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Abstract

Network, web, and disk I/O traffic are usually bursty, séthitar [9, 3, 5, 6] and therefore can not be modeled
adequately with Poisson arrivals[9]. However, we do wamhtalel these types of traffic and to generate realistic
traces, because of obvious applications for disk scheglutiatwork management, web server design.

Previous models (like fractional Brownian motion, ARFIM#cktried to capture the ‘burstiness’. However
the proposed models either require too many parametersatodibr require prohibitively large (quadratic) time
to generate large traces. We propose a simple, parsimomietied, theé-model, which solves both problems:

It requires just one parameté)(and it can easily generate large traces. In addition,strhany more attractive
properties: (a) With our proposed estimation algorithnrefjuires just aingle pass over the actual trace to
estimateh. For example, a one-day-long disk trace in millisecondsaios about 86Mb data points and requires
about 3 minutes for model fitting and 5 minutes for generati¢im) The resulting synthetic traces are very
realistic: our experiments on real disk and web traces shaitvdur synthetic traces match the real ones very

well in terms of queuing behavior.



1 Introduction

A number of different types of traffic (e.g. Ethernet [9], W@, video [5] and disk [6] traffic) are self-similar for

a wide range of time scales. Such traffic also typically ehigignificant burstiness. Given these relatively recent
observations, many standard methods for traffic generatefundamentally flawed, since they do not incorporate
these basic facts.

Of these standard methods, the Poisson arrival model isrlifidamost commonly and widely used. It has the
highly desirable properties of being relatively straigifard and easy to grasp. It is also very concise, since @sel
on very few parameters that can be easily estimated frondegal Unfortunately, the traffic it generates is neither
self-similar, nor bursty.

A number of other methods have been proposed recently, sutieamultiple ON/OFF source aggregation
process. Many others draw from and combine self-similacgsses from statistics. However, many of these
methods are quite complicated or ad-hoc and they employ Istligt are fine-tuned only to particular classes of
traffic. Others suffer from a very large number of parameteks a result, the parameter estimation and traffic
generation processes often require significant compugdtiffort.

We propose a simple and elegant model which has the samalilegaroperties as the Poisson model. Namely,
it is based on a simple and straightforward fundamentalga®c It relies on very few parameters, which can be
easily estimated from actual data. However, although smiplis powerful enough to succesfully characterize
self-similar, bursty traffic for a wide range of time scaleSlthough simple, out model is general enough to be
applicable to a wide range of domains. The main goal of thegmepaper is to describe our model and demonstrate
its usefulness in a variety of domains.

An important problem we chose to demonstrate our methodOigrkffic modelling. This is a difficult and
unsolved problem [4]. Besides being useful for accuratéuatian of disk subsystem performance, a good model
is crucial in the very design of such a system. If a schedwdiggrithm is to be succesful, an understanding of the
common traffic patterns is necessary. Furthermore, a siamuldast model could be incorporated directly in access
prediction and prefetching subsystems and we are currevatiiging towards that goal.

Furthermore, previous work seldom used domain-specificicsdor evaluation. Most comparisons are based
on intrinsic statistical properties of the traces themesliguch as variance, autocorrelation, entropy, etc.hoétih
these are important properties, what matters in the endviseheeal system behaves under any given workload.
Choosing a particular application domain allows us to camplae real and synthetic traces using detailed simula-

tion. Based on these simulations, we show how the synthaiie$ match the real ones in terms of queueing delay



and interarrival time distributions.

Our model has only one parameter. Compared to other modsalgorithms involved in our model are
extremely efficient. Model fitting is linear and the Perl imypientation can give an accurate estimation in less than
3 minutes for a one day-long disk trace in millisecond resofu(more than 86Mb data points). Generation of
synthetic traces requires is also linear and it generatealtic one-day-long disk trace in 5 minutes.

The b-model is closely related to the well-known “80/20 law” intdbases: 80% of the queries access 20%
of the data. In fact, most of the distributions in the real iédollow the “80/20 law” [7], even in other domains
(such as ore and population distributions, highway traffittgyns, or photon distributions in electromagnetic gavit
radiation).

