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Abstract

This paper addresses the problem of finding the K closest
pairs between two spatial data sets, where each set is
stored in a structure belonging in the R-tree family. Five
different algorithms (four recursive and one iterative) are
presented for solving this problem. The case of 1 closest
pair is treated as a special case. An extensive study,
based on experiments performed with synthetic as well
as with real point data sets, is presented. A wide
range of values for the basic parameters affecting the
performance of the algorithms, especially the effect of
overlap between the two data sets, is explored. Moreover,
an algorithmic as well as an experimental comparison
with existing incremental algorithms addressing the same
problem is presented. In most settings, the new algorithms
proposed clearly outperform the existing ones.

1 Introduction

The role of spatial databases is continuously increasing
in many modern applications during last years. Map-
ping, urban planning, transportation planning, resource
management, geomarketing, archeology and environ-
mental modeling are just some of these applications.

The key characteristic that makes a spatial database
a powerful tool is its ability to manipulate spatial data,
rather than simply to store and represent them. The
most basic form of such a manipulation is answering
queries related to the spatial properties of data. Some
typical spatial queries are the following:

• a “Point Location Query” seeks for the spatial
objects that fall on a given point.

∗Research performed under the European Union’s TMR
Chorochronos project, contract number ERBFMRX-CT96-0056
(DG12-BDCN).

• a “Range Query” seeks for the spatial objects
that are contained within a given region (usually
expressed as a rectangle).

• a “Join Query” may take many forms. It involves
two or more spatial data sets and discovers pairs (or
tuples, in case of more than two data sets) of spatial
objects that satisfy a given predicate. For example,
a join query that acts on two data sets, may discover
all pairs of spatial objects that intersect each other.

• Finally, a very common spatial query is the “Nearest
Neighbor Query” that seeks for the spatial objects
residing more closely to a given object. In its
simplest form, it discovers one such object (the
Nearest Neighbor). Its generalization discovers K
such objects (K Nearest Neighbors), for a given K.

In this paper, a spatial query that combines join and
nearest neighbor queries is examined. It is called “K
Closest Pairs Query” (K-CPQ) and it discovers the K
pairs of spatial objects formed from two data sets that
have the K smallest distances between them, where
K ≥ 1. Like a join query, all pairs of objects are
candidates for the result. Like a nearest neighbor query,
the K nearest neighbor property is the basis for the final
ordering. In the degenerate case of K = 1, the closest
pair of spatial objects is discovered. This problem is
a rather novel one. Although, the CP problem is well
honored in Computational Geometry, to the authors
knowledge, there is only one paper in the literature that
has addressed it in the context of spatial databases [11]
by presenting a number of incremental algorithms for its
solution. A similar problem is the “all nearest neighbor”
problem which has been investigated in [9].

K-CPQs are very useful in many applications that
use spatial data for decision making and other demand-
ing data handling operations. For example, consider a
case where one data set represents the locations of the
numerous archeological sites of Greece, while the sec-
ond set stands for the most important holiday resorts.
A K-CPQ will discover the K pairs of sites and holi-
day resorts that have the K smaller distances so that
tourists accommodated in a resort can easily visit the
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archeological site of each pair of the result. This infor-
mation could be utilized by the tourist authorities for
advertising purposes. The value of K is dependent on
the advertising budget of the tourist authorities.

The fundamental assumption is that the two spatial
data sets are stored in structures belonging in the family
of R-trees [10]. R-trees and their variants (see [8, 15]),
are considered an excellent choice for indexing various
kinds of spatial data (like points, polygons, 2-d objects,
etc) and have already been adopted in commercial
systems (Informix, Oracle, etc). In this paper we focus
on sets of point data. Five different algorithms are
presented for solving the problem of K-CPQ. Four
of these algorithms are recursive and one is iterative.
The problem of 1-CPQ is treated as a special case,
since increased performance can be achieved by making
use of properties holding for this case. Moreover,
an extensive performance study, based on experiments
performed with synthetic as well as with real point
data sets, is presented. A wide range of values for
the basic parameters affecting the performance of the
algorithms is examined. In addition, an algorithmic
as well as a comparative performance study with
the incremental algorithms of [11] is presented. The
finding of the above studies is the determination of
the algorithm outperforming all the others for each
set of parameter values. As it turns out, the new
(non-incremental) algorithms outperform the existing
incremental algorithms, under various settings.

The organization of this paper is the following. In
Section 2 the problem of K-CPQ, a brief description
of the family of R-trees and some useful metrics
between R-tree nodes and distances of closest pairs
are presented. In Section 3 the five new algorithms
are introduced and they are compared algorithmically
with the algorithm of [11]. Sections 4 and 5 exhibit
a detailed performance study of all the algorithms for
1- and K-CPQs, respectively. Moreover, in Section 5
a comparative performance study between the newly
introduced algorithms and the algorithm of [11] is
presented. In Section 6 conclusions on the contribution
of this paper and related future research plans are
presented.

