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Abstract

Network, web, and disk I/O traffic are usually bursty, self-similar [9, 3, 5, 6] and therefore can not be modeled

adequately with Poisson arrivals[9]. However, we do want tomodel these types of traffic and to generate realistic

traces, because of obvious applications for disk scheduling, network management, web server design.

Previous models (like fractional Brownian motion, ARFIMA etc) tried to capture the ‘burstiness’. However

the proposed models either require too many parameters to fitand/or require prohibitively large (quadratic) time

to generate large traces. We propose a simple, parsimoniousmethod, theb-model, which solves both problems:

It requires just one parameter (b), and it can easily generate large traces. In addition, it has many more attractive

properties: (a) With our proposed estimation algorithm, itrequires just asinglepass over the actual trace to

estimateb. For example, a one-day-long disk trace in milliseconds contains about 86Mb data points and requires

about 3 minutes for model fitting and 5 minutes for generation. (b) The resulting synthetic traces are very

realistic: our experiments on real disk and web traces show that our synthetic traces match the real ones very

well in terms of queuing behavior.
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1 Introduction

A number of different types of traffic (e.g. Ethernet [9], web[3], video [5] and disk [6] traffic) are self-similar for

a wide range of time scales. Such traffic also typically exhibits significant burstiness. Given these relatively recent

observations, many standard methods for traffic generationare fundamentally flawed, since they do not incorporate

these basic facts.

Of these standard methods, the Poisson arrival model is by far the most commonly and widely used. It has the

highly desirable properties of being relatively straighforward and easy to grasp. It is also very concise, since it relies

on very few parameters that can be easily estimated from realdata. Unfortunately, the traffic it generates is neither

self-similar, nor bursty.

A number of other methods have been proposed recently, such as the multiple ON/OFF source aggregation

process. Many others draw from and combine self-similar processes from statistics. However, many of these

methods are quite complicated or ad-hoc and they employ models that are fine-tuned only to particular classes of

traffic. Others suffer from a very large number of parameters. As a result, the parameter estimation and traffic

generation processes often require significant computational effort.

We propose a simple and elegant model which has the same desirable properties as the Poisson model. Namely,

it is based on a simple and straightforward fundamental process. It relies on very few parameters, which can be

easily estimated from actual data. However, although simple, it is powerful enough to succesfully characterize

self-similar, bursty traffic for a wide range of time scales.Although simple, out model is general enough to be

applicable to a wide range of domains. The main goal of the present paper is to describe our model and demonstrate

its usefulness in a variety of domains.

An important problem we chose to demonstrate our method is I/O traffic modelling. This is a difficult and

unsolved problem [4]. Besides being useful for accurate evaluation of disk subsystem performance, a good model

is crucial in the very design of such a system. If a schedulingalgorithm is to be succesful, an understanding of the

common traffic patterns is necessary. Furthermore, a simpleand fast model could be incorporated directly in access

prediction and prefetching subsystems and we are currentlyworking towards that goal.

Furthermore, previous work seldom used domain-specific metrics for evaluation. Most comparisons are based

on intrinsic statistical properties of the traces themselves (such as variance, autocorrelation, entropy, etc.). Although

these are important properties, what matters in the end is how a real system behaves under any given workload.

Choosing a particular application domain allows us to compare the real and synthetic traces using detailed simula-

tion. Based on these simulations, we show how the synthetic traces match the real ones in terms of queueing delay
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and interarrival time distributions.

Our model has only one parameter. Compared to other models, the algorithms involved in our model are

extremely efficient. Model fitting is linear and the Perl implementation can give an accurate estimation in less than

3 minutes for a one day-long disk trace in millisecond resolution (more than 86Mb data points). Generation of

synthetic traces requires is also linear and it generates a realistic one-day-long disk trace in 5 minutes.

The b-model is closely related to the well-known “80/20 law” in databases: 80% of the queries access 20%

of the data. In fact, most of the distributions in the real world follow the “80/20 law” [7], even in other domains

(such as ore and population distributions, highway traffic patterns, or photon distributions in electromagnetic cavity

radiation).