The paper is organized as follows. We give a brief overviewetdted work in the next section. section 3
provides some background information on self-similarifyhe b-model is introduced in section 4, which also
presents the model fitting algorithm and its derivation, &l as the trace generation algorithm. We evaluate the
model using several real data sets in section 5. The imgit@and general usefulness of the proposed model are

discussed in section 6.

2 Survey

Modelling of bursty time sequences has recently receivediderable attention in the literature. Most real-world
traffic is self-similar and bursty (e.g. Ethernet [9], wel, [@ideo [5] and disk [6] traffic). This renders many
standard methods (such as Poisson arrivals) useless.

A number of models that use self-similar processes have fregosed. For example, Gartett and Willinger [5]
used a fractional ARIMA process to generate synthetic Y#ei8it Rate (VBR) video traces. Since the model itself
is not intrinsically bursty, it is fed with the logarithm die data in order to create the requisite burstiness.

Barford and Crovella [1] took another approach in the SURGHD wace generator. They aggregate a large
number of ON/OFF heavy tailed distributions to synthesgésimilar web traffic. Gomez [6] employed a similar
method to synthesize 1/O access traces.

All the models mentioned above require the estimation ofgelaumber of parameters from the original traces.
This usually results in high computational costs for modghfj and synthetic trace generation. Also, the evaluation
done in this previous work focuses on intrinsic, statisfiraperties of the real and synthesized workloads.

Another approach similar to ours is taken by Ribeiro et &)].[ITheir Multifractal Wavelets used a similar

multiplicative cascading process to generate web traclksir €valuation is based on the queuing behavior from a
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(a) A one-hour disk trace collected on a Unix workstation (b) Part of the trace, fromh= 1300 sec, length200 sec.

Figure 1: Self-similarity of disk traffic [14]. Shown in (b} ia portion of the trace in (a) (total number of disk
requests per millisecond). Note that is is very similar ®ahiginal trace. Self-similar sequences have this prgpert

across all (or, in practice, a very wide range) of time scdlesh disk request isKbyte.

simulator. However, their model requires fitting more pagters than ours.

The b-model presented here is very concise; only one parametrasgh to describe the entire trace. The
model is accurate in terms of domain-specific propertiel asdanterarrival time distribution and queuing behavior.
Furthermore, the model fitting and trace generation algadt are linear and require only a single pass on the
data. It would therefore be possible to integrate them imaoit or disk devices (which typically have constrained

resources) and use them to collect data on the fly and “lebentraffic characteristics in real-time.

3 Background: Self-Similarity

After the initial discovery that Ethernet traffic is selfyslar [9], a high degree of self-similarity has been obsdrve
in many other types of traffic (e.g. TCP [11], video [5], wel), [flBe system [8], and disk I/O [6] traffic). In this
section we give a brief overview of self-similar processes.

Informally, self-similarity means invariance with respect to scaling across all timkescélnvariance” may
mean exact identity, in which case we speakleterministicself-similarity. However, it may imply identical statis-
tical properties, in which case we hasmtisticalor stochasticself-similarity. Figure 1 shows the self-similarity of

disk traces. The trace is from [12]. It records the actigitm 8 disks and the figure shows an hour-long trace from



disk 2. The number (orolumg of disk requests is plotted against time in millisecondhgison in (a) and portion
of it in (b); the enlarged portion in a finer scale is quanirey similar to the entire trace viewed in a larger time
scale.

For these bursty 1/0 workloads, the traditional Poissoivarassumption fails horribly because it generates
smooth traffic and fails to capture the peaks and troughseofahl data. If we assume the arrival process is Poisson
with the same total volume of disk requests, the traffic iy @nooth with just 1 or 2 disk requests occuring most
of the time.

Formally, we can define self-similarity as follows [2]: L®t be a stochastic process with continuous time
parametet. Y; is called 6tatisticallyor stochastically self-similar, if for any positive scaling factar, the rescaled

signalY,;, has an distribution of values identical to that of the araisignalY;.

