
C. Faloutsos 15-826

1

15-826: Multimedia Databases
and Data Mining

Lecture #32: BONUS LECTURE
Approximate Counting

C. Faloutsos

NOT IN THE EXAM

1

Material
• Christopher Palmer, Phillip B. Gibbons and Christos

Faloutsos,ANF: A Fast and Scalable Tool for Data Mining
in Massive Graphs, KDD 2002

• Efficient and Tunable Similar Set Retrieval, by Aristides
Gionis, Dimitrios Gunopulos and Nikos Koudas,
SIGMOD, 2001.

• New sampling-based summary statistics for improving
approximate query answers, by Phillip B. Gibbons and
Yossi Matias, ACM SIGMOD, 1998.

15-826 Copyright (c) 2019 C. Faloutsos 2

2

http://www.cs.cmu.edu/~christos/PUBLICATIONS/kdd02-anf.ps.gz
http://www.cs.cmu.edu/~christos/courses/826-resources/PAPERS+BOOK/Research-Gionis-et-al.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/christos/www/courses/826-resources/PAPERS+BOOK/p331-gibbons.pdf

C. Faloutsos 15-826

2

15-826 Copyright (c) 2019 C. Faloutsos 3

Outline

• Flajolet-Martin (and Cohen) –
vocabulary size (Problem #1)

• Application: Approximate Neighborhood
function (ANF)

• other, powerful approximate counting tools
(Problem #2, #3)

3

15-826 Copyright (c) 2019 C. Faloutsos 4

Problem #1

• Given a multiset (eg., words in a document)
• find the vocabulary size (#, after dup.

elimination)

A A A B A B A C A B

Voc. Size = 3 = |{A, B, C}|

4

C. Faloutsos 15-826

3

15-826 Copyright (c) 2019 C. Faloutsos 5

Thanks to

• Chris Palmer (Vivisimo->IBM)

5

15-826 Copyright (c) 2019 C. Faloutsos 6

Problem #2

• Given a multiset
• compute approximate high-end histogram =

hot-list query = (k most common words, and
their counts)

A A A B A B A C A B D D D D D

(for k=2:
A#: 6
D#: 5)

6

C. Faloutsos 15-826

4

15-826 Copyright (c) 2019 C. Faloutsos 7

Problem #3

• Given two documents
• compute quickly their similarity (#common

words/ #total-words) == Jaccard coefficient

7

15-826 Copyright (c) 2019 C. Faloutsos 8

Problem #1

• Given a multiset (eg., words in a document)
• find the vocabulary size V (#, after dup.

elimination)
• using space O(V), or O(log(V))

(Q1: Applications?)
(Q2: How would you solve it?)

8

C. Faloutsos 15-826

5

15-826 Copyright (c) 2019 C. Faloutsos 9

Basic idea (Cohen)

large bit string, initially all zeros

A

A

C

9

15-826 Copyright (c) 2019 C. Faloutsos 10

Basic idea (Cohen)

large bit string, initially all zeros

A

A

C

hash!

10

C. Faloutsos 15-826

6

15-826 Copyright (c) 2019 C. Faloutsos 11

Basic idea (Cohen)

large bit string

A

A

C

11

15-826 Copyright (c) 2019 C. Faloutsos 12

Basic idea (Cohen)

large bit string

A

A

C

12

C. Faloutsos 15-826

7

15-826 Copyright (c) 2019 C. Faloutsos 13

Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the
vocabulary size
(and so does the left-most)

Repeat, with several hashing
functions, and merge the estimates

13

15-826 Copyright (c) 2019 C. Faloutsos 14

Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the
vocabulary size
(and so does the left-most)

Can we do it in less space??

14

C. Faloutsos 15-826

8

15-826 Copyright (c) 2019 C. Faloutsos 15

Basic idea (Cohen)

large bit string

A

A

C

the rightmost position depends on the
vocabulary size
(and so does the left-most)

Can we do it in less space??
YES

15

15-826 Copyright (c) 2019 C. Faloutsos 16

How?

