
C. Faloutsos 15-826

1

CMU SCS

15-826: Multimedia Databases

and Data Mining

Primary key indexing – B-trees

Christos Faloutsos - CMU

www.cs.cmu.edu/~christos

15-826 Copyright: C. Faloutsos (2007) 2

CMU SCS

Problem

Given a large collection of (multimedia)

records, find similar/interesting things, ie:

• Allow fast, approximate queries, and

• Find rules/patterns

15-826 Copyright: C. Faloutsos (2007) 3

CMU SCS

Outline

Goal: ‘Find similar / interesting things’

• Intro to DB

• Indexing - similarity search

• Data Mining

C. Faloutsos 15-826

2

15-826 Copyright: C. Faloutsos (2007) 4

CMU SCS

Indexing - Detailed outline

• primary key indexing

– B-trees and variants

– (static) hashing

– extendible hashing

• secondary key indexing

• spatial access methods

• text

• ...

15-826 Copyright: C. Faloutsos (2007) 5

CMU SCS

Primary key indexing

• find employee with ssn=123

15-826 Copyright: C. Faloutsos (2007) 6

CMU SCS

B-trees

• the most successful family of index

schemes (B-trees, B+-trees, B*-trees)

• Can be used for primary/secondary,

clustering/non-clustering index.

• balanced “n-way” search trees

C. Faloutsos 15-826

3

15-826 Copyright: C. Faloutsos (2007) 7

CMU SCS

Citation

• Rudolf Bayer and Edward M.

McCreight, Organization and

Maintenance of Large Ordered

Indices, Acta Informatica,

1:173-189, 1972.

• Received the 2001 SIGMOD innovations award

• among the most cited db publications

•www.informatik.uni-trier.de/~ley/db/about/top.html

15-826 Copyright: C. Faloutsos (2007) 8

CMU SCS

B-trees

Eg., B-tree of order 3:

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 9

CMU SCS

B - tree properties:

• each node, in a B-tree of order n:
– Key order

– at most n pointers

– at least n/2 pointers (except root)

– all leaves at the same level

– if number of pointers is k, then node has exactly k-1
keys

– (leaves are empty)

v1 v2 … vn-1

p1 pn

C. Faloutsos 15-826

4

15-826 Copyright: C. Faloutsos (2007) 10

CMU SCS

Properties

• “block aware” nodes: each node -> disk

page

• O(log (N)) for everything! (ins/del/search)

• typically, if m = 50 - 100, then 2 - 3 levels

• utilization >= 50%, guaranteed; on average

69%

15-826 Copyright: C. Faloutsos (2007) 11

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 12

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

C. Faloutsos 15-826

5

15-826 Copyright: C. Faloutsos (2007) 13

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 14

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 15

CMU SCS

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9
>9

H steps (= disk

accesses)

C. Faloutsos 15-826

6

15-826 Copyright: C. Faloutsos (2007) 16

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)

• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

15-826 Copyright: C. Faloutsos (2007) 17

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)

• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 18

CMU SCS

Queries

• what about range queries? (eg., 5<salary<8)

• Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

1 3

6

7

9

13

<6

>6 <9
>9

C. Faloutsos 15-826

7

15-826 Copyright: C. Faloutsos (2007) 19

CMU SCS

B-trees: Insertion

• Insert in leaf; on overflow, push middle up

(recursively)

• split: preserves B - tree properties

15-826 Copyright: C. Faloutsos (2007) 20

CMU SCS

B-trees

Easy case: Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 21

CMU SCS

B-trees

Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9
>9

8

C. Faloutsos 15-826

8

15-826 Copyright: C. Faloutsos (2007) 22

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

1 3

6

7

9

13

<6

>6 <9
>9

2

15-826 Copyright: C. Faloutsos (2007) 23

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

1 2

6

7

9

133

push middle up

15-826 Copyright: C. Faloutsos (2007) 24

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

6

7

9

131 3

22
Ovf; push middle

C. Faloutsos 15-826

9

15-826 Copyright: C. Faloutsos (2007) 25

CMU SCS

B-trees

Hardest case: Tree T0; insert ‘2’

7

9

131 3

2

6

Final state

15-826 Copyright: C. Faloutsos (2007) 26

CMU SCS

B-trees: Insertion

• Q: What if there are two middles? (eg, order

4)

• A: either one is fine

15-826 Copyright: C. Faloutsos (2007) 27

CMU SCS

B-trees: Insertion

• Insert in leaf; on overflow, push middle up

(recursively – ‘propagate split’)

• split: preserves all B - tree properties (!!)