2 Closest Pair Queries and R-trees

2.1 Definition of Problem
Let two point sets, P = {p1, p2, . . . , pNP } and Q =
{q1, q2, . . . , qNQ}, be stored in two R-trees, RP and RQ,
respectively. As 1-CP (One Closest Pair) of these two
point sets we define a pair

(pz , ql), pz ∈ P ∧ ql ∈ Q

such that

dist(pi, qj) ≥ dist(pz, ql), ∀pi ∈ P ∧ ∀qj ∈ Q

In other words, an 1-CP of P and Q is a pair that has
the smallest distance between all pairs of points that can
be formed by choosing one point of P and one point of
Q.1 As K-CPs (K Closest Pairs) of P and Q we define
a collection of K ordered pairs

(pz1 , ql1), (pz2 , ql2), . . . , (pzK , qlK ),

pz1 , pz2 , . . . , pzK ∈ P ∧ ql1 , ql2 , . . . qlK ∈ Q

such that

dist(pi, qj) ≥ dist(pzK , qlK ) ≥
dist(pz(K-1) , ql(K-1)) ≥ · · · ≥ dist(pz1 , ql1),

∀(pi, qj) ∈ (P×Q−{(pz1, ql1), (pz2 , ql2), . . . , (pzK , qlK )})
In other words, K-CPs of P and Q are K pairs that
have the K smallest distances between all pairs of points
that can be formed by choosing one point of P and one
point of Q. K must be smaller than | P | · | Q |, i.e.
the number of pairs that can be formed from P and Q.

Note that, due to ties of distances, the result of 1-
CPQ or the K-CPQ may not be unique for a specific
pair of P and Q. The aim of the presented algorithms
is to find one of the possible instances. Note also that
in the context of this paper “dist” stands for Euclidean
Distance, although the presented methods can be easily
adapted to any Minkowski metric. We also focus on 2-
dimensional space, but the extension to k-dimensional
space is straightforward.

2.2 R-trees

R-trees are hierarchical data structures based on B+-
trees. They are used for the dynamic organization of
a set of k-dimensional geometric objects representing
them by the minimum bounding k-dimensional rectan-
gles. Each R-tree node corresponds to the MBR that
contains its children. The tree leaves contain point-
ers to the objects of the database, instead of pointers
to children nodes. The nodes are implemented as disk
pages.

Many variations of R-trees have appeared in the
literature (an exhaustive survey can be found in [8]).
One of the most popular variations is the R*-tree [1].
The R*-tree follows a node split technique that is
more sophisticated than that of the simple R-tree and
is considered the most efficient variant of the R-tree
family, since, as far as searches are concerned, it can be
used in exactly the same way as simple R-trees. In this
paper, we choose R*-trees to perform our experimental
study.

1The 1-CP problem addressed in this paper is an extension of
the popular closest pair problem that appears in computational
geometry [20] for two point sets.
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2.3 Useful Metrics
Since the different algorithms for CPQs act on pairs
of R-trees, some metrics between MBRs (that can be
used to increase performance of the algorithms) will
be defined. Let NP and NQ be two internal nodes
of RP and RQ, respectively. Each of these nodes has
an MBR that contains all the points that reside in the
respective subtree. In order for this rectangle to be the
minimum bounding one, at least one point is located at
each edge of the rectangle. Let MP and MQ represent
the MBRs of NP and NQ, respectively. Let r1, r2, r3

and r4 be the four edges of MP and s1, s2, s3 and s4 be
the four edges of MQ. By MINDIST(ri, si) we denote
the minimum distance between two points falling on ri

and si. Accordingly, by MAXDIST(ri, si) we denote
the maximum distance between two points falling on ri

and si. In the sequel, we extend definitions of metrics
between a point and an MBR that appear in [21] and
define a set of useful metrics between two MBRs. In
case MP and MQ are disjoint we can define a metric
that expresses the minimum possible distance of two
points contained in different MBRs:

MINMINDIST(MP , MQ) = min
i,j

{MINDIST(ri, sj)}

In case the MBRs of the two nodes intersect, then MIN-
MINDIST(MP , MQ) equals 0. In any case (intersecting
or disjoint MBRs) we can define the metrics

MINMAXDIST(MP , MQ) = min
i,j

{MAXDIST(ri, sj)}

and

MAXMAXDIST(MP , MQ) = max
i,j

{MAXDIST(ri, sj)}

MAXMAXDIST expresses the maximum possible dis-
tance of any two points contained in different MBRs.
MINMAXDIST expresses an upper bound of distance
for at least one pair of points. More specifically, there
exists at least one pair of points (contained in different
MBRs) with distance smaller than or equal to MIN-
MAXDIST. In Figure 1, two MBRs and their MIN-
MINDIST, MINMAXDIST and MAXMAXDIST dis-
tances are depicted. Recall that at least one point is
located on each edge of each MBR. To summarize, for
each pair (pi, qj) of points, pi enclosed by MP and qj

enclosed by MQ, it holds that

MINMINDIST(MP , MQ) ≤ dist(pi, qj)
≤ MAXMAXDIST(MP , MQ) (1)

Moreover, there exists at least one pair (pi, qj) of points,
pi enclosed by MP and qj enclosed by MQ, such that

dist(pi, qj) ≤ MINMAXDIST(MP , MQ) (2)

These metrics can be calculated by formulae analogous
to the ones presented in [18, 21], where metrics between
a point and an MBR are defined.

❍❍❍❍❍❍❍❍❍❍❍

�
�
�
�
��

✄
✄✎ ❄

✲

MAXMAXDIST
MINMINDIST

MINMAXDIST

MP

MQ

Figure 1: Two MBRs and their MINMINDIST, MIN-
MAXDIST and MAXMAXDIST.

3 Algorithms for CPQs

In the following, a number of different algorithmic
approaches for discovering the 1-CP and the K-CPs
between points stored in two R-trees are presented.
Since the height of an R-tree depends on the number
of points inserted (as well as in the order of insertions),
the two R-trees may have the same, or different
heights. Besides, an algorithm for such a problem
may be recursive or iterative. All these different
possibilities are examined in the next sections. For the
ease of exposition, we proceed from simpler to more
complicated material.