16

C. Faloutsos 15-826

9

15-826 Copyright (c) 2019 C. Faloutsos 17

Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

first bit: with prob. ½
second: with prob. ¼
...
i-th: with prob. ½**i

17

15-826 Copyright (c) 2019 C. Faloutsos 18

Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit
‘reveals’ the vocabulary size

18

C. Faloutsos 15-826

10

15-826 Copyright (c) 2019 C. Faloutsos 19

Basic idea (Flajolet-Martin)
O(log(V)) bit string (V: voc. size)

A

A

C

again, the rightmost bit
‘reveals’ the vocabulary size

Eg.: V=4, will probably set
the 2nd bit, etc

19

15-826 Copyright (c) 2019 C. Faloutsos 20

Flajolet-Martin

• Hash multiple values of X to same signature
– Hash each x to a bit, using exponential distr.
– ½ map to bit 0, ¼ map to bit 1, …

• Do several different mappings and average
– Gives better accuracy
– Estimate is: 2b / .77351 / BIAS

• b ~ rightmost ‘1’, and actually:

20

C. Faloutsos 15-826

11

15-826 Copyright (c) 2019 C. Faloutsos 21

Flajolet-Martin

• Hash multiple values of X to same signature
– Hash each x to a bit, using exponential distr.
– ½ map to bit 0, ¼ map to bit 1, …

• Do several different mappings and average
– Gives better accuracy
– Estimate is: 2b / .77351 / BIAS

• b : average least zero bit in the bitmask
• bias : 1+.31/k for k different mappings

• Flajolet & Martin prove this works

21

15-826 Copyright (c) 2019 C. Faloutsos 22

FM Approx. Counting Alg.

• How many bits? log V + small constant
• What hash functions?

Assume X = { 0, 1, …, V-1 }
FOR i = 1 to k DO bitmask[i] = 0000…00
Create k random hash functions, hashi
FOR each element x of M DO

FOR i = 1 to k DO
h = hashi(x)
bitmask[i] = bitmask[i] LOR h

Estimate: b = average least zero bit in bitmask[i]
2b/.77351/(1+.31/k)

22

C. Faloutsos 15-826

12

15-826 Copyright (c) 2019 C. Faloutsos 23

Random Hash Functions

• Can use linear hash functions. Pick random
(ai,, bi) and then the hash function is:
– lhashi(x) = ai * x + bi

• Gives uniform distribution over the bits
• To make this exponential, define

– hashi(x) = least zero bit in lhashi(x)

• Hash functions easy to create and fast to use

23

15-826 Copyright (c) 2019 C. Faloutsos 24

Conclusions

• Want to measure # of distinct elements
• Approach #1: (Flajolet-Martin)

– Map elements to random bits
– Keep bitmask of bits
– Estimate is O(2b) for least zero-bit b

• Approach #2: (Cohen)
– Create random permutation of elements
– Keep least element seen
– Estimate is: O(1/le) for least rank le

24

C. Faloutsos 15-826

13

15-826 Copyright (c) 2019 C. Faloutsos 25

Approximate counting

• Flajolet-Martin (and Cohen) – vocabulary
size

• Application: Approximate Neighborhood
function (ANF)

• other, powerful approximate counting tools

25

Christopher R. Palmer
Phillip B. Gibbons
Christos Faloutsos

KDD 2001

Fast Approximation of the
“neighborhood” Function for Massive

Graphs

details

26

C. Faloutsos 15-826

14

15-826 Copyright (c) 2019 C. Faloutsos 27

Motivation

• What is the diameter of the Web?
• What is the effective diameter of the Web?
• Are the telephone caller-callee graphs for

the U.S. similar to the ones in Europe?
• Is the citation graph for physics different

from the one for computer science?
• Are users in India further away from the

core of the Internet than those in the U.S.?

details

27

15-826 Copyright (c) 2019 C. Faloutsos 28

Proposed Tool: neighborhood

Given graph G=(V,E)
N(h) = # pairs within h hops or less

= neighborhood function

details

28

C. Faloutsos 15-826

15

15-826 Copyright (c) 2019 C. Faloutsos 29

Proposed Tool: neighborhood

Given graph G=(V,E)
N(h) = # pairs within h hops or less

= neighborhood function
N(u,h) = # neighbors of node u, within h

hops or less

details

29

15-826 Copyright (c) 2019 C. Faloutsos 30

Example of neighborhood
details

30

C. Faloutsos 15-826

16

15-826 Copyright (c) 2019 C. Faloutsos 31

Example of neighborhood

~diameter of graph

details

31

15-826 Copyright (c) 2019 C. Faloutsos 32

Requirements (for massive graphs)

• Error guarantees
• Fast: (and must scale linearly with graph)
• Low storage requirements: massive graphs!
• Adapts to available memory
• Sequential scans of the edges
• Also estimates individual neighborhood

functions |S(u,h)|
– These are actually quite useful for mining

details

32

C. Faloutsos 15-826

17

15-826 Copyright (c) 2019 C. Faloutsos 33

How would you compute it?