Symbol | Definition

Y; time series data points

H Hurst exponent

l length ofY; (ie. number of data points)
n aggregation level

N total volume ofY; (ie. Zi:o Y?)

b b-model bias

EM) | entropy at aggregation level

E(b) | —blgb—(1—-0b)1g(1—0b), estimated from the slope of the entropy

plot

lg z base-2 logarithm

Table 1: Symbol definitions.

A common measure of self-similarity in the literature is therst exponentd. A value of H between% and
1 indicates the degree of self-similarity. It is also usedaagobal' index for burstiness [9]. There are several
exploratory analytic tools to estimaté, such as R/S plots, variance plots, autocorrelation fansti and peri-
odograms [2].

We will very briefly explain the R/S and variance plots, simoewill use them to detect self-similarity in the

10ther quantities, such as the Holder exponent (also knanthairregularity index), are used to characterize thetimass around a

particular point in a signal.



“test.enp”
0.881*x -

80

Y_t(x)
entropy value

p 40 3
p"2
0 200 400 600 800 1000 0 O’H 5 10
1 1/2 1 1/2 1 time aggregation level
(a) Multiplicative cascading generation of  (b) A sample data generated with bias (c) Entropy plot for the data
b-model 0.7, length 1024, and volume 4096

Figure 2: B-model. The sample data of bias 0.7 shows a slope381 in entropy plot.

real traces. Th&/S plotshows the average rescaled range against the window siag-lng scale by aggregating
the original data set into equal-sized windows. Vadance plotshow the variance of the data against the window
size in log-log scale. The points should approximate a lomeafself-similar signals and the slope of both plots can
be used to estimate the Hurst exponent.

However, self-similar processes don't always generatstptime sequences. The parametefocuses more
on the behavior across large time scales. In the next seeti®mvill introduce theb--model , which is intrinsically

bursty and matches the irregularity of the original datareg fime scales.

4 Modeling I/0O workloads with the 6-model

We introduce thé-model in this section. The model involves one parameterbtash, which is directly related to
the burstiness of the data.

The proposed method has two main advantages. First, thel im@dacise; it requires only one parameter (bias
b) to characterize the entire trace. More importantly, mdithg and synthetic trace generation are very efficient

and scale linearly with respect to the data set size.

4.1 Theb-model

Theb-model is closely related to the&d/20 law” in databases[7]: 80% of the queries involve 20% of thie.dén
the b-model , a ‘bias’ parametdr = 0.8 means that, within a given time interval, 80% of the accebsgpen in

one half (and the remaining 20% in the other half). More djtiy, the whole construction begins with a uniform



interval and recursively subdivides the number of accesseach half, quarter, eighth, etc. according to the hias
Thus, step: + 1 ends with a total o2"*+! data points, which are obtained by splitting each of2heoints from

stepn according to the formula:

v @ xi) = v () x (1 -b);
" exitvl) = v76) xb
fori =0,1,...,2" — 1 andb € [0.5,1). The exponent irYt(”‘) indicates the current step and is also called the

aggregation levelThe above formulas are for tlieterministicversion of the model, where the split is always done
in the same direction.

Thus, the value o, (j) after stepn is
Y6y =1 —b)"d,  i=0,...,2" —1 (1)

wherej is the number of times the data point falls into the upper dithe split. Figure 2 (a) gives the first 3 steps
of the construction process and (b) shows a sample tracebwith)).7 of length 1024 with total volume of 4096
with b always on the left. In real trace generation, weblgb randomly to left or right to create some randomness

in the synthetic trace. Note that all the data points always sp to 1.

PBRARIUIED S
1=0 =0

= (1-b)+0b)"

= 1.

Due to the multiplicative cascading process during the ttooson, theb-model generates a self-similar trace
with high local irregularity, which depends @enThe close# is to 1, the higher the irregularity arbd= 0.5 gives a

uniform trace.

4.2 Entropy and bias

We will now discuss the relation between entropy and the @gs our model. This is a fundamental result and

the basis for our model fitting algorithm.