3.1 Naive Algorithm

The simplest approach to the problem of Closest Pair
Queries is to follow a recursive naive solution for the 1-
CP subproblem and for two R-trees of the same height.
Such an algorithm consists of the following steps.

CP1 Start from the roots of the two R-trees and set
the minimum distance found so far, T , to ∞.

CP2 If you access a pair of internal nodes, propagate
downwards recursively for every possible pair of
MBRs.

CP3 If you access two leaves, calculate the distance
of each possible pair of points. If this distance is
smaller that T , update T .

The desired 1-CP is the one that corresponds to the
final value of T .

3.2 Exhaustive Algorithm

An improvement of the previous algorithm is to make
use of the left part of Inequality 1 and prune some paths
in the two trees that are not likely to lead to a better
solution. That is, to propagate downwards only for
those pairs of MBRs that satisfy this property. The
CP2 step of the previous algorithm would now be:

CP2 If you access a pair of internal nodes, calculate
MINMINDIST for each possible pair of MBRs.
Propagate downwards recursively only for those
pairs that have MINMINDIST ≤ T .
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3.3 Simple Recursive Algorithm

A further improvement is to try to minimize the value
of T as soon as possible. This can be done by making
use of Inequality 2. That is, when a pair of internal
nodes is visited, to examine if Inequality 2 applied to
every pair of MBRs, can give a smaller T value. Since
Inequality 2 holds for at least one pair of points, this
improvement is sound for the 1-CP problem. The CP2
step would now be:

CP2 If you access a pair of internal nodes, calculate the
minimum of MINMAXDIST for all possible pairs of
MBRs. If this minimum is smaller than T , update
T . Calculate MINMINDIST for each possible pair
of MBRs. Propagate downwards recursively only for
those pairs that have MINMINDIST ≤ T .

3.4 Sorted Distances Recursive Algorithm

Pairs of MBRs that have smaller MINMINDIST are
more likely to contain the 1-CP and to lead to a smaller
T . A heuristic that aims at improving our algorithms
even more when two internal nodes are accessed, is to
sort the pairs of MBRs according to ascending order of
MINMINDIST and to obey this order in propagating
downwards recursively. This order of processing is
expected to improve pruning of paths. The CP2 step of
the previous algorithm would be:

CP2 If you access a pair of internal nodes, calculate the
minimum of MINMAXDIST for all possible pairs of
MBRs. If this minimum is smaller than T , update
T . Calculate MINMINDIST for each possible pair
of MBRs and sort these pairs in ascending order
of MINMINDIST. Following this order, propagate
downwards recursively only for those pairs that have
MINMINDIST ≤ T .

3.5 Heap Algorithm

Unlike the previous ones, this algorithm is non recur-
sive. In order to overcome recursion and to keep track of
propagation downwards while accessing the two trees,
a heap is used. This heap holds pairs of MBRs accord-
ing to their MINMINDIST. The pair with the smallest
value resides on top of the heap. This pair is the next
candidate for visiting. The overall algorithm is as fol-
lows.

CP1 Start from the roots of the two R-trees, set T to
∞ and initialize the heap.

CP2 If you access a pair of internal nodes, calculate the
minimum of MINMAXDIST for all possible pairs of
MBRs. If this minimum is smaller than T , update
T . Calculate MINMINDIST for each possible pair
of MBRs. Insert into the heap those pairs that have
MINMINDIST ≤ T .

CP3 If you access two leaves, calculate the distance
of each possible pair of points. If this distance is
smaller that T , update T .

CP4 If the heap is empty then stop.

CP5 Get the pair on top of the heap. If this pair has
MINMINDIST > T , then stop. Else, repeat the
algorithm from CP2 for this pair.

The 1-CP is the pair that has distance T .

3.6 Treatment of Ties
In the algorithms where ties of MINMINDIST values
may appear (the Sorted Distances and the Heap
algorithms), it is possible to get a further improvement
by choosing the next pair in case of a tie using some
heuristic (and not following the order produced by the
sorting or the heap handling algorithm). The following
list presents five criteria that are likely to improve
performance. Thus, in case of a tie of two or more
pairs, choose the pair that has:

1. as one of its elements the largest MBR (the area of
an MBR is expressed as a percentage of the area of
the relevant root),

2. the smallest MINMAXDIST between its two ele-
ments,

3. the largest sum of the areas of its two elements,

4. the smallest difference of areas between the MBR
that embeds both its elements and these elements,

5. the largest area of intersection between its two
elements.

In case the criterion we use can not resolve the tie
(provide a winner), another criterion may be used at
a second stage.

3.7 Treatment of different heights
When the two R-trees storing the two point sets
have different heights the algorithms are slightly more
complicated. In recursive algorithms, there are two
approaches for treating different heights.

• The first approach is called “fix-at-root”. The
idea is, when the algorithm is called with a pair
of internal nodes at different levels, downwards
propagation stops in the tree of the lower level node,
while propagation in the other tree continues, until
a pair of nodes at the same level is reached. Then,
propagation continues in both subtrees as usual.

• The second approach is called “fix-at-leaves” and
works in the opposite way. Recursion propagates
downwards as usual. When the algorithm is called
with a leaf node on the one hand and an internal
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node on the other hand, downwards propagation
stops in the tree of the leaf node, while propagation
in the other tree continues as usual.

