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ABSTRACT
Skewed distributions appear very often in practice. Unfortu-
nately, the traditional Zipf distribution often fails to model
them well. In this paper, we propose a new probability
distribution, the Discrete Gaussian Exponential (DGX), to
achieve excellent fits in a wide variety of settings; our new
distribution includes the Zipf distribution as a special case.
We present a statistically sound method for estimating the
DGX parameters based on maximum likelihood estimation
(MLE). We applied DGX to a wide variety of real world
data sets, such as sales data from a large retailer chain, us-
age data from AT&T, and Internet clickstream data; in all
cases, DGX fits these distributions very well, with almost a
99% correlation coefficient in quantile-quantile plots. Our
algorithm also scales very well because it requires only a
single pass over the data. Finally, we illustrate the power
of DGX as a new tool for data mining tasks, such as outlier
detection.
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1. INTRODUCTION
In countless cases we encounter skewed distributions, where

a few products (or vocabulary words, or customers) are re-
sponsible for most of the revenue (or occurrences, or sales),
while the rest have very little individual contributions. Zipf,
in his milestone book [20], proposed the distribution in which
the frequency is inversely proportional to the rank of vocab-
ulary words (and city populations, length of articles, income
distributions and so on). Although a significant step to the
correct direction, the Zipf distribution often fails to model
real data sets well. For example, in Figure 1, we make
the “frequency-rank plot” and the “count-frequency plot”
of words in the Bible. As explained in the survey section,
the Zipf (or generalized-Zipf) distribution would expect the
plots to be straight lines in logarithmic-logarithmic scales.
However, we observe a clear tilting in Figure 1. Zipf him-
self had observed this deviation and even had a name for
it (“top concavity”), and he devoted several paragraphs in
his book to justify it, whenever it appeared in a data set.
Similar deviations are observed in many other cases, as we
shall see in section 4.

Our goal in this paper is to find a more general model. We
want a distribution that would have the following attractive
properties:

1. it should include the “Zipf” and “generalized Zipf” as
special cases;

2. it should fit well all the data sets that Zipf fits, and
many many more;

3. it should be parsimonious (i.e., few parameters);

4. it should be fast to compute its parameters, even if the
given data sets are huge.

The rest of the paper is organized as follows: Section 2
describes the Zipf distribution and gives the literature sur-
vey. Section 3 presents our proposed method, along with the
proofs and the algorithms. Section 4 gives the experiments
on our real data sets, in Section 5 we give some discussion
of our results and significance of our methods and Section 6
lists the conclusions and future research directions.

2. BACKGROUND - SURVEY
First, we start with the description of the Zipf distribu-

tion, and then we describe related work.
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(a) Rank-frequency plot of words in the Bible. We fit the
straight line using least square method.
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(b) Count-frequency plot of words in the Bible.

Figure 1: Rank-frequency plot and count-frequency plot of words in English Bible. Although they both show
Zipf-like skewed behavior, they clearly do not follow Zipf’s law exactly.

2.1 Background: Zipf and generalized Zipf
distributions

We describe the Zipf distribution and the two Zipf “laws”:
the rank-frequency one and the frequency-count one. The
laws are best described with an example, such as words in
a book (or the Bible, as we show in Figure 1) Let V be the
vocabulary size, f1 the occurrence frequency of the most
frequent vocabulary word, and f2 the second most frequent,
and so on.

Definition 1. The rank-frequency plot is the plot of the
occurrence frequency fr versus the rank r, in logarithmic-
logarithmic scales

The rank-frequency version of Zipf’s law states that

fr ∝ 1/r (1)

This is typically referred to as the Zipf ’s law or the Zipf
distribution. In log-log scales, the Zipf distribution gives a
straight line with slope -1.

The generalized Zipf distribution (or “Zipf-like” distribu-
tion) is defined as

fr ∝ 1/rθ (2)

where the log-log plot can be linear with any slope.
The second ’law’, also known as the discrete Pareto dis-

tribution[16], involves the “count-frequency” plot: let cf be
the count of vocabulary words that appear f times in the
document. The second Zipf’s law states that

cf ∝ 1/fφ (3)

There are three observations:

• The count-frequency plot actually corresponds to the
PDF (probability density function) of the occurrence
frequency of a word in a document;

• It is a mathematical consequence of the first law. It can
be shown, for example in [11] or [1], that φ = 1 + 1/θ;

• In log-log scales, the count-frequency plot of a Zipf
distribution will be a straight line, with slope φ.

Despite the success and fame of the Zipf distribution, we
note that, eg. in Figure 1, the words in the Bible do not
follow the Zipf distribution exactly, but instead they have
the “top concavity”.