• Repeated matrix multiply
– Too slow O(n2.38) at the very least
– Too much memory O(n2)

• Breadth-first search
FOR each node u DO

bf-search to compute S(u,h) for each h
– Best known exact solution!
– We will use this as a reference

• Approximations? Only 1 that we know of which
we will discuss when we evaluate it.

details

33

15-826 Copyright (c) 2019 C. Faloutsos 34

• Guess what we’ll use?
– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }
FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) Î S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

details

34

C. Faloutsos 15-826

18

15-826 Copyright (c) 2019 C. Faloutsos 35

• Guess what we’ll use?
– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }
FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) Î S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

(distinct) neighbors of u,
within h hops

(distinct) neighbors of v,
within h-1 hops

details

35

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 Copyright (c) 2019 C. Faloutsos 36

1

2

3

4

details

36

C. Faloutsos 15-826

19

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 Copyright (c) 2019 C. Faloutsos 37

1

2

3

4

h=1

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

details

37

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 Copyright (c) 2019 C. Faloutsos 38

1

2

3

4

h=1

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

details

38

C. Faloutsos 15-826

20

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 Copyright (c) 2019 C. Faloutsos 39

1

2

3

4

h=1

{(1,1), (1,2)}
{(2,2)}
{(3,3)}
{(4,4)}

details

39

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 Copyright (c) 2019 C. Faloutsos 40

1

2

3

4

h=1

{(1,1), (1,2), (1,3)}
{(2,2)}
{(3,3)}
{(4,4)}

details

40

C. Faloutsos 15-826

21

Trace

h=0

{(1,1)}
{(2,2)}
{(3,3)}
{(4,4)}

15-826 Copyright (c) 2019 C. Faloutsos 41

1

2

3

4

h=1

{(1,1), (1,2), (1,3)}
{(2,2), (2,1), (2,3)}
{(3,3), (3,1), (3,2), (3,4)}
{(4,4), (4,3)}

details

41

15-826 Copyright (c) 2019 C. Faloutsos 42

• Guess what we’ll use?
– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }
FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) Î S(v,h-1) }

Intuition

initialize to self-only

can reach same things
and add one more step

(distinct) neighbors of u,
within h hops

details

42

C. Faloutsos 15-826

22

15-826 Copyright (c) 2019 C. Faloutsos 43

• Guess what we’ll use?
– Approximate Counting!

• Use very simple algorithm:
FOR each node u DO S(u,0) = { (u,u) }
FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v) in G DO

S(u,h) = S(u,h) U { (u,v’) : (v,v’) Î S(v,h-1) }

• Too slow and requires too much memory
• Replace expensive set ops with bit ops

Intuition

initialize to self-only

can reach same things
and add one more step

(distinct) neighbors of u,
within h hops

details

43

15-826 Copyright (c) 2019 C. Faloutsos 44

ANF Algorithm #1
FOR each node, u, DO

M(u,0) = concatenation of k bitmasks of length log n + r
each bitmask has 1 bit set (exp. distribution)

DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 /
(1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE

details

44

C. Faloutsos 15-826

23

15-826 Copyright (c) 2019 C. Faloutsos 45

ANF Algorithm #1
FOR each node, u, DO

M(u,0) = concatenation of k bitmasks of length log n + r
each bitmask has 1 bit set (exp. distribution)

DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) / .77351 /
(1+.31/k)

where b(u) = average least zero bit in M(u,it)
DONE

details

45

15-826 Copyright (c) 2019 C. Faloutsos 46

ANF Algorithm #1
FOR each node, u, DO

M(u,0) = concatenation of k bitmasks of length log n + r
each bitmask has 1 bit set (exp. distribution)

DONE

FOR h = 1 to diameter of G DO
FOR each node, u, DO M(u,h) = M(u,h-1)
FOR each edge (u,v) in G DO

M(u,h) = (M(u,h) OR M(v,h-1))

Estimate N(h) = ∑u 2b(u) / .77351 / (1+.31/k)
where b(u) = average least zero bit in M(u,it)

DONE

whatever u can reach
with h hops
plus whatever v can reach
with h-1 hops
Duplicates: automatically
eliminated!

u v

details

46

C. Faloutsos 15-826

24

15-826 Copyright (c) 2019 C. Faloutsos 47

Properties

• Has error guarantees: (from F&M)
• Is fast: O((n+m)d) for n nodes, m edges, diameter

d (which is typically small)
• Has low storage requirements: O(n)
• Easily parallelizable: Partition nodes among

processors, communicate after full iteration
• Does sequential scans of edges.
• Estimates individual neighborhood functions
• DOES NOT work with limited memory

details

47

15-826 Copyright (c) 2019 C. Faloutsos 48

Conclusions

• Approximate counting (ANF / Martin-
Flajolet) take minutes, instead of hours

• and discover interesting facts quickly

48

C. Faloutsos 15-826

25

15-826 Copyright (c) 2019 C. Faloutsos 49

Outline

• Flajolet-Martin (and Cohen) – vocabulary
size (Problem #1)