For example, for the Simple algorithm, application of
the “fix-at-leaves” strategy results in the following extra
step:

CP2.1 If you access a pair with one leaf and one internal
node, calculate the minimum of MINMAXDIST for
all possible pairs of MBRs that consist of the MBR
of this leaf and an MBR contained in the internal
node. If this minimum is smaller than T , update
T . Calculate also MINMINDIST for all these pairs.
For each pair that has MINMINDIST ≤ T , make
a recursive call with node parameters the nodes
corresponding to the MBRs of the pair (note that
the one parameter will be the leaf node and the other
parameter will be a child of the internal node).

While application of the “fix-at-root” strategy, for the
same algorithm results in the following extra step:

CP2.1 If you access two nodes residing at different
levels, calculate the minimum of MINMAXDIST for
all possible pairs of MBRs that consist of an MBR
contained in the higher level node and the MBR of
the lower level node. If this minimum is smaller than
T , update T . Calculate also MINMINDIST for all
these pairs. For each pair that has MINMINDIST ≤
T , make a recursive call with node parameters the
nodes corresponding to the MBRs of the pair (note
that the one parameter will be the node residing at
the lower level).

The Heap algorithm can be easily modified to deal
with different heights by the “fix-at-leaves” or the “fix-
at-root” strategy. The extra steps that needs to be
added to the Heap algorithm is analogous to one of the
steps presented above (depending on the strategy). The
only difference is that a recursive call is replaced by an
insertion in the heap.

3.8 Extending to K Closest Pairs
In order to solve the K-CPs problem an extra structure
that holds the K Closest Pairs is necessary. This
structure is organized as a max heap (called K-heap)
and holds pairs of points according to their distance.
The pair of points with the largest distance resides on
top of the heap.

• Initially the K-heap is empty.

• The pairs of points discovered in step CP3 are
inserted in the K-heap until it gets full.

• Then, when a new pair of points is discovered in step
CP3 and if its distance is smaller than the top of the
K-heap, the top is deleted and this pair is inserted
in the K-heap.

The above additions are the only ones needed for the
Naive and the Exhaustive algorithms to solve the K-
CPs problem and were used in the implementation of
the K-CP versions of these algorithms.

However, these additions are not sufficient for the
Simple, the Sorted Distances and the Heap algorithms.
These algorithms make use of Inequality 2 that, in
general, does not hold for more than one pairs of
points. This means that updating of T based on
MINMAXDIST values must be discarded. A simple
modification that can make these three algorithms
suitable for solving the K-CPs problem is to use the
distance of the top of the K-heap as the value of T ,
after the K-heap has become full. While the K-heap
has empty slots, infinity should be used as T . An
alternative, although more complicated, modification
(used in the implementation of the K-CP versions of
the three algorithms) is to make use of the right part
of Inequality 1, while pruning unnecessary paths in the
two trees. That is, among a number of pairs of MBRs
to find the one with MAXMAXDIST that might update
the value of T . Details are outlined in [5].

3.9 Related Work

Hjaltason and Samet [11] also presented algorithms for
closest pair queries in spatial databases (called “dis-
tance join algorithms” in [11]). These algorithms are
based on a priority queue and resemble the function-
ality of the Heap algorithm. However, there are sig-
nificant differences between the algorithms of [11], the
Heap and the other algorithms presented in the present
paper. The key differences are outlined in the following
paragraphs.

The algorithms of [11] store in the priority queue
item pairs of the following types: node/node, node/obr,
obr/node and object/object (where “node” is an R-
tree node, “obr” is an object bounding rectangle and
“object” is an actual data item). The Heap algorithm
stores pair items that are of internal-node/internal-node
type (where with “node” an R-tree node is referred).
While processing a pair of subtrees between the two
data sets, the algorithms of [11] are likely to insert
in the priority queue a significant portion of all the
above four types of item pairs that can be formed from
these subtrees. On the contrary, while processing the
same pair of subtrees, the Heap algorithm inserts only
a portion of the internal-node pairs that can be formed
from these subtrees (a small fraction of the pairs that
are likely to be inserted in the priority queue of [11]).
This fact advocates for the creation of a significantly
larger priority queue for [11] in comparison to the
structure of our Heap algorithm.

Due to its expected large size, the priority queue
of [11] is stored partially in main memory (with one
part as a heap and another part as an unordered list)
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and partially in secondary memory (as a number of
linked lists). The distinction of the size of each part
is crucial for performance (since pairs that are unlikely
to be accessed should be stored on disk) and depends
on the arbitrary choice of a constant called DT . As
the authors of [11] state, a policy for choosing DT is
a subject for further investigation. On the contrary,
the queue of the Heap algorithm is completely stored in
main memory, since its size is significantly smaller.

The basic algorithm of [11] is incremental, in the sense
that an unlimited number of closest pairs is produced
in ascending order of distance. To reduce the size of
the priority queue and increase the performance of the
algorithm, in [11], an extra structure is introduced and
an upper bound K is set for the number of closest
pairs that can be produced. After this modification,
the algorithm becomes incremental up to K, only. The
algorithms of the present paper calculate all K closest
pairs together. The main idea behind them is to
increase performance by achieving the highest pruning
possible, while tree paths are followed.