For the rest of this work, we only report the ’count-frequency’
(= PDF) plots for all the upcoming data sets, since the PDF
is a more familiar concept than the “rank-frequency” plot,
and since the two “laws” are in fact sides of the same coin.

2.2 Survey
There are significant past attempts to model skewed dis-

tributions. They form two classes of distributions: discrete
and continuous.

2.2.1 Discrete distributions
This is the class that we are most interested in, since most

of the data of interest are either inherently integer-valued,
or rounded-off to integers: salaries and dollar amounts are
down to pennies, products sell integer counts (“1 loaf of
bread”), and so on: Distribution in this class include Zipf
and its variations, the Yule distribution [19] , and the Pareto
distribution [16]. Among these distributions, Zipf’s law is
most widely used because of its simple form. Zipf’s law
has been observed in many fields. For example, the popula-
tion of cities and the rank of the population[2], the number
of articles in rth largest journal versus the rank of the jour-
nal[17], the surnames of 4794 people in an area in England[6]
are all reported to ‘follow Zipf’s law. Recently, Zipf’s law
has been applied to research on web caching. Studies[8, 4,
18, 3] show that the number of requests the server of rank r
receives versus r also has the Zipf-like behavior.

2.2.2 Continuous distributions
Although not directly applicable, we mention them, mainly

because of the “lognormal” distribution, which is extremely
successful in modeling continuous data sets. The lognormal
distribution [7] takes positive values, and can be generated
as eX where X is a Gaussian variable. It has been used
to model particle sizes in natural aggregates, dust concen-
tration in industrial atmospheres, in geological applications,
concentration of minerals in deposits, flood flows, weights



of children, automobile insurance claims, the weight dis-
tribution of U.S. adult males and females (Page 238-239,
[15]). Gibrat found the distribution useful to represent the
distribution of size for varied kinds of “natural” economic
units.(Page 238-239, [15])

In several cases, there are even theoretical arguments sup-
porting the lognormal distribution[9, 10, 15] : For example,
if we break a stick into two at a random point, and continue
recursively, the length of the resulting pieces will follow a
lognormal distribution. It is also considered a competitor
to the Weibul distribution for lifetime distributions of man-
ufactured products. In fact, it can also approximate the
Gaussian distribution. (Page 238-239, [15])

There have been some attempts to fit this kind of skewed
data with other probability distributions, such as parabolic
fractal[13] and stretched exponentials[14]. These works, how-
ever, are based on continuous probability distribution func-
tions which are not appropriate for a lot of real world data
which can only take discrete values, such as the visits to web
sites, number of certain products sold in a supermarket, etc.
Secondly, they estimated the parameters by fitting a curve
on the rank-frequency plot in log-log scale, which we believe
is statistically ad hoc.

3. PROPOSED METHOD - DGX
Our goal is to find a discrete distribution that will fit the

PDF (a.k.a. frequency-count plot) of many, real data sets.
However, it is unclear where we should start from: Should

we try to fit a parabola in the rank-frequency plot? Or,
maybe, a third degree polynomial? or a Gaussian, a sinu-
soid, a spline? or something else? Or should we try all these
functions on the frequency-count plot?

A deeper question is: even if one of these functions fits in
a few cases, do we have “a-priori” reasons to believe that it
will fit well, in multiple settings?

The answer to all this questions is our proposed DGX dis-
tribution. Judging from the success of the lognormal (also
referred to as “anti-lognormal”) distribution for continuous
data, we propose the following thought experiment: Con-
sider a random variable, say, the duration of a web-surfing
session. This is a continuous variable, and, most likely,
might follow a lognormal distribution. However, we need to
store it with finite accuracy, and thus turn it into an integer
(number of minutes, or seconds, or hours). This is exactly
the motivation behind DGX. Consider a lognormal random
variable (by creating a Gaussian variable, and exponentiat-
ing it); then, digitize it to the nearest integer. The same
is true for everything else: salaries (digitized to penny ac-
curacy), duration of hospital stays (rounded to days), body
height (inches), body weight (pounds) and so on.

There is a subtle, but important point: If the lognormal
random variable becomes zero after the rounding, we omit
it. This is necessary, since, e.g., we don’t know how many
vocabulary words have not appeared in our document. No-
tice that this omission leads to the so-called “truncated”
or “veiled” random variables, which are notoriously difficult
with respect to their parameter estimations, in the continu-
ous case.