• notice how it grows: height increases when

root overflows & splits

• Automatic, incremental re-organization

C. Faloutsos 15-826

10

15-826 Copyright: C. Faloutsos (2007) 28

CMU SCS

Overview

• B – trees

– Dfn, Search, insertion, deletion

• B+ - trees

• hashing

15-826 Copyright: C. Faloutsos (2007) 29

CMU SCS

Deletion

Rough outline of algo:

• Delete key;

• on underflow, may need to merge

In practice, some implementors just allow underflows to

happen…

15-826 Copyright: C. Faloutsos (2007) 30

CMU SCS

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1 3

6

7

9

13

<6

>6 <9
>9

C. Faloutsos 15-826

11

15-826 Copyright: C. Faloutsos (2007) 31

CMU SCS

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 32

CMU SCS

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 33

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow

• Case2: delete non-leaf key – no underflow

• Case3: delete leaf-key; underflow, and ‘rich

sibling’

• Case4: delete leaf-key; underflow, and ‘poor

sibling’

C. Faloutsos 15-826

12

15-826 Copyright: C. Faloutsos (2007) 34

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no

underflow (eg., delete 6 from T0)

1 3

6

7

9

13

<6

>6 <9
>9

Delete &

promote, ie:

15-826 Copyright: C. Faloutsos (2007) 35

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no

underflow (eg., delete 6 from T0)

1 3 7

9

13

<6

>6 <9
>9

Delete &

promote, ie:

15-826 Copyright: C. Faloutsos (2007) 36

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no

underflow (eg., delete 6 from T0)

1 7

9

13

<6

>6 <9
>9

Delete &

promote, ie:3

C. Faloutsos 15-826

13

15-826 Copyright: C. Faloutsos (2007) 37

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no

underflow (eg., delete 6 from T0)

1 7

9

13

<3

>3 <9
>9

3
FINAL TREE

15-826 Copyright: C. Faloutsos (2007) 38

CMU SCS

B-trees – Deletion

• Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

• Q: How to promote?

• A: pick the largest key from the left sub-tree
(or the smallest from the right sub-tree)

• Observation: every deletion eventually
becomes a deletion of a leaf key

15-826 Copyright: C. Faloutsos (2007) 39

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow

• Case2: delete non-leaf key – no underflow

• Case3: delete leaf-key; underflow, and ‘rich

sibling’

• Case4: delete leaf-key; underflow, and ‘poor

sibling’

C. Faloutsos 15-826

14

15-826 Copyright: C. Faloutsos (2007) 40

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from T0)

1 3

6

7

9

13

<6

>6 <9
>9

Delete &

borrow, ie:

15-826 Copyright: C. Faloutsos (2007) 41

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from T0)

1 3

6 9

13

<6

>6 <9
>9

Delete &

borrow, ie:

Rich sibling

15-826 Copyright: C. Faloutsos (2007) 42

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’

• ‘rich’ = can give a key, without

underflowing

• ‘borrowing’ a key: THROUGH the

PARENT!

C. Faloutsos 15-826

15

15-826 Copyright: C. Faloutsos (2007) 43

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from T0)

1 3

6 9

13

<6

>6 <9
>9

Delete &

borrow, ie:

Rich sibling

NO!!

15-826 Copyright: C. Faloutsos (2007) 44

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from T0)

1 3

6 9

13

<6

>6 <9
>9

Delete &

borrow, ie:

15-826 Copyright: C. Faloutsos (2007) 45

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from T0)

1 3

9

13

<6

>6 <9
>9

Delete &

borrow, ie:

6

C. Faloutsos 15-826

16

15-826 Copyright: C. Faloutsos (2007) 46

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from T0)

1

3 9

13

<6

>6 <9
>9

Delete &

borrow, ie:

6

15-826 Copyright: C. Faloutsos (2007) 47

CMU SCS

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from T0)

1

3 9

13

<3

>3 <9
>9

Delete &

borrow,

through the

parent

6

FINAL TREE

15-826 Copyright: C. Faloutsos (2007) 48

CMU SCS

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow

• Case2: delete non-leaf key – no underflow

• Case3: delete leaf-key; underflow, and ‘rich

sibling’

• Case4: delete leaf-key; underflow, and ‘poor

sibling’

C. Faloutsos 15-826

17

15-826 Copyright: C. Faloutsos (2007) 49

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,

delete 13 from T0)