The algorithms of [11] solve ties of distances using
one of two approaches: depth-first (a pair with a node
at a deeper level has priority) and breadth-first (the
opposite). Moreover, the algorithms of [11] traverse
trees according to one of three policies: basic (priority
is given to one of the trees, arbitrarily), even (priority is
given to the node at shallower depth) and simultaneous
(all possible pairs of nodes are candidates for traversal).
On the other hand, all our algorithms follow the
simultaneous approach.

Finally, in the algorithms of [11], there is no distinc-
tion for the 1-CPQ (1-CPQ is just a case of K-CPQ).
In our algorithms, the 1-CPQ is a special case and the
use of Inequality 2 increases pruning and performance.

After presenting our proposals for efficient CPQ pro-
cessing as well as related work, an extensive experimen-
tation follows for 1- and K-CPQs. The goal of the ex-
periments is to trace the pros and cons of each alternate
solution and provide guidelines for query optimization
purposes. Due to space limitations, in the presentation
to follow some charts are omitted; interested readers
can refer to [5] for the complete performance study.

4 1-CPQs Performance Comparison

This section provides the results of an extensive ex-
perimentation study aiming at measuring and evalu-
ating the efficiency of the four CP algorithms (the
Naive one excluded) proposed in Section 3 for 1-CP
queries, namely the Exhaustive, the Simple, the Sorted
Distances,2 and the Heap algorithm (in the sequel, de-

2We have experimented with six sorting methods (Bubble-,
Selection-, Insertion-, Heap-, Quick-, MergeSort) and chosen
MergeSort because it obtained the best performance in terms of
both I/O and CPU cost.

noted by EXH, SIM, STD, and HEAP, respectively). As
already discussed, two parameters that need to be fur-
ther evaluated deal with (i) the treatment of ties when
STD and HEAP need to choose among several node
pairs with equal MINMINDIST and (ii) the treatment
of R-trees with different heights. After fixing these two
techniques, we proceed with an extensive comparison of
the proposed algorithms. A major part of the experi-
mentation consists of detecting and evaluating the effect
of two crucial factors involved: (i) the portion of over-
lapping between the two data sets and (ii) the size of
the underlying buffering scheme. For our experiments
we have built several R*-trees using the following data
sets:

• a group of random data sets of cardinality 20K,
40K, 60K, and 80K points following a uniform-like
distribution,

• a real data set from the Sequoia database [22]
consisting of 62,536 points that represent sites in
California, and

• a uniformly distributed data set consisting of 62,536
points, too.

All experiments have run on a workstation of 64 Mbytes
RAM and several Gbytes of secondary storage. The
page size was set to 1 Kbyte thus resulting to R*-tree
node capacity M = 21 (minimum occupancy was set to
m = M/3 = 7, a reasonable choice according to [1]).

4.1 Treatment of ties
According to the discussion in Subsection 3.6, five
alternative techniques are presented to deal with ties
between two or more node/node pairs that are likely
to appear during the sorting phase of the STD or the
HEAP algorithm. We call them T1 - T5 and evaluate
them in Figures 2.a and 2.b for the STD algorithm
and the HEAP algorithms, respectively. 60K/60K
data sets have been used. By fixing the performance
of T1 to 100% we present the relative gain or loss
of the other alternatives. Several other combinations
were also tested but the trends are similar and thus
are not presented here. For this set of experiments
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Figure 2: Comparison of Different Tie Treatment
Approaches in the (a) STD and (b) HEAP Algorithms
with Random Data Sets (60K/60K).
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the buffer was disabled. The conclusion is that
T1 is the clear winner. It always outperforms all
other alternatives since the other techniques lead to a
performance deterioration of up to 50% with respect to
T1. Obviously, the differences are clear for overlapping
data sets since for disjoint ones (overlapping = 0%) ties
appear rarely and thus almost all alternatives appear to
be equivalent.

4.2 R-trees with different heights
The “classic” join procedure propagates the two R-trees
and fixes the level of the shorter tree when it reaches
the leaves (“fix-at-leaves”) [3, 14, 16, 23]. In Subsection
3.7 we presented an alternative, called “fix-at-root”,
where the level of the shorter tree is fixed at the root
as long as the algorithm propagates downwards in the
taller tree until both reach the same level. We compare
the two approaches and the results are illustrated in
Figures 3.a and 3.b for the STD and HEAP algorithms,
respectively. The cardinality of the taller R-tree was
fixed to 80K random data (height h = 5) while the
shorter R-tree consisted of 20K - 60K random data (all
with h = 4). Three configurations were considered:
0%, 50%, and 100% overlapping between the two data
sets. The buffer size was again set to zero.3 Although
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Figure 3: Comparison of Different Height Treatment
Approaches in the (a) STD and (b) HEAP Algorithms.
Log Scale.

neglected in the literature of spatial join processing, the
“fix-at-root” approach turns out to be very efficient
for the purposes of closest-pair algorithms. After
many experiments we concluded that within the SIM
and HEAP algorithms, it always performs better than
the traditional “fix-at-leaves” approach with a relative
performance gain usually ranging from 10% up to 40%.
On the other hand, in the STD algorithm, the two
are more or less equivalent except the case of 0%
overlapping where “fix-at-leaves” performs much better
than the “fix-at-root” approach. This is explained by
the fact that pruning with “fix-at-root” is likely to
appear at higher levels in the taller tree than the “fix-
at-leaves”, thus excluding larger subtrees from further
processing.

3We have run the same experiments for several buffer sizes and
the conclusions were similar.