3.1 Probability Distribution Function
We are now ready to present our proposed discrete PDF.

We propose a distribution with the following PDF:

P (x = k) =
A(µ, σ)

k
exp

�
− (lnk − µ)2

2σ2

�
k = 1, 2, . . . (4)

where

A(µ, σ) =

(
∞X
k=1

1

k
exp

�
− (lnk − µ)2

2σ2

�)−1

is a normalization constant depending on µ and σ.
This PDF has the following characteristics

• It is discrete, which means it is suitable to model many
real discrete distributions.

• It is a discretized version of a known continuous dis-
tribution, the lognormal distribution. As we know,
the PDF of a lognormal distribution is a parabola in
log-log plot, which is next simplest model beyond a
straight line.

• This model has only two parameters to estimate, so it
is not difficult to compute.

• As we will show in next section, DGX includes Zipf’s
law as a special case.

3.2 Zipf’s law as a special case

Lemma 1. The Discrete Gaussian Exponential (DGX) as
defined by Eq.(4) reduces to Zipf ’s law as µ→ −∞.

Proof: We first rewrite Eq.(4) as

P (x = k) ∝ 1

k
exp

�
− lnk(lnk − 2µ)

2σ2

�

Assume that lnk << |µ|, the PDF becomes

P (x = k) ∝ 1

k
exp

�
µlnk

σ2

�
∝ k−1+µ/σ2

which reduces to generalized Zipf distribution (See Eq.(3))
with slope φ = 1− µ/σ2. QED

As we will see later from the results of our experiments,
DGX works well on real data sets both when their PDF has
a clear curvature and when the PDF is straight in log-log
plot.

3.3 Estimation of parameters
Two major methods have been used to fit the skewed data

with proposed models. One is to fit the frequency-rank plot
with linear or nonlinear regression[5], while the other is to fit
the PDF with maximum likelihood estimation (MLE). We
believe the second method is statistically sound, therefore
we choose to use MLE to estimate parameters, µ and σ, for
DGX. If the data are x1, . . . , xn, the likelihood is

L(µ, σ) =

nY
i=1

P (xi) = A(µ, σ)n
nY
i=1

1

xi
exp

�
− (lnxi − µ)2

2σ2

�
(5)

and its logarithm, the log-likelihood is

l(µ, σ) = nlnA(µ, σ) −
nX
i=1

�
lnxi +

(lnxi − µ)2

2σ2

�
(6)



We then maximize l(µ, σ) numerically to estimate parame-
ters, µ and σ. For clarity, we describe DGX on the count-
frequency of words in documents, but, of course, the same
algorithm applies to any setting. The full algorithm is as
follows,

Algorithm DGX Estimator
Input: A sequence (“multiset”) of N words w(i), i = 1, . . . , N

appeared in a document
Output: Estimated parameters, µ and σ
1. Create an associative array word count (as in Perl) to

store the count of distinct words
2. Create another associative array y to store distinct word

frequencies.
3. for i ←1 to N
4. w id ←w(i)
5. word count(w id) ←word count(w id) + 1
6. (∗ V is vocabulary size, i.e., the number of distinct

words. ∗)
7. V ←size(word count)
8. for i ←1 to V
9. key ←word count(i)
10. y(key) ←y(key)+1
11. (∗ para is used to pass parameters to loglikelihood

function. ∗)
12. (∗ µ0 and σ0 are initial values for µ and σ ∗)
13. (∗ y is the count-frequency data ∗)
14. (∗ tolerance is used to set the stopping criterion ∗)
15. para ←(µ0, σ0, y, tolerance)
16. (∗ Call a maximization routine to find the optimal pa-

rameters, µ and σ. Here the loglikelihood func is a
function which evaluates the loglikelihood (as defined
in Eq.(6)) given a certain (µ, σ) pair. ∗)

17. [µ, σ] = Maximization(loglikelihood func, para)
18. Output [µ, σ] and exit.

Note that we only need to go over the data set once (step
3 to 5) to obtain the frequency vector, word count, and go
over the frequency vector once to obtain the count vector, y.
The estimation is then carried out only on the count vector.
This computation can be done fast.

In Step 17, we called an optimization function, e.g. fmin-
search[12] in Matlab, to which we pass the function loglike-
lihood func and its parameters para=(tolerance, µ0, σ0).

4. EXPERIMENTS

4.1 Experiment Setup

4.1.1 Data Sets Description
The DGX is designed to fit a wide variety of data sets. We

thus applied it to three data sets from completely different
fields:

• Text: the English Bible. There are totally about 800000
words and the size of the vocabulary is V ≈ 12500.

• Sales data from a large retailer chain, in which there
are hundreds of branches. This data set, which in-
cludes all sales information of the store in one week,
is about 10GB large. We studied the count-frequency
relation of the products. Here the products play the
role of vocabulary words and the sales of products cor-
respond to the count of vocabulary words.