The paper is organized as follows. We give a brief overview ofrelated work in the next section. section 3

provides some background information on self-similarity.The b-model is introduced in section 4, which also

presents the model fitting algorithm and its derivation, as well as the trace generation algorithm. We evaluate the

model using several real data sets in section 5. The implications and general usefulness of the proposed model are

discussed in section 6.

2 Survey

Modelling of bursty time sequences has recently received considerable attention in the literature. Most real-world

traffic is self-similar and bursty (e.g. Ethernet [9], web [3], video [5] and disk [6] traffic). This renders many

standard methods (such as Poisson arrivals) useless.

A number of models that use self-similar processes have beenproposed. For example, Gartett and Willinger [5]

used a fractional ARIMA process to generate synthetic Variable Bit Rate (VBR) video traces. Since the model itself

is not intrinsically bursty, it is fed with the logarithm of the data in order to create the requisite burstiness.

Barford and Crovella [1] took another approach in the SURGE web trace generator. They aggregate a large

number of ON/OFF heavy tailed distributions to synthesize self-similar web traffic. Gomez [6] employed a similar

method to synthesize I/O access traces.

All the models mentioned above require the estimation of a large number of parameters from the original traces.

This usually results in high computational costs for model fitting and synthetic trace generation. Also, the evaluation

done in this previous work focuses on intrinsic, statistical properties of the real and synthesized workloads.

Another approach similar to ours is taken by Ribeiro et al. [10]. Their Multifractal Wavelets used a similar

multiplicative cascading process to generate web traces. Their evaluation is based on the queuing behavior from a
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(a) A one-hour disk trace collected on a Unix workstation
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(b) Part of the trace, fromt = 1300 sec, length200 sec.
Figure 1: Self-similarity of disk traffic [14]. Shown in (b) is a portion of the trace in (a) (total number of disk

requests per millisecond). Note that is is very similar to the original trace. Self-similar sequences have this property

across all (or, in practice, a very wide range) of time scales. Each disk request is1Kbyte.
simulator. However, their model requires fitting more parameters than ours.

The b-model presented here is very concise; only one parameter isenough to describe the entire trace. The

model is accurate in terms of domain-specific properties such as interarrival time distribution and queuing behavior.

Furthermore, the model fitting and trace generation algorithms are linear and require only a single pass on the

data. It would therefore be possible to integrate them in network or disk devices (which typically have constrained

resources) and use them to collect data on the fly and “learn” the traffic characteristics in real-time.

3 Background: Self-Similarity

After the initial discovery that Ethernet traffic is self-similar [9], a high degree of self-similarity has been observed

in many other types of traffic (e.g. TCP [11], video [5], web [3], file system [8], and disk I/O [6] traffic). In this

section we give a brief overview of self-similar processes.

Informally, self-similarity means invariance with respect to scaling across all time scales. “Invariance” may

mean exact identity, in which case we speak ofdeterministicself-similarity. However, it may imply identical statis-

tical properties, in which case we havestatisticalor stochasticself-similarity. Figure 1 shows the self-similarity of

disk traces. The trace is from [12]. It records the activities on 8 disks and the figure shows an hour-long trace from
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disk 2. The number (orvolume) of disk requests is plotted against time in millisecond resolution in (a) and portion

of it in (b); the enlarged portion in a finer scale is quantitatively similar to the entire trace viewed in a larger time

scale.

For these bursty I/O workloads, the traditional Poisson arrival assumption fails horribly because it generates

smooth traffic and fails to capture the peaks and troughs of the real data. If we assume the arrival process is Poisson

with the same total volume of disk requests, the traffic is very smooth with just 1 or 2 disk requests occuring most

of the time.

Formally, we can define self-similarity as follows [2]: LetY be a stochastic process with continuous time

parametert. Yt is called (statisticallyor stochastically) self-similar, if for any positive scaling factorc, the rescaled

signalYct, has an distribution of values identical to that of the original signalYt.
Symbol DefinitionYt time series data pointsH Hurst exponentl length ofYt (ie. number of data points)n aggregation levelN total volume ofYt (ie.