First, we briefly re-introduce the concept of entropy. A zeremory information sourcé is a source that
emits symbols from an alphabgt;, sq, - - - , s;} with probabilities{pi, ps, - - - , i}, respectively ¥ p; = 1). Each
symbol is emitted independently of any others. The averagauat of information we obtain by observing the

output of S is calledentropy[13] and is defined as

!
1
E(pr,---,p) = Y pilog —
— Di
=1
When there are only two symbols in the alphabet, the ent®pgduced to

E(p) = —plogp — (1 —p)log(1 — p). (2)

wherep and1 — p are the probabilities for each of the two symbols. In thiec#se entropy value is an indication of
the “difference” betweep and1 — p. When the two symbols occur with the same chance, the enitsdpyif one of
the symbols dominates the output, the entropy approachess, The entropy indicates the degree of “unevenness”
in the distribution of the information source. Intuitivelince both entropy and the biaseasure the degree of the
“irregularity” in the data distribution, we might expecteaation between them.

Consider a synthetic trace generated usingithedel . The generated data are inherently self-similarabse
of the recursive construction process. The constructisn glarantees that the entropy increases linearly with
respect to the aggregation level. Intuitively, the “unevess” of the value%’; remains the same at different time
scales.

Since}_ Y; = 1 at any aggregation levglwe can viewy; itself as the distribution of an information source and
compute its entropy (note that this is not the same as compthie entropy of the distribution &f; values). The
entropy in this case is

2" —1

B® = -3 v @)1y, )
=0
The exponent of2(™ indicates, once again, the aggregation level.
Theorem 1 The entropy of thé” data points at aggregation levelgenerated by thé-model with biag is

E™ = nE(®).

whereE(b) = E") = —blgh — (1 — b)Ig(1 — b) is the entropy at aggregation level 1.

2In general}" Y; = N, the total volume, in which case we can simply takgN.
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Figure 3: We compare thiemodel with Poisson arrival using the entropy plot, intevat time distribution, and
gueuing behavior. Poisson arrival generates very smoatficirgiving a slope close to 1 in the entropy plot. It
also shows very different behavior in interarrival time apgtuing behavior. The-model data, on the other hand,
can imitate the behavior of the original data very well. Tierarrival time and queuing length distributions are in

negative cumulative form and log-log scale.

Proof: See section B.
We can draw® (™) versus the aggregation level This is called thentropy plot For a synthetic trace generated
by theb-model , the entropy plot is linear with slogg(h). Figure 2(c) shows the entropy plot for the synthetic trace

in Figure 2(b). The points are on a line with slope 0.881, Wwhiorresponds to bias 0.7 according to Equation 2.

4.3 Model fitting: entropy plot

Now we begin to investigate the real traces. Do they showiairfinear scaling behavior in the entropy plots? If

so, we can fit thé-model , using the entropy plots.

Entropy Plot Suppose that the original trace Hésdata points (for simplicity, we truncate the traces so their
length is a power of 2). We can aggregate it into 2, 4, 8, etckéts (corresponding to aggregation levels 1, 2, 3,
etc.) and calculate the entropy for each number of bucketse@gainE (") is the entropy for at aggregation level
n, ie. for2™ buckets. Based on these values, we can draw the entropyoplbief original traces.

In Figure 3 (a), we show the entropy plot for the sample datavsifrom Figure 1(a). We should note that the
entropy plot tail is flat because we are using integer valoe¥f The entropy plot shows a perfect fit for a line

with slope 0.73. This indicates that the irregularity of tega stays the same for all aggregation levels. Otherwise,



Bias | R/S | Variance Bias | R/S | Variance | Entropy
0.6 | 0.897| 0.871 0.6 || 0.696| 0.721 0.6
0.7 || 0.847| 0.822 0.7 || 0.743| 0.764 0.7
0.8 | 0.763| 0.741 0.8 || 0.812| 0.829 0.8
0.9 | 0.643| 0.629 0.9 || 0.900| 0.910 0.9

(@) Hurst exponent estimated from R/$b) Bias estimated by two methods.

plot and Variance plot.