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 50

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,

delete 13 from T0)

1 3

6

7

9<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 51

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,

delete 13 from T0)

1 3

6

7

9<6

>6 <9
>9

A: merge w/

‘poor’ sibling

C. Faloutsos 15-826

18

15-826 Copyright: C. Faloutsos (2007) 52

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,

delete 13 from T0)

• Merge, by pulling a key from the parent

• exact reversal from insertion: ‘split and push

up’, vs. ‘merge and pull down’

• Ie.:

15-826 Copyright: C. Faloutsos (2007) 53

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,

delete 13 from T0)

1 3

6

7

<6

>6

A: merge w/

‘poor’ sibling

9

15-826 Copyright: C. Faloutsos (2007) 54

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’ (eg.,

delete 13 from T0)

1 3

6

7

<6

>6

9

FINAL TREE

C. Faloutsos 15-826

19

15-826 Copyright: C. Faloutsos (2007) 55

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’

• -> ‘pull key from parent, and merge’

• Q: What if the parent underflows?

15-826 Copyright: C. Faloutsos (2007) 56

CMU SCS

B-trees – Deletion

• Case4: underflow & ‘poor sibling’

• -> ‘pull key from parent, and merge’

• Q: What if the parent underflows?

• A: repeat recursively

15-826 Copyright: C. Faloutsos (2007) 57

CMU SCS

Overview

• B – trees

• B+ - trees, B*-trees

• hashing

C. Faloutsos 15-826

20

15-826 Copyright: C. Faloutsos (2007) 58

CMU SCS

B+ trees - Motivation

B-tree – print keys in sorted order:

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 59

CMU SCS

B+ trees - Motivation

B-tree needs back-tracking – how to avoid it?

1 3

6

7

9

13

<6

>6 <9
>9

15-826 Copyright: C. Faloutsos (2007) 60

CMU SCS

Solution: B+ - trees

• facilitate sequential ops

• They string all leaf nodes together

• AND

• replicate keys from non-leaf nodes, to make

sure every key appears at the leaf level

C. Faloutsos 15-826

21

15-826 Copyright: C. Faloutsos (2007) 61

CMU SCS

B+ trees

1 3

6

6

9

9

<6

>=6 <9
>=9

7 13

15-826 Copyright: C. Faloutsos (2007) 62

CMU SCS

B+ trees - insertion

1 3

6

6

9

9

<6

>=6 <9
>=9

7 13

Eg., insert ‘8’

15-826 Copyright: C. Faloutsos (2007) 63

CMU SCS

Overview

• B – trees

• B+ - trees, B*-trees

• hashing

C. Faloutsos 15-826

22

15-826 Copyright: C. Faloutsos (2007) 64

CMU SCS

B*-trees

• splits drop util. to 50%, and maybe increase

height

• How to avoid them?

15-826 Copyright: C. Faloutsos (2007) 65

CMU SCS

B*-trees: deferred split!

• Instead of splitting, LEND keys to sibling!

(through PARENT, of course!)

1 3

6

7

9

13

<6

>6 <9
>9

2

15-826 Copyright: C. Faloutsos (2007) 66

CMU SCS

B*-trees: deferred split!

• Instead of splitting, LEND keys to sibling!

(through PARENT, of course!)

1 2

3

6

9

13

<3

>3 <9
>9

2

7

FINAL TREE

C. Faloutsos 15-826

23

15-826 Copyright: C. Faloutsos (2007) 67

CMU SCS

B*-trees: deferred split!

• Notice: shorter, more packed, faster tree

• It’s a rare case, where space utilization and

speed improve together

• BUT: What if the sibling has no room for

our ‘lending’?

15-826 Copyright: C. Faloutsos (2007) 68

CMU SCS

B*-trees: deferred split!

• BUT: What if the sibling has no room for

our ‘lending’?

• A: 2-to-3 split: get the keys from the

sibling, pool them with ours (and a key

from the parent), and split in 3.

• Details: too messy (and even worse for

deletion)

15-826 Copyright: C. Faloutsos (2007) 69

CMU SCS

Conclusions

• Main ideas: recursive; block-aware; on

overflow -> split; defer splits

• All B-tree variants have excellent, O(logN)

worst-case performance for ins/del/search

• B+ tree is the prevailing indexing method

• More details: [Knuth vol 3.] or [Ramakrishnan &

Gehrke, 3rd ed, ch. 10]