Plt=0 Yt)b b-model biasE(n) entropy at aggregation levelnE(b) �b lg b� (1� b) lg(1� b), estimated from the slope of the entropy

plotlg x base-2 logarithm

Table 1: Symbol definitions.

A common measure of self-similarity in the literature is theHurst exponentH. A value ofH between12 and

1 indicates the degree of self-similarity. It is also used asa global1 index for burstiness [9]. There are several

exploratory analytic tools to estimateH, such as R/S plots, variance plots, autocorrelation functions, and peri-

odograms [2].

We will very briefly explain the R/S and variance plots, sincewe will use them to detect self-similarity in the
1Other quantities, such as the Hölder exponent (also known as the irregularity index), are used to characterize the burstiness around a

particular point in a signal.

5



1

p

p^2

1 1 11/2 1/2

(a) Multiplicative cascading generation ofb-model

40

80

0 200 400 600 800 1000

Y
_t

(x
)

time

(b) A sample data generated with bias

0.7, length 1024, and volume 4096

0

3

6

9

0 5 10

en
tr

op
y 

va
lu

e

aggregation level

"test.enp"
0.881*x

(c) Entropy plot for the data

Figure 2: B-model. The sample data of bias 0.7 shows a slope of0.881 in entropy plot.

real traces. TheR/S plotshows the average rescaled range against the window size in log-log scale by aggregating

the original data set into equal-sized windows. Thevariance plotshow the variance of the data against the window

size in log-log scale. The points should approximate a line for a self-similar signals and the slope of both plots can

be used to estimate the Hurst exponent.

However, self-similar processes don’t always generate bursty time sequences. The parameterH focuses more

on the behavior across large time scales. In the next section, we will introduce theb-model , which is intrinsically

bursty and matches the irregularity of the original data at fine time scales.

4 Modeling I/O workloads with the b-model

We introduce theb-model in this section. The model involves one parameter, the biasb, which is directly related to

the burstiness of the data.

The proposed method has two main advantages. First, the model is concise; it requires only one parameter (biasb) to characterize the entire trace. More importantly, modelfitting and synthetic trace generation are very efficient

and scale linearly with respect to the data set size.

4.1 Theb-model

Theb-model is closely related to the “80=20 law” in databases[7]: 80% of the queries involve 20% of the data. In

the b-model , a ‘bias’ parameterb = 0:8 means that, within a given time interval, 80% of the accesseshappen in

one half (and the remaining 20% in the other half). More specifically, the whole construction begins with a uniform
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interval and recursively subdivides the number of accessesto each half, quarter, eighth, etc. according to the biasb.
Thus, stepn + 1 ends with a total of2n+1 data points, which are obtained by splitting each of the2n points from

stepn according to the formula: Y (n+1)t (2� i) = Y (n)t (i) � (1� b);Y (n+1)t (2� i+ 1) = Y (n)t (i) � b;
for i = 0; 1; : : : ; 2n � 1 andb 2 [0:5; 1). The exponent inY (n)t indicates the current step and is also called the

aggregation level. The above formulas are for thedeterministicversion of the model, where the split is always done

in the same direction.

Thus, the value ofY (n)t (j) after stepn isY (n)t (i) = bj(1� b)n�j; i = 0; : : : ; 2n � 1 (1)

wherej is the number of times the data point falls into the upper halfof the split. Figure 2 (a) gives the first 3 steps

of the construction process and (b) shows a sample trace withb = 0:7 of length1024 with total volume of 4096

with b always on the left. In real trace generation, we letb go randomly to left or right to create some randomness

in the synthetic trace. Note that all the data points always sum up to 1.2n�1Xi=0 Y (n)t (i) = 2n�1Xi=0 bj(1� b)k�j= ((1 � b) + b)n= 1:
Due to the multiplicative cascading process during the construction, theb-model generates a self-similar trace

with high local irregularity, which depends onb. The closerb is to 1, the higher the irregularity andb = 0:5 gives a

uniform trace.