Table 2: Comparison of the two Methods for bias estimation.

the slope would change at each aggregation level. Givenlieer€m 1, we can use the slope to estimate the bias
b. The bias turns out to be 0.795 for the sample trace. In csinteaPoisson arrival process with the same total
volume of data works like thé-model with bias 0.5, since it generates smooth traffic. Titeopy value scales
linearly in this case as well, but with a slope close to 1, Wwitorresponds to a bias close to 0.5. This in turn means

an essentially uniform trace.

Hurst Exponent There are other ways to estimateln particular, the Hurst exponent is also related.to

Theorem 2 The Hurst exponent/ (as estimated from the variance plot) of a trace generateti tiie b-model

using biasb follows the following approximate relation:
1 1 9 9
H(b)zi—alg(b + (1 =0)%). (3)

Proof: See section A.

Thus, we can also use the estimated Hurst exponent to olrtastEnate of the biaks

Comparison of the two methods Table 2 compares the two model fitting algorithms using fatadets gener-
ated with theh-model and bias ranging from 0.6 to 0.9.

We estimate the Hurst exponent of the synthetic data frorn thet R/S and variance plots. The bias can then
be estimated based on Theorem 2. We observe that this methdd well only whenb is close to 1, while the
entropy plot always gives a very accurate estimation. Wd tlseentropy-based estimation method throughout the

experiments.

10



Algorithm 1 Efficientb-model Data Generation

INPUT: Biasb, aggregation leveh, total volumeN

OUTPUT:Y; with 2" points following thé-model

ALGORITHM: A stack is used to keep track of the data points.

1. Initialize the stack and push pair (0]) onto the stack.

2. If the stack is empty, all th®” data points have been generated and

process ends.

3. Pop apair €, v) from the stack. Ik = n, outputv as the next data point arj

go back to Step 2.

4. Flip a coin. If heads, push paifg + 1,v x b) and(k + 1,v x (1 — b)) onto
the stack. Otherwise, push paig+ 1,v x (1 — b)) and (k + 1, v x b) onto

the stack. Go back to Step 2.

Figure 4: Data generation using thenodel

arrivals, particularly in terms of burstiness.

4.4 Trace Generation

The aggregation level determines the number of data points that will be genergted js/ = 2".

can easily extend the algorithm to generate traces of arpitength.

11

the

We compare the Poisson arrival process tobtieodel using several different tools in Figure 3. The sytithe
trace is generated using thanodel with bias 0.795. The interarrival time distributiand queuing behavior of the
synthetic data is similar to the original trace, while thesBon arrival gives really smooth traffic, thus, exhibiting
markedly different behavior in both the interarrival timedegueuing. In fact, the Poisson process could be viewed

as a “special case” of thekmodel . When we use bias close to 0.5, the generated datayishose to Poisson

Although theb-model requires estimation of only one parametgytivo more parameters are needed to generate

the traces: total volumé& and aggregation level. N is simply the total number of requests in the output trace.

In practice, we

A straightforward implementation is to build the model byetty following the construction in subsection 4.1,



step-by-step for each aggregation level. In this case e required, expressed in terms of multiplication opera-
tions, is

Tnaive(l) =142+ +1gl = O(])

To output2” data points, we need to keep track of fe’ ! data points in the next-to-last aggregation level. Thus,
the space is at least is at leadt!, ie.

Praive(l) = 1/2 = O(1).

A more efficient way is to use a stack, as described in Figuheidally, the total volumeN (which is the value
of the trace at aggregation level 0) is pushed onto the statkach step, the algorithm examines the value at the
top of the stack. Conceptually, each point is associated antaggregation level (although, in practice, that can
be deduced from the size of the stack and does not need toreed)std he algorithm outputs the data point, if its
aggregation level is. Otherwise, the top data point is split according to the biaad replaced by the two new
points of a higher aggregation level.

At any time during the process, the aggregation level of #ta goints in the stack is 1, 2, etc., from the bottom
up. The size of the stack reaches its maximum when the aggredevel of the top data point is. Therefore, the

maximum size of the stack is. The time and space requirements of the efficient generatgorithm are
Tefficient (]) = l/2 = O(l)

Pefficient (]) =n= O(lgl)

Although the time requirements are the same, the spacereaggmts are just logarithmic with respect to the data

set size.