• Telecommunications data - customer data from an AT&T
service of monthly usage volumes, broken down by cus-
tomer. We used three instances of this data, each from
a different geographic region, which we refer to as Re-
gion A, Region B, and Region C.

• Clickstream data: This data set is obtained from an
ISP which collects information about Internet users’
browsing behavior. We studied this data set from two
angles, the count-frequency relation of website traffic (
the distribution of web sites versus the number of visits
they receive) and the count-frequency relation of user
sessions (The distribution of users versus the number
of web sites they visit). In the first case, the web sites
play the role of vocabulary words and the number of
visits they receive corresponds to the count of vocab-
ulary words; in the second case, the web users play
the role of vocabulary words, and the number of web
sites they visit corresponds to the count of vocabulary
words.

All these data sets show extremely skewed behavior, i.e.,
we expect to see that very few products, or web sites are re-
ally popular, while most products have low sales, and most
web sites have low traffic. Therefore, it is meaningless to
talk about the mean, median or variance of these data. To
characterize these data, we need to use some skewed distri-
bution. We also observe that Zipf’s Law often fails, i.e., the
PDF in log-log scale shows a clear curving trend. However,
DGX gives excellent fits in all cases we tested, including
when the data set is very Zipf-like as well as when it devi-
ates from Zipf’s law very much.

4.1.2 Goodness of Fit
The technique we used to test the goodness-of-fit is the

traditional quantile-quantile plot (qqplot). The qqplot com-
pares the quantiles of two data sets. If the two data sets
are from the same distribution, the qqplot should be linear
and the slope should be one. We first use the original data
to estimate the parameters of DGX. We then use DGX and
the estimated parameters to generate a synthetic data set.
Next, we make a qqplot between the real and the synthetic
data sets. Then, we fit the qqplot with a straight line and
compute the slope and correlation coefficient. If both are
close to one, we can claim that the real data and the syn-
thetic data are from the same distribution.

4.2 Results

4.2.1 Text data
We first apply DGX to text data from the Bible. The

results are shown in Figure 2. We notice that the real data
and the synthetic data are in agreement. The slope and the
correlation coefficient of the qqplot are both very close to
one, which indicates we obtain an excellent fit.

4.2.2 Clickstream Data
We also apply DGX to the clickstream data. We study

the count-frequency relation of the web sites and the users.
The count-frequency plot of website traffic, as shown in Fig-
ure 3-(a) shows a clear Zipf-like behavior, while the count-
frequency plot 3-(b) of users deviates significantly from Zipf’s
law. However, both distributions can be fit well with DGX.
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(a) Count-frequency plot of words in Bible.
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Figure 2: Count-frequency plots of real data and synthetic data for words in Bible. Here, µ = −2.106 and
σ = 3.23. We find that the synthetic data match the real data very well. The qqplot is practically linear, the
slope and the correlation coefficient are close to unity. All indicate that DGX gives an excellent fit.
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(a) Count-frequency plot of website visits. Estimated pa-
rameters are (µ = −60.35, σ = 7.68). We observe that
this distribution is very Zipf-like and it has a large neg-
ative µ. This seems to agree with Lemma 1.
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(b) Count-frequency plot of user sessions. Estimated pa-
rameters are (µ = 2.86, σ = 1.42). We observe that this
data set deviates significantly from Zipf’s law, but it can
still be modeled well with DGX.

Figure 3: Count-frequency plots of website visitors and user sessions. They show very different behavior,
but both can be modeled well with DGX

4.2.3 Sales data
We then applied DGX to sales data from the three largest

branches of a retail chain. For each store, we use the sales
data to estimate parameters µ and σ in our distribution.
With the estimated parameters we generate a set of syn-
thetic data. Then, for each branch, we make the count-
frequency plot and the qqplot as in Figure 4. We notice
that they have similar count-frequency plots. Their param-
eters, µ and σ, have similar values. As we will see later,
some other stores have very different parameters and their
count-frequency plots have different shapes.

From Figure 4, we observe an excellent fit between the
synthetic data and the real data. In the count-frequency
plot which is clearly not a straight line, DGX gives a nice
fit. We also observe that the slope and correlation coefficient
of the qqplot are very close to one, which also indicates the
data is expressed with DGX very well.

4.2.4 Telecommunication Data
We then apply DGX to customer data from an AT&T

service of monthly usage volumes, broken down by customer.
We used three instances of this data, each from a different
geographic region, which we refer to as Region A, Region
B, and Region C. Following the same procedures, we obtain
the results shown in Figure 5. Again, this data set is fit very
well with DGX.