4.2 Entropy and bias

We will now discuss the relation between entropy and the bias(b) in our model. This is a fundamental result and

the basis for our model fitting algorithm.
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First, we briefly re-introduce the concept of entropy. A zero-memory information sourceS is a source that

emits symbols from an alphabetfs1; s2; � � � ; slg with probabilitiesfp1; p2; � � � ; plg, respectively (
P pi = 1). Each

symbol is emitted independently of any others. The average amount of information we obtain by observing the

output ofS is calledentropy[13] and is defined asE(p1; � � � ; pl) = lXi=1 pi log 1pi
When there are only two symbols in the alphabet, the entropy is reduced toE(p) = �p log p� (1� p) log(1� p): (2)

wherep and1�p are the probabilities for each of the two symbols. In this case, the entropy value is an indication of

the “difference” betweenp and1�p. When the two symbols occur with the same chance, the entropyis 1. If one of

the symbols dominates the output, the entropy approaches. Thus, the entropy indicates the degree of “unevenness”

in the distribution of the information source. Intuitively, since both entropy and the biasb measure the degree of the

“irregularity” in the data distribution, we might expect a relation between them.

Consider a synthetic trace generated using theb-model . The generated data are inherently self-similar, because

of the recursive construction process. The construction also guarantees that the entropy increases linearly with

respect to the aggregation level. Intuitively, the “unevenness” of the valuesYt remains the same at different time

scales.

Since
PYt = 1 at any aggregation level2, we can viewYt itself as the distribution of an information source and

compute its entropy (note that this is not the same as computing the entropy of the distribution ofYt values). The

entropy in this case is E(n) = � 2n�1Xi=0 Y (n)t (i) lg Y (n)t (i)
The exponent ofE(n) indicates, once again, the aggregation level.

Theorem 1 The entropy of the2n data points at aggregation leveln generated by theb-model with biasb isE(n) = nE(b):
whereE(b) � E(1) = �b lg b� (1� b) lg(1� b) is the entropy at aggregation level 1.

2In general,
PYt = N , the total volume, in which case we can simply takeYt=N .
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Figure 3: We compare theb-model with Poisson arrival using the entropy plot, interarrival time distribution, and

queuing behavior. Poisson arrival generates very smooth traffic, giving a slope close to 1 in the entropy plot. It

also shows very different behavior in interarrival time andqueuing behavior. Theb-model data, on the other hand,

can imitate the behavior of the original data very well. The interarrival time and queuing length distributions are in

negative cumulative form and log-log scale.

Proof: See section B.

We can drawE(n) versus the aggregation leveln. This is called theentropy plot. For a synthetic trace generated

by theb-model , the entropy plot is linear with slopeE(b). Figure 2(c) shows the entropy plot for the synthetic trace

in Figure 2(b). The points are on a line with slope 0.881, which corresponds to bias 0.7 according to Equation 2.

4.3 Model fitting: entropy plot

Now we begin to investigate the real traces. Do they show similar linear scaling behavior in the entropy plots? If

so, we can fit theb-model , using the entropy plots.

Entropy Plot Suppose that the original trace has2n data points (for simplicity, we truncate the traces so their

length is a power of 2). We can aggregate it into 2, 4, 8, etc. buckets (corresponding to aggregation levels 1, 2, 3,

etc.) and calculate the entropy for each number of buckets. Once again,E(n) is the entropy for at aggregation leveln, ie. for2n buckets. Based on these values, we can draw the entropy plot for the original traces.

In Figure 3 (a), we show the entropy plot for the sample data shown from Figure 1(a). We should note that the

entropy plot tail is flat because we are using integer values for Yt. The entropy plot shows a perfect fit for a line

with slope 0.73. This indicates that the irregularity of thedata stays the same for all aggregation levels. Otherwise,

9



Bias R/S Variance

0.6 0.897 0.871

0.7 0.847 0.822

0.8 0.763 0.741

0.9 0.643 0.629

Bias R/S Variance Entropy

0.6 0.696 0.721 0.6

0.7 0.743 0.764 0.7

0.8 0.812 0.829 0.8

0.9 0.900 0.910 0.9

(a) Hurst exponent estimated from R/S

plot and Variance plot.

