
and add one more step

# (distinct) neighbors of u, 
within h hops

details
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ANF Algorithm #1
FOR each node, u, DO

M(u,0) = concatenation of k bitmasks of length log n + r
each bitmask has 1 bit set (exp. distribution)

DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 / 
(1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE

details

44
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ANF Algorithm #1
FOR each node, u, DO

M(u,0) = concatenation of k bitmasks of length log n + r
each bitmask has 1 bit set (exp. distribution)

DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 / 
(1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE

details
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ANF Algorithm #1
FOR each node, u, DO

M(u,0) = concatenation of k bitmasks of length log n + r
each bitmask has 1 bit set (exp. distribution)

DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = ∑u 2b(u) / .77351 / (1+.31/k)
where b(u) = average least zero bit in M(u,it)

DONE

whatever u can reach
with h hops
plus whatever v can reach
with h-1 hops
Duplicates: automatically
eliminated!

u v

details
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Properties

• Has error guarantees: (from F&M)
• Is fast: O((n+m)d) for n nodes, m edges, diameter 

d (which is typically small)
• Has low storage requirements: O(n)
• Easily parallelizable: Partition nodes among 

processors, communicate after full iteration
• Does sequential scans of edges.
• Estimates individual neighborhood functions
• DOES NOT work with limited memory

details
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Conclusions

• Approximate counting (ANF / Martin-
Flajolet) take minutes, instead of hours

• and discover interesting facts quickly

48
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Outline

• Flajolet-Martin (and Cohen) – vocabulary 
size (Problem #1)

• Application: Approximate Neighborhood 
function (ANF)

• other, powerful approximate counting tools 
(Problem #2, #3)

49

15-826 Copyright (c) 2019 C. Faloutsos 50

Problem #2

• Given a multiset
• compute approximate high-end histogram = 

hot-list query = (k most common words, and 
their counts)

A A A B A B A C A B D D D D D

(for k=2:
A#: 6
D#: 5)

50
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Hot-list queries

A  A B A C A B C A A D E A  C A

•Given a stream of  product ids (with duplicates)
•Compute 

•the k most frequent products, 
•and their counts

•with a SINGLE PASS and O(k) memory

k=2 A C

8 3

51
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Applications?

52
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Applications?

• Best selling products
• most common words
• most busy IP destinations/sources (DoS 

attacks)
• summarization / synopses of datasets
• high-end histograms for DBMS query 

optimization

53
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Hot-list queries

A  A B A C A B C A A D E A  C A

•Given a stream of  product ids (with duplicates)
•Compute 

•the k most frequent products, 
•and their counts

•with a SINGLE PASS and O(k) memory

k=2 A C

8 3

Exact: impossible 
Thus: approximate

54
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Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts
• for a new item, if it is in the hot list

– increment its count

A  A B A C A B C A A D E A  C A

k=2 A B

2 1

55
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Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts
• for a new item, if it is in the hot list

– increment its count

A  A B A C A B C A A D E A  C A

k=2 A B

2 1
3

56
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Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts
• for a new item, if it is in the hot list

– increment its count
– else ??

A  A B A C A B C A A D E A  C A

k=2 A B

1
3

57
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Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts
• for a new item, if it is in the hot list

– increment its count
– else TOSS a coin, and possibly displace weakest

A  A B A C A B C A A D E A  C A

k=2 A B

1
3

58
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Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?

A  A B A C A B C A A D E A  C A

k=2 A B

2

6

59
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Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?
• A: depends on count(weakest)

A  A B A C A B C A A D E A  C A

k=2 A B

2

6

60



C. Faloutsos 15-826

31

15-826 Copyright (c) 2019 C. Faloutsos 61

Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?
• A: depends on count(weakest)
• and the new item (‘D’), if it wins, it gets the 

count of the item it displaced.

61
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Hot-list queries - idea

• See [Gibbons+Matias 98] for proofs
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Outline

• Flajolet-Martin (and Cohen) – vocabulary 
size (Problem #1)

• Application: Approximate Neighborhood 
function (ANF)

• other, powerful approximate counting tools 
– Problem #2, 
– Problem #3

63
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Problem #3

• Given two documents
• compute quickly their similarity (#common 

words/ #total-words) == Jaccard coefficient

64
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Problem #3’

• Given a query document q
• and many other documents
• compute quickly the k nearest neighbors of 

q, using the Jaccard coefficient

D1: {A, B, C}
D2: {A, D, F, G}
…

q: {A, C, D, W}

65
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Applications?

66
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Applications?

• Set comparisons eg.,
– snail-mail address (set of trigrams)

• search engines - ‘similar pages’
• social networks: people with many joint 

friends  (facebook recommendations)

67
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Problem #3’

• Given a query document q
• and many other documents
• compute quickly the k nearest neighbors of 

q, using the Jaccard coefficient

• Q: how to extract a fixed set of numerical 
features, to index on?

68
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Answer

• Approximation / hashing - Cohen:

69
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Basic idea (Cohen)

large bit string

the

the

cat

For each document
and for a given h.f.
return the position of first ‘1’

Repeat for k h.f. -> 
each document becomes k numbers

70
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Idea

• Doc1:    n1,  n2, .....              nk
• Doc2:    n1’, n2’, ....             nk’

71
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Idea

• Doc1:    n1,  n2, .....              nk
• Doc2:    n1’, n2’, ....             nk’

• say they agree on m values
1 m

72
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Idea

• Doc1:    n1,  n2, .....              nk
• Doc2:    n1’, n2’, ....             nk’

• say they agree on m values, 
• then

Jaccard(Doc1, Doc2) ~ m/k

73
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Intuition behind proof

• Venn diagram

voc. terms of
Doc.#1 voc. terms of

Doc.#2

Andrew Tomkins

74
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Intuition behind proof

• Venn diagram

voc. terms of
Doc.#1 voc. terms of

Doc.#2

75
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Intuition behind proof

• Venn diagram - let w be the voc. word 
with the overal smallest hash value, for 
h.f.#1

voc. terms of
Doc.#1 voc. terms of

Doc.#2

w

76
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Intuition behind proof

• Prob. that w is smallest on both is 
exactly Jaccard: #common / #union 

voc. terms of
Doc.#1 voc. terms of

Doc.#2

w

77

15-826 Copyright (c) 2019 C. Faloutsos 78

Conclusions

• Approximations can achieve the 
impossible!

• MF and ANF for neighborhood function
• hot-lists
• Jaccard coeff. / ‘similar pages’
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