4.3 Comparison of 1-CP algorithms
We now proceed with the performance comparison of
the four algorithms, which were proposed as improve-
ments to the naive solution. We first assume zero buffer
(Subsection 4.3.1). As intuitively shown in Section 2,
closest pair queries are very sensitive to the relative lo-
cation of the two data sets involved, especially the por-
tion of overlapping. In other words, the higher the over-
lap between the two workspaces the more expensive the
query, in terms of disk accesses. To measure that, we
track the sensitivity of the algorithms on that parame-
ter (Subsection 4.3.2) and then we introduce a buffer of
predefined size following the least-recently-used (LRU)
policy (Subsection 4.3.3).

4.3.1 The effect of zero buffer capacity
All four algorithms were evaluated with respect to the
cardinality of the data sets, the distribution of data and
the portion of overlapping between the two data sets.
For this set of experiments the buffer was set to zero.
Figure 4 illustrates the performance of each algorithm
on 1-CPQ between real Sequoia data set and random
data of varying cardinality and (a) 0% and (b) 100%
overlapping workspaces. Based on these experimental
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Figure 4: Comparison of the four CP Algorithms: Real
vs. Random Data in (a) 0% and (b) 100% Overlapping
Workspaces.

outcomes (for more outcomes see [5]) we conclude that
for 0% overlapping, the cost of HEAP and STD is one
order of magnitude lower than that of SIM and EXH.
Also, for overlapping workspaces, HEAP and STD are
the winners with an average relative gap of 20% and
10%, respectively. In general, we derive that STD and
HEAP appear to be the most promising ones, since
they almost always outperform the other two. Another
conclusion is that the overlap factor should be further
investigated since all 1-CP algorithms are very sensitive
to this parameter. In other words, the key question
that needs to be addressed is the following: is there a
threshold (if yes, which) that makes the performance of
the three algorithms distinct enough?

4.3.2 The effect of the overlap
This sensitivity is quantitatively measured in the set
of experiments that follow. In particular, we measured
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the relative cost of the three algorithms (SIM, STD,
and HEAP) with respect to the cost of EXH, with the
portion of overlapping ranging from 0% to 100%. For
each experiment, on the one hand, it was the real data
set, denoted by “R”, consisting of 62,536 entries (Figure
5) and, on the other hand, a random data set of 40K or
80K cardinality. Especially for the R/80K experiments
where the two R*-trees have different heights, we
adopted the “fix-at-root” treatment which was shown to
be efficient in Subsection 4.2. Indeed and in accordance
to our intuition, overlap between the data sets is crucial
for the performance of all 1-CP algorithms. The cost
for a query involving fully overlapping data sets is
orders of magnitude higher than that involving disjoint
workspaces. The behavior of the three algorithms is

0%

20%

40%

60%

80%

100%

120%

0% 3% 6% 12% 25% 50% 100%

R
el

at
iv

e 
C

os
t

Portion of Overlapping

R/40K SIM
R/40K STD

R/40K HEAP
R/80K SIM
R/80K STD

R/80K HEAP

Figure 5: Finding a Threshold on the Overlap Factor:
Real vs. Random Data.

surprisingly similar. For small overlap (at most 5%),
they all achieve a significant improvement being 2-
20 times faster than EXH when a real data set is
joined with a uniform one. A justification for this
huge improvement when real data is involved is the
fact that node rectangles between the two R*-trees are
likely to be disjoint (or low overlapping) even for high
overlapping data sets. As a conclusion, zero or low
overlap gives a serious advantage to the three non-
exhaustive algorithms. It also turns out that this
parameter must be taken into account very seriously
when performing experimentation on CP algorithms.

4.3.3 Introducing the LRU-buffer

Cache policies considerably affect the performance of
the algorithms dealing with secondary storage. [13, 4]
have already studied the effect of the LRU-buffer size in
spatial selection, spatial join and spatial join between
different kinds of data, respectively. In this subsection
we present how the LRU buffer affects the performance
of each algorithm. We used LRU buffer varying from
B = 0 ... 256 pages (dedicated to each R-tree as two
equal portions of B/2 pages). For each experiment,
on the one hand, it was the real data set, denoted
by “R”, and, on the other hand, a random data set
(of cardinality 40K or 80K). Figure 6 illustrates the

results for the two configurations considered between
the two data sets (0% and 100% overlapping). As
before, for the R/80K experiment where the two R-
trees have different heights, it was the “fix-at-root”
approach adopted. Case (a) is clear: although EXH
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Figure 6: Comparison of the four 1-CP Algorithms for
Varying LRU Buffer Size: Real vs. Random Data in (a)
0% and (b) 100% Overlapping Workspaces.

and SIM are getting improved (by a factor that reaches
up to 2-3 for B = 256 pages) as long as the buffer
size grows, they never come close to STD and HEAP.
Interestingly, the latter ones are not sensitive to the
buffer size. On the other hand, overlapping adds a lot
of complexity to the question about the most efficient
algorithm. The conclusions that are drawn for this case
are the following:

• EXH and SIM are again affected by the LRU buffer
by improving their performance up to a factor of
2. Contrary to the previous case, STD also takes
gain of the buffer while HEAP remains non- sensitive
(only a 10% improvement is shown). The result of
that behavior is that HEAP quickly loses its relative
advantage and, after the threshold of B = 4 pages,
the others outperform it.

• For large LRU buffer sizes, the three recursive
algorithms (EXH, SIM, and STD) show interesting
similarities. First, the degree of improvement
is similar as the buffer grows (5%-10% for each
duplication of buffer size). Second, their behavior
is independent from the cardinality of the data sets.