5 Experiments

In this section, we evaluate our model on two kinds of data: s#isk and web traces. All show high degrees of
self-similarity and burstiness, which synthetic generatf similar traces very difficult [4]. We use the entropy
plot to estimatéh and compare the generated traces to real ones in terms ofrdspexific properties: interarrival
time and queue length distribution.

The disk traces were captured on an HP-UX workstation withived [12]. All traces are one day long. From
these we use the following (see Table 3): Disk-a aggregditas@esses on all disks. Disk-r aggregates only reads-

accesses and Disk-w only write-accesses. Disk0O, DiskX7Dase the activities on three individual disks (the

12
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Name Description N (in 1Kb blocks) b

Disk-a | all disks aggregated 4,575,798 0.837
Disk-r | reads on all disks 1,822,781 0.748
Disk-w | writes on all disks 3,300,628 0.763
DiskO | requests on disk 0 1,101,416 0.800
Disk2 | requests on disk 2 1,396,649 0.726
Disk7 | requests on disk 7 371,320 0.837

(a) Disk trace summary (length 86,400,000)

~

Name Description N (in Kb) b

Ibl-all All activities | 28,678,088,807 0.705

Ibl-nntp | nntp activities | 11,564,204,118 0.619

Ibl-smtp | smtp activities| 989,984,211 | 0.747

Ibl-ftp ftp activities | 10,268,918,659 0.789

(b) Web trace summary (length 2,592,000,000)

Table 3: Description of the data sets.

remaining 5 disks are almost always idle and thus not pdatiguinteresting). The disk traces are in resolution of
milliseconds, so all the traces have about 86M data poinits iWe use the number of requests in the experiment.
Each request is for aKbyte block. The resolution of milliseconds for disk 1/0O workl@ais good enough, since
the service time is usually a couple of milliseconds.

The web traffic is from public Internet traces availablelart p: / / reposi tory. cs. vt. edu/ named
| bl - conn- 7. It contains thirty days’ worth of all wide-area TCP connegs between the Lawrence Berkeley
Laboratory (LBL) and the rest of the world. Four web tracesumed(Table 3) and they are in millisecond resolution

as well.

5.1 Self-similarity and Model Fitting

All the data sets show strong self-similarity and are vemgtyu This can be easily verified by simply looking at the
data sets. Figure 5 (a) and (b) show Disk-a and Ibl-a. Thalibehavior of R/S plots and variance plots gives an

estimated Hurst exponent around 0.75 to 0.85, confirmirapgtself-similarity. We only show the R/S plots and

14
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variance plots for the two traces due to space limitationslHha data sets and their R/S and variance plots are
very similar.

We use the entropy plot to fit our model. In all the data setspibints in the entropy plots approximate a line
very well (Figure 6). The slope of the entropy plots and th&rested bias are listed in Table 3. All the traces
have bias ranging from 0.63 to 0.8. The traditional Poissarad is not able to deal with these traces.

The entropy plots show a plateau at the tail part for Ibl welsdés. To simulate this, we can use thencated

b-model: beyond certain aggregation level, we &b 1 to force no further splitting on the value of the data pin

5.2 Domain-specific evaluation

We further evaluate the model by generating synthetic sramng the bia$ estimated from the entropy and
comparing them with the real workloads.

We want the model to perform well in terms of domain specifioperties, such as queuing behavior and
interarrival time distribution. This is more important thtéhe statistical properties because the ultimate goal of
modeling is to help to develop better systems. Thereforgtwimatters in the end is how such a system would
perform under any given trace. For the these workloadsranieal time distribution and queuing behavior are
critical to the throughput of the disk subsystems and neksiorBursty workloads often cause unusually long

queues, requiring larger buffer pools and making the entsisédfer long response times.
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Figure 7: Interarrival time distribution in negative curative form.