(b) Bias estimated by two methods.

Table 2: Comparison of the two Methods for bias estimation.

the slope would change at each aggregation level. Given the Theorem 1, we can use the slope to estimate the biasb. The bias turns out to be 0.795 for the sample trace. In contrast, a Poisson arrival process with the same total

volume of data works like theb-model with bias 0.5, since it generates smooth traffic. The entropy value scales

linearly in this case as well, but with a slope close to 1, which corresponds to a bias close to 0.5. This in turn means

an essentially uniform trace.

Hurst Exponent There are other ways to estimateb. In particular, the Hurst exponent is also related tob.
Theorem 2 The Hurst exponentH (as estimated from the variance plot) of a trace generated with the b-model

using biasb follows the following approximate relation:Ĥ(b) � 12 � 12 lg(b2 + (1� b)2): (3)

Proof: See section A.

Thus, we can also use the estimated Hurst exponent to obtain an estimate of the biasb.
Comparison of the two methods Table 2 compares the two model fitting algorithms using four data sets gener-

ated with theb-model and bias ranging from 0.6 to 0.9.

We estimate the Hurst exponent of the synthetic data from both the R/S and variance plots. The bias can then

be estimated based on Theorem 2. We observe that this method works well only whenb is close to 1, while the

entropy plot always gives a very accurate estimation. We used the entropy-based estimation method throughout the

experiments.
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Algorithm 1 Efficientb-model Data Generation

INPUT: Biasb, aggregation leveln, total volumeN
OUTPUT:Yt with 2n points following theb-model

ALGORITHM: A stack is used to keep track of the data points.

1. Initialize the stack and push pair (0,N ) onto the stack.

2. If the stack is empty, all the2n data points have been generated and the

process ends.

3. Pop a pair (k, v) from the stack. Ifk = n, outputv as the next data point and

go back to Step 2.

4. Flip a coin. If heads, push pairs(k+1; v � b) and(k+1; v� (1� b)) onto

the stack. Otherwise, push pairs(k+1; v� (1� b)) and(k+1; v� b) onto

the stack. Go back to Step 2.

Figure 4: Data generation using theb-model

We compare the Poisson arrival process to theb-model using several different tools in Figure 3. The synthetic

trace is generated using theb-model with bias 0.795. The interarrival time distributionand queuing behavior of the

synthetic data is similar to the original trace, while the Poisson arrival gives really smooth traffic, thus, exhibiting

markedly different behavior in both the interarrival time and queuing. In fact, the Poisson process could be viewed

as a “special case” of theb-model . When we use bias close to 0.5, the generated data is very close to Poisson

arrivals, particularly in terms of burstiness.

4.4 Trace Generation

Although theb-model requires estimation of only one parameter (b), two more parameters are needed to generate

the traces: total volumeN and aggregation leveln. N is simply the total number of requests in the output trace.

The aggregation leveln determines the number of data points that will be generated,that isl = 2n. In practice, we

can easily extend the algorithm to generate traces of arbitrary length.

A straightforward implementation is to build the model by exactly following the construction in subsection 4.1,
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step-by-step for each aggregation level. In this case, the time required, expressed in terms of multiplication opera-

tions, is Tnaive(l) = 1 + 2 + � � �+ lg l = O(l):
To output2n data points, we need to keep track of the2n�1 data points in the next-to-last aggregation level. Thus,

the space is at least is at least2n�1, ie. Pnaive(l) = l=2 = O(l):
A more efficient way is to use a stack, as described in Figure 4.Initially, the total volumeN (which is the value

of the trace at aggregation level 0) is pushed onto the stack.At each step, the algorithm examines the value at the

top of the stack. Conceptually, each point is associated with an aggregation level (although, in practice, that can

be deduced from the size of the stack and does not need to be stored). The algorithm outputs the data point, if its

aggregation level isn. Otherwise, the top data point is split according to the biasb and replaced by the two new

points of a higher aggregation level.