Regarding sensitivity to buffer size, the non-recursive
HEAP algorithm is quite stable because it processes
the nodes from each R-tree in a simultaneous way.
On the other hand, the recursive EXH, SIM and STD
algorithms are more sensitive to the capacity of the LRU
buffer because they process a 1-CP query by following
a depth-first traversal pattern.

4.4 General guidelines
General guidelines that arise through this experimenta-
tion are the following:
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• STD and HEAP are the most efficient, since they
usually outperform the other two up to one order of
magnitude (for zero buffer size).

• The overlap factor between joined data sets deserves
serious consideration when performing experimenta-
tion on CP algorithms since the cost for fully over-
lapping workspaces is several orders of magnitude
higher than that for disjoint workspaces. Accord-
ing to our experiments, zero or small (at most 5%)
overlap gives a serious advantage to the three non-
exhaustive algorithms since they turn out to be 2-20
times faster than the exhaustive one.

• Although HEAP is the winner for zero buffer, it
quickly loses its relative advantage as buffer size
increases and, after the threshold of B = 4, the other
three algorithms outperform it.

5 K-CPQs Performance Comparison

We proceed with evaluating the performance of the four
algorithms for K-CPQs also taking into consideration
several parameters that affect performance (Subsection
5.1). A comparison with an incremental approach,
already found in the literature [11], is also included
(Subsection 5.2).

5.1 Comparison of the four algorithms
In correspondence to Section 4, we first assume zero
buffer (Subsection 5.1.1) and then measure the sensitiv-
ity of the algorithms on the overlap (Subsection 5.1.2)
and the buffer size (Subsection 5.1.3).

5.1.1 Experiments with zero buffer
For this set of experiments, we have chosen to run K-
CPQs between the real and the uniform data set, with
K varying from 1 up to 100,000. Figure 7 illustrates
the performance of each algorithm assuming (a) 0%
and (b) 100% overlapping workspaces. Obviously, the
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Figure 7: Comparison of the four K-CP Algorithms for
Varying K: Real vs. Uniform Data in (a) 0% and (b)
100% Overlapping Workspaces.

cost of each algorithm gets higher as K increases.
Interestingly, the deterioration is not smooth; after
a threshold the cost increases exponentially. This
threshold is usually between K = 100 and 1,000.
Another observation is that the portion of overlapping

again plays an important role in the ranking of the four
algorithms, as already detected in Section 4 (for K =
1). For non-overlapping data sets (Figure 7a), STD and
HEAP are 10 - 50 times faster than EXH, whereas SIM
cannot achieve a significant improvement. On the other
hand, for overlapping workspaces (Figure 7b), it is only
HEAP that clearly improves performance with respect
to EXH (although less than before: 10%-30%). Since
the overlap factor again turns out to be crucial for the
relative performance of the K-CP algorithms we further
investigate it in the sequel.

5.1.2 The effect of the overlap
The goal of this set of experiments is to detect
a threshold (if such exists) that would be used as
a guideline for an effective choice among the four
algorithms. To reach such a conclusion, we illustrate
in Figure 8 the relative cost of the STD and HEAP
algorithms with respect to the cost of EXH. For each
experiment, it was again the real and the uniform data
sets chosen, with K varying from 1 up to 100,000. The
results detect the winner for each configuration:

• SIM cannot improve the performance more than
20% except the case where K = 1 and overlap less
than 25% (see also [5]).

• STD and HEAP are almost equivalent for overlap
less than 10% (being from 5 up to 50 times faster
than EXH) and, then, HEAP clearly outperforms
STD with a relative gap increasing with K. For
overlap more than 50%, HEAP achieves 15% (for
small K values) up to 35% (for large K values)
savings in I/O compared with the rest algorithms.

As a guideline, for disjoint workspaces STD and HEAP
are both very efficient while for overlapping workspaces
HEAP is the algorithm to be preferred, and this holds
for an arbitrary K value.

5.1.3 The effect of the LRU-buffer
Similar to Subsection 4.3.3, an LRU buffer varying from
B = 0 up to 256 pages was dedicated to the two R-
trees in two equal portions of B/2 pages. For each
experiment, it was again, on the one hand, the real data
set and, on the other hand, the uniform data set. Part
of the results is illustrated in Figure 9 (for the (a) STD
and (b) HEAP algorithms). The charts correspond
to overlap 0% between the two data sets. According
to these results (appearing in more detail in [5]), for
0% overlap between two data sets, SIM and STD take
advantage of the buffer and their cost is significantly
reduced as the buffer size increases (up to one order of
magnitude for K = 100,000 and B = 256 pages). On
the other hand, HEAP is sensitive to the buffer size
only for large K values saving more than half of its cost
when K ≥ 10,000 and B > 16 pages. When comparing
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Figure 8: Finding a Threshold on the Overlap Factor for Varying K in (a) STD, and (b) HEAP.
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Figure 9: The Effect of the LRU Buffer Size for Varying K in (a) STD and (b) HEAP. Log Scale.

it with the other two algorithms, it turns out that the
superiority of HEAP (as already shown in Figure 7)
is overcome by its lack of sensitivity to the existence
of the LRU buffer. Thus, STD quickly outperforms
HEAP, i.e., for B > 4 pages. We have also run this set
of experiments for overlapping workspaces as well and
reached to similar conclusions, therefore they are not
illustrated. A remark that deserves more attention and
does not appear for 0% overlap, concerns the behavior
of SIM with respect to STD and HEAP: for large buffer
sizes SIM competes both of them and, in some cases,
even outperforms them, although marginally. Overall,
as a general hint, we suggest that HEAP (respectively,
STD) is the algorithm to be preferred when the LRU
buffer is small enough (respectively, medium to large).