• Application: Approximate Neighborhood
function (ANF)

• other, powerful approximate counting tools
(Problem #2, #3)

49

15-826 Copyright (c) 2019 C. Faloutsos 50

Problem #2

• Given a multiset
• compute approximate high-end histogram =

hot-list query = (k most common words, and
their counts)

A A A B A B A C A B D D D D D

(for k=2:
A#: 6
D#: 5)

50

C. Faloutsos 15-826

26

15-826 Copyright (c) 2019 C. Faloutsos 51

Hot-list queries

A A B A C A B C A A D E A C A

•Given a stream of product ids (with duplicates)
•Compute

•the k most frequent products,
•and their counts

•with a SINGLE PASS and O(k) memory

k=2 A C

8 3

51

15-826 Copyright (c) 2019 C. Faloutsos 52

Applications?

52

C. Faloutsos 15-826

27

15-826 Copyright (c) 2019 C. Faloutsos 53

Applications?

• Best selling products
• most common words
• most busy IP destinations/sources (DoS

attacks)
• summarization / synopses of datasets
• high-end histograms for DBMS query

optimization

53

15-826 Copyright (c) 2019 C. Faloutsos 54

Hot-list queries

A A B A C A B C A A D E A C A

•Given a stream of product ids (with duplicates)
•Compute

•the k most frequent products,
•and their counts

•with a SINGLE PASS and O(k) memory

k=2 A C

8 3

Exact: impossible
Thus: approximate

54

C. Faloutsos 15-826

28

15-826 Copyright (c) 2019 C. Faloutsos 55

Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts
• for a new item, if it is in the hot list

– increment its count

A A B A C A B C A A D E A C A

k=2 A B

2 1

55

15-826 Copyright (c) 2019 C. Faloutsos 56

Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts
• for a new item, if it is in the hot list

– increment its count

A A B A C A B C A A D E A C A

k=2 A B

2 1
3

56

C. Faloutsos 15-826

29

15-826 Copyright (c) 2019 C. Faloutsos 57

Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts
• for a new item, if it is in the hot list

– increment its count
– else ??

A A B A C A B C A A D E A C A

k=2 A B

1
3

57

15-826 Copyright (c) 2019 C. Faloutsos 58

Hot-list queries - idea

• Keep the (approx.) k best so far, plus counts
• for a new item, if it is in the hot list

– increment its count
– else TOSS a coin, and possibly displace weakest

A A B A C A B C A A D E A C A

k=2 A B

1
3

58

C. Faloutsos 15-826

30

15-826 Copyright (c) 2019 C. Faloutsos 59

Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?

A A B A C A B C A A D E A C A

k=2 A B

2

6

59

15-826 Copyright (c) 2019 C. Faloutsos 60

Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?
• A: depends on count(weakest)

A A B A C A B C A A D E A C A

k=2 A B

2

6

60

C. Faloutsos 15-826

31

15-826 Copyright (c) 2019 C. Faloutsos 61

Hot-list queries - idea

• Biased coin - what are the Head/Tail prob.?
• A: depends on count(weakest)
• and the new item (‘D’), if it wins, it gets the

count of the item it displaced.

61

15-826 Copyright (c) 2019 C. Faloutsos 62

Hot-list queries - idea

• See [Gibbons+Matias 98] for proofs

62

C. Faloutsos 15-826

32

15-826 Copyright (c) 2019 C. Faloutsos 63

Outline

• Flajolet-Martin (and Cohen) – vocabulary
size (Problem #1)

• Application: Approximate Neighborhood
function (ANF)

• other, powerful approximate counting tools
– Problem #2,
– Problem #3

63

15-826 Copyright (c) 2019 C. Faloutsos 64

Problem #3

• Given two documents
• compute quickly their similarity (#common

words/ #total-words) == Jaccard coefficient

64

C. Faloutsos 15-826

33

15-826 Copyright (c) 2019 C. Faloutsos 65

Problem #3’

• Given a query document q
• and many other documents
• compute quickly the k nearest neighbors of

q, using the Jaccard coefficient

D1: {A, B, C}
D2: {A, D, F, G}
…

q: {A, C, D, W}

65

15-826 Copyright (c) 2019 C. Faloutsos 66

Applications?