At any time during the process, the aggregation level of the data points in the stack is 1, 2, etc., from the bottom

up. The size of the stack reaches its maximum when the aggregation level of the top data point isn. Therefore, the

maximum size of the stack isn. The time and space requirements of the efficient generationalgorithm areTeÆcient(l) = l=2 = O(l)PeÆcient(l) = n = O(lg l)
Although the time requirements are the same, the space requirements are just logarithmic with respect to the data

set size.

5 Experiments

In this section, we evaluate our model on two kinds of data sets: disk and web traces. All show high degrees of

self-similarity and burstiness, which synthetic generation of similar traces very difficult [4]. We use the entropy

plot to estimateb and compare the generated traces to real ones in terms of domain-specific properties: interarrival

time and queue length distribution.

The disk traces were captured on an HP-UX workstation with 8 drives [12]. All traces are one day long. From

these we use the following (see Table 3): Disk-a aggregates all accesses on all disks. Disk-r aggregates only reads-

accesses and Disk-w only write-accesses. Disk0, Disk2, Disk7 are the activities on three individual disks (the
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Figure 5: Raw data, R/S plots and variance plots on them. (a) and (b) showing number of requests (in blocks for

the disk trace and number of bytes) vs. time.
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Name Description N (in 1Kb blocks) b̂
Disk-a all disks aggregated 4,575,798 0.837

Disk-r reads on all disks 1,822,781 0.748

Disk-w writes on all disks 3,300,628 0.763

Disk0 requests on disk 0 1,101,416 0.800

Disk2 requests on disk 2 1,396,649 0.726

Disk7 requests on disk 7 371,320 0.837

(a) Disk trace summary (length 86,400,000)

Name Description N (in Kb) b̂
lbl-all All activities 28,678,088,807 0.705

lbl-nntp nntp activities 11,564,204,118 0.619

lbl-smtp smtp activities 989,984,211 0.747

lbl-ftp ftp activities 10,268,918,659 0.789

(b) Web trace summary (length 2,592,000,000)

Table 3: Description of the data sets.

remaining 5 disks are almost always idle and thus not particularly interesting). The disk traces are in resolution of

milliseconds, so all the traces have about 86M data points init. We use the number of requests in the experiment.

Each request is for a1Kbyte block. The resolution of milliseconds for disk I/O workloads is good enough, since

the service time is usually a couple of milliseconds.

The web traffic is from public Internet traces available onhttp://repository.cs.vt.edu/ named

lbl-conn-7. It contains thirty days’ worth of all wide-area TCP connections between the Lawrence Berkeley

Laboratory (LBL) and the rest of the world. Four web traces are used(Table 3) and they are in millisecond resolution

as well.

5.1 Self-similarity and Model Fitting

All the data sets show strong self-similarity and are very bursty. This can be easily verified by simply looking at the

data sets. Figure 5 (a) and (b) show Disk-a and lbl-a. The linear behavior of R/S plots and variance plots gives an

estimated Hurst exponent around 0.75 to 0.85, confirming strong self-similarity. We only show the R/S plots and
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Figure 6: Entropy plots

variance plots for the two traces due to space limitations — all the data sets and their R/S and variance plots are

very similar.

We use the entropy plot to fit our model. In all the data sets, the points in the entropy plots approximate a line

very well (Figure 6). The slope of the entropy plots and the estimated biasb are listed in Table 3. All the traces

have bias ranging from 0.63 to 0.8. The traditional Poisson arrival is not able to deal with these traces.

The entropy plots show a plateau at the tail part for lbl web traces. To simulate this, we can use thetruncatedb-model: beyond certain aggregation level, we setb to 1 to force no further splitting on the value of the data points.

5.2 Domain-specific evaluation

We further evaluate the model by generating synthetic traces using the biasb estimated from the entropy and

comparing them with the real workloads.