In Figure 7 and 8, we compare the interarrival time and quelength distributions in negative cumulative
format and in log-log scale for disk traces. The synthetices are generated using tbamodel with bias estimated
from the entropy plots. We estimate the queuing lengthiligion using a simple disk model assuming that each
request takes a uniform service timel6fmsec. We didn’'t use a real disk simulator because we only haveriiest
for each disk request and not the block addresses.

Overall, the interarrival time distributions (Figure 7) thie synthetic traces and the original ones agree very
well. For the real workloads, about 90 per cent of the diskiests have interarrival time of 0, which means they
are sent to the disk within 1 millisecond after the previone® Here 1 millisecond is the resolution of the data
set. Another 10 per cent of the disk requests have differgetarrival times, ranging frorhmsec to 1000 sec. The
synthetic traces capture this irregularity very well.

In Figure 8, we compare the queuing behavior. Most of diskuests can be served immediately without
waiting in the queue. But sometimes, there are so many digkests in a short period of time that the queue
becomes extremely long. A few disk requests experience aegiemgth of about 1 million disk requests. This is
caused by the burstiness of workloads. The synthetic dataireathe bad queuing behavior and exhibit similarly
bad queuing behavior.

We did similar experiments on the web traces. For web trageshave different sizes for different requests.

We assume that the service time is the transmission timesgorbportional to the request size — in particular, we
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Figure 8: Queuing length distribution in negative cumutafiorm.

assumd 00 usec for everyl Kbytes. The queue length is the number of bytes waiting to be serg.cbimparison
of interarrival time and queuing length distributions iostm in Figure 9 and 10. While the interarrival time
distributions are not so close, the queue length distobgtiagree very well, giving a good approximation of the

mean response for the end users.

5.3 Computation Effort

We are also concerned about the efficiency of the algorithmashaw well they scale up, since we are dealing
with very large data sets. We would also be potentially ggt¥d in incorporating themodel in the scheduling
subsystem.

In subsection 4.4, we have already discussed the time acd spaded for synthetic trace generation. Require-
ments of time and space afg!) andO(lg!) respectively. We now show that all the other tools requiry one
scan of the dataset, thus, offering good scalability, too.

It is straightforward to show that tools like interarrivahe distribution and queuing behavior need one pass on
the data. An naive implementation for the entropy plot nesus scan for each aggregation level. However, note
that all the passes are independent. Thus, they can bedtedgnto one an&("), E(?) ... | E(" can be calculated
simultaneously. All the experiment results are calculateitig one-pass algorithms. This is extremely important

when for very large data sets.
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The actual processing time also depends significantly omotiaévolume of requests. In practice, all the data

points have integer values instead of real values. Whendhane is small, some of the data points will become

zero before the required aggregation level is met, thusurtbdr computation is needed on them. In fact, in our

experiments, generating a one-day-long disk trace insaibnd resolution usually takes less than 5 minutes and

the entropy plot requires less than 3 minutes when implesdeint Perl. We expect that a C implementation will

perform much faster.

Figure 11 shows the actual wall-clock time for the entropgt @ind trace generation. Both scale well with

respect to the data set size. We test our tools using trackerent length with the same density. That is, the 1M

long trace has 1 million disk requests and 10M long trace Bawillion disk requests. We use a bias of 0.7. Both

the algorithms show linear scalability.

18



0.1

=X)

Pr(queue length >

0.0001 ¢

le-05
1

0.01 ;

0.001 ¢

=X)

Pr(queue length >

le-08

le-09
1

6 Discussion and Conclusion

0.01

0.001 ¢

0.0001 ¢

le-05 ¢

1le-06

le-07 ¢

real ——

synthetic -

f-5¢ 3ot - soseamec -3 Xoosme -3 XM X,

s

100 10000 1le+06 1e+08

queue length (in Kb)

(@) Ibl-all

100 10000 1le+06
queue length (in Kb)

(c) Ibl-smtp

=X)

Pr(queue length >

=X)

Pr(queue length >

01F
0.01 +
0.001 ¢
0.0001 ¢
le-05

le-06
1

01}
0.01 |
0.001 |
0.0001 |

le-05
1

real ——

synthetic -

100 10000
queue length (in Kb)

(b) Ibl-nntp

1le+06

real ——

synthetic -

100 10000 1le+06
queue length (in Kb)

(d) Ibl-ftp

Figure 10: Queuing length distribution for Ibl network tesc

1e+08

Our proposed method is very general in the sense that suekirsdhr, bursty time sequences arise very often in

real-world data. This was recently observed in numerousgst like TCP [11], video [5], web [3], file system [8],

and disk 1/O [6] traffic.