66

C. Faloutsos 15-826

34

15-826 Copyright (c) 2019 C. Faloutsos 67

Applications?

• Set comparisons eg.,
– snail-mail address (set of trigrams)

• search engines - ‘similar pages’
• social networks: people with many joint

friends (facebook recommendations)

67

15-826 Copyright (c) 2019 C. Faloutsos 68

Problem #3’

• Given a query document q
• and many other documents
• compute quickly the k nearest neighbors of

q, using the Jaccard coefficient

• Q: how to extract a fixed set of numerical
features, to index on?

68

C. Faloutsos 15-826

35

15-826 Copyright (c) 2019 C. Faloutsos 69

Answer

• Approximation / hashing - Cohen:

69

15-826 Copyright (c) 2019 C. Faloutsos 70

Basic idea (Cohen)

large bit string

the

the

cat

For each document
and for a given h.f.
return the position of first ‘1’

Repeat for k h.f. ->
each document becomes k numbers

70

C. Faloutsos 15-826

36

15-826 Copyright (c) 2019 C. Faloutsos 71

Idea

• Doc1: n1, n2, nk
• Doc2: n1’, n2’, nk’

71

15-826 Copyright (c) 2019 C. Faloutsos 72

Idea

• Doc1: n1, n2, nk
• Doc2: n1’, n2’, nk’

• say they agree on m values
1 m

72

C. Faloutsos 15-826

37

15-826 Copyright (c) 2019 C. Faloutsos 73

Idea

• Doc1: n1, n2, nk
• Doc2: n1’, n2’, nk’

• say they agree on m values,
• then

Jaccard(Doc1, Doc2) ~ m/k

73

15-826 Copyright (c) 2019 C. Faloutsos 74

Intuition behind proof

• Venn diagram

voc. terms of
Doc.#1 voc. terms of

Doc.#2

Andrew Tomkins

74

C. Faloutsos 15-826

38

15-826 Copyright (c) 2019 C. Faloutsos 75

Intuition behind proof

• Venn diagram

voc. terms of
Doc.#1 voc. terms of

Doc.#2

75

15-826 Copyright (c) 2019 C. Faloutsos 76

Intuition behind proof

• Venn diagram - let w be the voc. word
with the overal smallest hash value, for
h.f.#1

voc. terms of
Doc.#1 voc. terms of

Doc.#2

w

76

C. Faloutsos 15-826

39

15-826 Copyright (c) 2019 C. Faloutsos 77

Intuition behind proof

• Prob. that w is smallest on both is
exactly Jaccard: #common / #union

voc. terms of
Doc.#1 voc. terms of

Doc.#2

w

77

15-826 Copyright (c) 2019 C. Faloutsos 78

Conclusions

• Approximations can achieve the
impossible!

• MF and ANF for neighborhood function
• hot-lists
• Jaccard coeff. / ‘similar pages’

78

C. Faloutsos 15-826

40

15-826 Copyright (c) 2019 C. Faloutsos 79

References
E. Cohen. Size-estimation framework with applications to transitive

closure and reachability. Journal of Computer and System Sciences,
55(3):441-453, December 1997.
http://www.research.att.com/~edith/Papers/tcest.ps.Z

Phillip B. Gibbons, Yossi Matias, New sampling-based summary
statistics for improving approximate query answers, ACM
SIGMOD, 1998 Seattle, Washington, pp 331 - 342

79

15-826 Copyright (c) 2019 C. Faloutsos 80

References (cont’d)

Aristides Gionis, Dimitrios Gunopulos, Nikos Koudas,
Efficient and Tunable Similar Set Retrieval, ACM
SIGMOD 2001, Santa Barbara, California

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships for the internet topology. SIGCOMM, 1999.

80

C. Faloutsos 15-826

41

15-826 Copyright (c) 2019 C. Faloutsos 81

References (cont’d)
P. Flajolet and G. N. Martin. Probabilistic counting

algorithms for data base applications. Journal of
Computer and System Sciences, 31:182-209, 1985.

C. R. Palmer, P. B. Gibbons and C. Faloutsos. Fast
approximation of the “neighborhood” function for massive
graphs. KDD 2002

81

15-826 Copyright (c) 2019 C. Faloutsos 82

References (cont’d)

C. R. Palmer, G. Siganos, M. Faloutsos, P. B. Gibbons and C.
Faloutsos. The connectivity and fault-tolerance of the
internet topology. NRDM 2001.

82