We want the model to perform well in terms of domain specific properties, such as queuing behavior and

interarrival time distribution. This is more important than the statistical properties because the ultimate goal of

modeling is to help to develop better systems. Therefore, what matters in the end is how such a system would

perform under any given trace. For the these workloads, interarrival time distribution and queuing behavior are

critical to the throughput of the disk subsystems and networks. Bursty workloads often cause unusually long

queues, requiring larger buffer pools and making the end users suffer long response times.
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Figure 7: Interarrival time distribution in negative cumulative form.

In Figure 7 and 8, we compare the interarrival time and queuing length distributions in negative cumulative

format and in log-log scale for disk traces. The synthetic traces are generated using thwb-model with bias estimated

from the entropy plots. We estimate the queuing length distribution using a simple disk model assuming that each

request takes a uniform service time of10msec. We didn’t use a real disk simulator because we only have the times

for each disk request and not the block addresses.

Overall, the interarrival time distributions (Figure 7) ofthe synthetic traces and the original ones agree very

well. For the real workloads, about 90 per cent of the disk requests have interarrival time of 0, which means they

are sent to the disk within 1 millisecond after the previous ones. Here 1 millisecond is the resolution of the data

set. Another 10 per cent of the disk requests have different interarrival times, ranging from1msec to 1000 sec. The

synthetic traces capture this irregularity very well.

In Figure 8, we compare the queuing behavior. Most of disk requests can be served immediately without

waiting in the queue. But sometimes, there are so many disk requests in a short period of time that the queue

becomes extremely long. A few disk requests experience a queue length of about 1 million disk requests. This is

caused by the burstiness of workloads. The synthetic data capture the bad queuing behavior and exhibit similarly

bad queuing behavior.

We did similar experiments on the web traces. For web traces,we have different sizes for different requests.

We assume that the service time is the transmission time and is proportional to the request size — in particular, we
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Figure 8: Queuing length distribution in negative cumulative form.

assume100�sec for every1Kbytes. The queue length is the number of bytes waiting to be sent. The comparison

of interarrival time and queuing length distributions is shown in Figure 9 and 10. While the interarrival time

distributions are not so close, the queue length distributions agree very well, giving a good approximation of the

mean response for the end users.

5.3 Computation Effort

We are also concerned about the efficiency of the algorithms and how well they scale up, since we are dealing

with very large data sets. We would also be potentially interested in incorporating theb-model in the scheduling

subsystem.

In subsection 4.4, we have already discussed the time and space needed for synthetic trace generation. Require-

ments of time and space areO(l) andO(lg l) respectively. We now show that all the other tools require only one

scan of the dataset, thus, offering good scalability, too.

It is straightforward to show that tools like interarrival time distribution and queuing behavior need one pass on

the data. An naive implementation for the entropy plot needsone scan for each aggregation level. However, note

that all the passes are independent. Thus, they can be integrated into one andE(1); E(2); : : : ; E(n) can be calculated

simultaneously. All the experiment results are calculatedusing one-pass algorithms. This is extremely important

when for very large data sets.
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Figure 9: Interarrival time distribution for lbl network traces

The actual processing time also depends significantly on thetotal volume of requests. In practice, all the data

points have integer values instead of real values. When the volume is small, some of the data points will become

zero before the required aggregation level is met, thus, no further computation is needed on them. In fact, in our

experiments, generating a one-day-long disk trace in millisecond resolution usually takes less than 5 minutes and

the entropy plot requires less than 3 minutes when implemented in Perl. We expect that a C implementation will

perform much faster.

Figure 11 shows the actual wall-clock time for the entropy plot and trace generation. Both scale well with

respect to the data set size. We test our tools using traces ofdifferent length with the same density. That is, the 1M

long trace has 1 million disk requests and 10M long trace has 10 million disk requests. We use a bias of 0.7. Both

the algorithms show linear scalability.
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Figure 10: Queuing length distribution for lbl network traces

6 Discussion and Conclusion

Our proposed method is very general in the sense that such self-similar, bursty time sequences arise very often in

real-world data. This was recently observed in numerous settings, like TCP [11], video [5], web [3], file system [8],

and disk I/O [6] traffic.