5. DISCUSSION
Skewed distributions, like the count-frequency data as we

described above, exist in many fields of natural and social
sciences. They are not represented well using standard sta-
tistical aggregates such as mean, median, or extrema. For
example, most words appear only once in Bible while a few
common words appear very often. The mean is 63.0, the
median is 3, the maximum is 63924, and the minimum is
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Count-frequency plot for store no. 96. µ = 0.999 and
σ = 1.682
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Count-frequency plot for store no. 82. µ = 0.905 and
σ = 1.601
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qqplot of real and synthetic data for store no. 82
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Count-frequency plot for store no. 101. µ = 0.788 and
σ = 1.542
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Figure 4: Count-frequency plots of real data and synthetic for store 96, 82 and 101 and their qqplots. We
notice that the real and the synthetic data are in good agreement. The qqplot is almost linear, the slope and
the correlation coefficient are close to one. All indicate that DGX gives an excellent fit.
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Count-frequency plot of real and synthetic data for Re-
gion A. µ = −0.712 and σ = 1.450.
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Count-frequency plot of real and synthetic data for Re-
gion B. µ = −0.420 and σ = 1.387.
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qqplot of real and synthetic data for Region B.
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Count-frequency plot of real and synthetic data for Re-
gion C. µ = −0.64 and σ = 1.418.
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Figure 5: Count-frequency plots of service usage data from AT&T. We show real data and synthetic for three
regions and their qqplots. We notice that the real and the synthetic data are in good agreement. The qqplot
is almost linear, the slope and the correlation coefficient are close to unity. All indicate that DGX gives an
excellent fit.
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1. These aggregates do not give a sense of the distribution;
for example, they do not indicate how the i-th frequency is
related to the (i+1)-th frequency. We therefore propose a
new discrete distribution, DGX, which seems to be an ex-
cellent tool to model skewed data. The features we obtain
with DGX are µ and σ, which can be used for data mining,
such as clustering or outlier detection.

To illustrate the data mining power of DGX, we apply
it to the sales data of all branches of the retail chain and
obtain a (µ, σ) pair for every store. In Figure 6, we make
a scatter plot of (µ, σ) pairs and mark a few outlier stores
according to the parameters. Notice that store No. 4 and
No. 31 are outliers in (µ, σ) plane.

Figure 7 gives the count-frequency plots for these two as
well as some other “mainstream” stores. It is clear that No.
4 and No. 31 have more linear plots while the others have
curving plots. Moreover, closer inspection shows that these
two have smaller sales volume. This shows that the outlier
detection in (µ, σ) indeed successfully discovered some stores
with “abnormal” distribute sales data.

6. CONCLUSIONS
Skewed distributions appear very often in practice. They

are often modeled well by “power” laws such as the (gen-
eralized) Zipf distribution. However, they often suffer from
deviations, like ’top-concavity’.

The main contribution of this work is an alternative dis-
crete distribution called DGX, which has the following fea-
tures:

• It includes the Zipf and generalized Zipf distributions
as special cases - thus, it is applicable to all the previ-
ous settings that Zipf works well;

• It is related to the “lognormal” distribution, which
models a huge number of continuous distributions; it
can also be derived from ’first principles’, like the prin-
ciple of “proportional effects” in economics ([15], page
210);

• It models several discrete, real-life distributions, from
retailer sales data to telecommunication data to web-

hits, with practically perfect correlation coefficient in
the traditional quantile-quantile (“qq”) plots;

• It is parsimonious, requiring only two parameters (µ
and σ), to describe the distribution nearly perfectly;

• Its parameters can be estimated with a single pass over
the data set.

We provided a statistically sound method to estimate the
parameters, using the Maximum Likelihood Estimation, and
we showed how to use DGX to find patterns and outliers in
a collection of many skewed distributions, like branches that
have clearly different patterns than the rest.

The µ and σ parameters of DGX are valuable for clus-
tering and detecting outliers, because they constitute con-
cise, but accurate “features” of a discrete distribution. In
contrast, for skewed distributions, the obvious ’features’ of
mean, median, minimum, maximum, and variance are prac-
tically useless: The minimum value is almost always ’1’; the
maximum value (eg., the salary of the Queen of England
in a data set with salaries) is so large and so unrelated to
the rest of the data that it is useless as a feature; the mean
is ’high-jacked’ by the few outliers; the standard deviation
tends to infinity, because of the so-called “heavy-tail” prop-
erty of the Pareto-like distributions; and the median is low,
but it still fails to convey much information about the rest
of the distribution.

Given the success of DGX in modeling 1-dimensional PDFs,
future work could focus on extensions of it for higher dimen-
sionalities.
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