5.2 Comparison with the incremental
approach

In [11] three alternative tree traversal policies were
presented: basic, even, and simultaneous tree traversals
(in the sequel, BAS, EVN, and SML, respectively), as
already discussed in Section 3. We have implemented
all three alternatives and, although our algorithms
are not incremental, in this subsection we provide

a performance comparison in order to extract useful
conclusions about the behavior of each one. In the
rest of the section, we compare the performance of
STD and HEAP, on the one hand, with EVN and
SML, on the other hand, since BAS turned out to be
inefficient for most settings of our experiments (included
in [5]). Figure 10 illustrates the performance of two
algorithms (STD and HEAP) proposed in Section 3
and two algorithms (EVN and SML) proposed in [11]
for all combinations of two settings for buffer size (0
and 128 pages) and two settings for overlapping factor
(0% and 100%). According to these experiments, EVN
is competitive for small K values but turns out to
be inefficient for K ≥ 10,000. For zero buffer size,
it is HEAP and SML that outperform the others in
most cases while for large buffer size, STD is the
most efficient. The advantage of STD due to large
buffer has been also mentioned in Subsection 5.1.3. It
is also worth mentioning that for disjoint workspaces
HEAP and SML appear to have identical behavior.4

4Both algorithms work in a simultaneous way. Apart from
their policy in filling the heap structure, a major difference
consists of the policy in treatment of ties. However, this is not
reflected in the overall I/O cost when the workspaces are disjoint,
since ties are rare in that case.
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Additional results, exploring the effect of the buffer size
in the relative performance of SML, STD and HEAP,
are presented in [5].

5.3 General guidelines
Overall, processing K-CPQs is a very expensive op-
eration. Among the four proposed algorithms we can
choose the most robust ones following some guidelines:

• Assuming no buffer, STD and HEAP are both very
efficient when the workspaces of the two data sets
do not overlap while, for overlapping workspaces,
HEAP is the most efficient choice.

• When assuming a buffer of reasonable size (e.g., B >
4 pages), STD outperforms HEAP, since the latter
one turned out to be insensitive to the existence of
the LRU buffer.

Regarding the incremental algorithms proposed in
[11], although SML is a competitive approach for
several configurations, it is again HEAP (for zero or
small buffer) and STD (for large buffer) that usually
outperform SML with a gap reaching up to 20% and
50%, respectively. On the other hand, unlike the
three competitors (SML, STD, and HEAP), EVN is not
stable to the variety of K values we experimented with.

6 Conclusions

CPQs are important in spatial databases; [19] includes
a variation of this query in a benchmark for Par-
adise [6]. However, unlike in computational geometry
literature [7, 12], efficient processing of the CP problem
has not gained special attention in spatial database re-
search. Certain other problems of computational geom-
etry, including the “all nearest neighbor” problem (that
is related to the CP problem), have been solved for ex-
ternal memory systems [9]. To the authors’ knowledge,
[11] is the only reference to this type of queries in the
spatial database literature. In this paper, we presented
a naive and four improved algorithms to process both
1- and K-CPQs. Three out of them are recursive (the
exhaustive, the simple, and the sorted distances) and
one is iterative (heap). An extensive experimentation

was also included, which resulted to several conclusions
about the efficiency of each algorithm with respect to
K, the size of the underlying buffer and the portion
of overlapping between the workspaces of the two data
sets. They are listed as follows:

• Sorted distances and Heap are the most promising
algorithms, since they perform well in the vast
majority of different configurations.

• Buffer size plays an important role, as presented
in detail, since it gives bonus to simple and sorted
distances rather than heap.

• K does not radically affect the relative performance
and the previous conclusions generally hold even for
large K values.

We have also presented the novel “fix-at-root” technique
for treating R-trees with different heights as an efficient,
as turned out to be, alternative of the popular “fix-at-
leaves” technique. In comparison with the algorithms
proposed in [11], our algorithms are more stable with
K and (especially, sorted distances) usually outperform
them by 10% - 50%. Our work is also the first
that addresses and evaluates the effect of the portion
of overlapping in the performance of CP algorithms
([11] considered fully overlapping workspaces only). As
presented through the experiments, a small increase
in the overlap between the data sets may cause
performance deterioration of orders of magnitude, in
terms of I/O cost and this is a key issue for effective
query optimization. Moreover, this behavior raises the
issue of the ‘meaning’ of CPQs under some conditions.
Following [2], we plan to explore the effect of overlap on
the CP problem, taking into account the (geometric)
distinction between the closest and the most remote
pairs.

One direction of future work is to study two special
cases of CPQs: “self-CPQ” and “Semi-CPQ”. In the
first case, both data sets actually refer to the same
entity (P ≡ Q) [5]. In the second case, a set of point
pairs is produced, where the first point of each pair
appears only once in the result (i.e. for each point in
P , the nearest point in Q is discovered) [11]. Other
directions of future work also include (a) the study of
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multi-way CPQs where tuples of objects are expected
to be the answers, extending related work in multi-way
spatial joins [14, 16] and (b) the analytical study of
CPQs, extending related work in spatial joins [23] and
nearest-neighbor queries [17].
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