The main contribution of this work is the introduction of thenodel as an effective tool for finding and char-

acterizing patterns in real, bursty time sequences. Thesheeéxtremely compact, as it effectively needs only one

parameter, the bids Additional contributions include the following:

¢ Single pass, novel and accurate algorithms to estimate

e A fast algorithm to generate synthetic and realistic butste sequences. The algorithms are extremely

efficient: less than 5 minutes for one hour-long disk tracewiilisecond resolution and less than 3 minutes
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Size || Entropy plot | Generation
1M 20.50 13.54
2M 40.52 26.40 j ]
4M 80.51 51.62 o
8M 167.49 100.34
16 M 262.12 140.75
(a) Computation time (in seconds) (b) Normalized time agjailata set size

Figure 11: Computation time against data set size for varioals

for model fitting (implemented in Perl).

e Experiments on real sequences, that showed (a) they arsimdiir and (b) they are approximated well by

our synthetic traces, both in terms of instrinsic measwesyell as in terms of queue length behavior.

We are currently working on expanding the model to incorfspatial information (eg. disk block number),
besides temporal information. Another possible directarfuture work is the analysis of co-evolving, bursty time

sequences, like disk traffic on units of a RAID box (or autoiteotraffic from multiple, nearby highway lanes).
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A Relation between Hurst Exponent and Bias

The variance plot is a tool to estimate the Hurst exponem filte dataset. It plots the variance of the data against
the window size in log-log scale. That is, it plots the logan of the variance o¥;s against the logarithm of the
window size, which idg! / n. For a self-similar process, the points should approxinadiae well with slopes,

—1 < B < 0, which gives an estimation for the Hurst exponéfi?],

H=1+p/2. (4)

For ab-model data, the average ©f at aggregation level is

2" 1 y-(n) “n
Y, 2
avg™(v) = k=0 ;n (k)/

Here, the values of the data points are divided by the lengtheointervals they are covering. Assume the length
of the whole time interval is 1, a data point at aggregatioelle covers a time interval of lengttir™. Thus, the

variance ofY; at aggregation level + 1 is

2(n+1) 1 Y(n+1) (k)/Q*(”H))?

+1 _ k=0 (Y, 2
varl” )(Yf) = gn+1 -1

) 211:6] ((}/t(n)(k) «b/2- (D)2 4 (Y;(”)(k) (1 —b)/2-(n+1)2) 1
= on+1

_ oo (" (k)2 m)?
= 200"+ (1 - p)) =

= 20> + (1 = b)) (var™(v;) +1) — 1.

-1

Thus, the slope of the variance plot is given by

5 s ~lgvar® (v)
B Ig(1/2m+1) —1g(l/2")
= lgvar™(v}) — 1gvar™t(v))

Q

—lg2(0* + (1 — b)?).
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H = 1+8/2

1 1
—— —1g(b® + (1 —b)?
5 2g( + ( )7)

%

B Entropy Value for Different Aggregation Levels
The entropy value at aggregation lewslor ab-model data is given by the follow equation
E™ = nE(b) (5)

Rewrite the entropy value as

B = 2%](51("“)(@ 1g(v, "V (k)
k=0
- 2nzl(—bYt(”)(k) 1g(bY, ™ (k)) — (1 — b)Y, (k) 1g((1 — b)Y,"™ ()))
k=0
_ an](—bYt(”)(k) 1g V™ (k) — (1 = b)Y, (k) 1g V™ (k)
k=0
- 2nzl(by;(”>(k) lgb— (1 b)Y, ™ (k)1g(1 - b))
k=0

= i(—Yt‘")(k)) + E(b)
k=0
= E™ + E(b)

with B = E(b). Thus,E™ = nE(b).
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