The main contribution of this work is the introduction of theb-model as an effective tool for finding and char-

acterizing patterns in real, bursty time sequences. The model is extremely compact, as it effectively needs only one

parameter, the biasb. Additional contributions include the following:� Single pass, novel and accurate algorithms to estimateb.� A fast algorithm to generate synthetic and realistic burstytime sequences. The algorithms are extremely

efficient: less than 5 minutes for one hour-long disk traces in millisecond resolution and less than 3 minutes
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Size Entropy plot Generation

1 M 20.50 13.54

2 M 40.52 26.40

4 M 80.51 51.62

8 M 167.49 100.34

16 M 262.12 140.75
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Figure 11: Computation time against data set size for various tools

for model fitting (implemented in Perl).� Experiments on real sequences, that showed (a) they are self-similar and (b) they are approximated well by

our synthetic traces, both in terms of instrinsic measures,as well as in terms of queue length behavior.

We are currently working on expanding the model to incorporate spatial information (eg. disk block number),

besides temporal information. Another possible directionfor future work is the analysis of co-evolving, bursty time

sequences, like disk traffic on units of a RAID box (or automobile traffic from multiple, nearby highway lanes).
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A Relation between Hurst Exponent and Bias

The variance plot is a tool to estimate the Hurst exponent from the dataset. It plots the variance of the data against

the window size in log-log scale. That is, it plots the logarithm of the variance ofYts against the logarithm of the

window size, which islg l = n. For a self-similar process, the points should approximatea line well with slope�,�1 < � < 0, which gives an estimation for the Hurst exponentH[2],Ĥ = 1 + �=2: (4)

For ab-model data, the average ofYt at aggregation leveln isavg(n)(Yt) = P2n�1k=0 Y (n)t (k)=2�n2n= 1:
Here, the values of the data points are divided by the length of the intervals they are covering. Assume the length

of the whole time interval is 1, a data point at aggregation level n covers a time interval of length2�n. Thus, the

variance ofYt at aggregation leveln+ 1 isvar(n+1)(Yt) = P2(n+1)�1k=0 (Y (n+1)t (k)=2�(n+1))22n+1 � 12= P2n�1k=0 ((Y (n)t (k) � b=2�(n+1))2 + (Y (n)t (k) � (1 � b)=2�(n+1))2)2n+1 � 1= 2(b2 + (1� b)2)P2n�1k=0 (Y (n)t (k)=2�n)22n � 1= 2(b2 + (1� b)2)(var(n)(Yt) + 1)� 1:
Thus, the slope of the variance plot is given by� = lg var(n+1)(Yt)� lg var(n)(Yt))lg(l=2n+1)� lg(l=2n)= lg var(n)(Yt)� lg var(n+1)(Yt)� � lg 2(b2 + (1� b)2):
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Ĥ = 1 + �=2� 12 � 12 lg(b2 + (1� b)2)
B Entropy Value for Different Aggregation Levels

The entropy value at aggregation leveln for a b-model data is given by the follow equationE(n) = nE(b) (5)

Rewrite the entropy value asE(n+1) = � 2n+1�1Xk=0 (Y (n+1)t (k) lg(Y (n+1)t (k))= 2n�1Xk=0 (�bY (n)t (k) lg(bY (n)t (k)) � (1� b)Y (n)t (k) lg((1� b)Y (n)t (k)))= 2n�1Xk=0 (�bY (n)t (k) lg Y (n)t (k)� (1� b)Y (n)t (k) lg Y (n)t (k))� 2n�1Xk=0 (�bY (n)t (k) lg b� (1� b)Y (n)t (k) lg(1� b))= 2n�1Xk=0 (�Y (n)t (k)) +E(b)= E(n) +E(b)
with E(1) = E(b). Thus,E(n) = nE(b).
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