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Reading Material

• Textbook Appendix D 

• Kleinberg, J. (1998). Authoritative sources 
in a hyperlinked environment. Proc. 9th 
ACM-SIAM Symposium on Discrete 
Algorithms.

• Brin, S. and L. Page (1998). Anatomy of a 
Large-Scale Hypertextual Web Search 
Engine. 7th Intl World Wide Web Conf.
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Outline

Goal: ‘Find similar / interesting things’

• Intro to DB

• Indexing - similarity search

• Data Mining
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Indexing - Detailed outline

• primary key indexing

• secondary key / multi-key indexing

• spatial access methods

• fractals

• text

• Singular Value Decomposition (SVD)

• multimedia

• ...
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SVD - Detailed outline

• Motivation

• Definition - properties

• Interpretation

• Complexity

• Case studies

• SVD properties

• More case studies

• Conclusions
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SVD - detailed outline

• ...

• Case studies

• SVD properties

• more case studies

– google/Kleinberg algorithms

– query feedbacks

• Conclusions
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SVD - Other properties -

summary
• can produce orthogonal basis (obvious) 

(who cares?)

• can solve over- and under-determined linear 
problems (see C(1) property)

• can compute ‘fixed points’ (= ‘steady state 
prob. in Markov chains’) (see C(4) 
property)
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SVD -outline of properties

• (A): obvious

• (B): less obvious

• (C): least obvious (and most powerful!)
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Properties - by defn.:

A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT
[ r x m] 

A(1): UT
[r x n] U [n x r ] = I [r x r ] (identity matrix)

A(2): VT
[r x n] V [n x r ] = I [r x r ] 

A(3): ΛΛΛΛk = diag( λ1
k, λ2

k, ... λr
k ) (k: ANY real 

number)

A(4): AT = V ΛΛΛΛ UT
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Less obvious properties

A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT
[ r x m] 

B(1): A [n x m] (AT) [m x n] = ??
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CMU SCS

Less obvious properties

A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT
[ r x m] 

B(1): A [n x m] (AT) [m x n] = U ΛΛΛΛ2 UT

symmetric; Intuition?

15-826 Copyright: C. Faloutsos (2008) 12

CMU SCS

Less obvious properties

A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT
[ r x m] 

B(1): A [n x m] (AT) [m x n] = U ΛΛΛΛ2 UT

symmetric; Intuition?

‘document-to-document’ similarity matrix

B(2): symmetrically, for ‘V’ 

(AT) [m x n] A [n x m] = V ΛΛΛΛ2 VT

Intuition?
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Less obvious properties

A: term-to-term similarity matrix

B(3): ( (AT) [m x n] A [n x m] ) k= V ΛΛΛΛ2k VT

and

B(4): (AT A ) k  ~ v1 λ1
2k v1

T for k>>1

where

v1: [m x 1] first column (singular-vector) of V

λ1: strongest singular value
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Proof of (B4)?
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Less obvious properties

B(4): (AT A ) k  ~ v1 λ1
2k v1

T for k>>1

B(5): (AT A ) k  v’ ~ (constant) v1

ie., for (almost) any v’, it converges to a 
vector parallel to v1

Thus, useful to compute first singular 
vector/value (as well as the next ones, too...)
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Proof of (B5)?
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Less obvious properties -

repeated:
A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT

[ r x m] 

B(1): A [n x m] (AT) [m x n] = U ΛΛΛΛ2 UT

B(2): (AT) [m x n] A [n x m] = V ΛΛΛΛ2 VT

B(3): ( (AT) [m x n] A [n x m] ) k= V ΛΛΛΛ2k VT

B(4): (AT A ) k  ~ v1 λ1
2k v1

T

B(5): (AT A ) k  v’ ~ (constant) v1
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Least obvious properties

A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT
[ r x m] 

C(1): A [n x m] x [m x 1] = b [n x 1] 

let x0 = V ΛΛΛΛ(-1) UT b

if under-specified, x0 gives ‘shortest’ solution

if over-specified, it gives the ‘solution’ with the 
smallest least squares error

(see Num. Recipes, p. 62)
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Least obvious properties

Illustration: under-specified, eg

[1 2] [w z] T = 4  (ie, 1 w + 2 z = 4)

1 2 3 4

1

2
all possible solutionsx0

w

z shortest-length solution
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Verify formula:

A = [1 2]     b = [4]

A = U ΛΛΛΛ VT

U = ??

ΛΛΛΛ = ??

V= ??

x0 = V Λ Λ Λ Λ (−1) UT b 
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Verify formula:

A = [1 2]     b = [4]

A = U ΛΛΛΛ VT

U = [1]

ΛΛΛΛ = [ sqrt(5) ]

V=  [ 1/sqrt(5)     2/sqrt(5) ] T

x0 = V Λ Λ Λ Λ (−1) UT b 
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Verify formula:

A = [1 2]     b = [4]

A = U ΛΛΛΛ VT

U = [1]

ΛΛΛΛ = [ sqrt(5) ]

V=  [ 1/sqrt(5)     2/sqrt(5) ] T

x0 = V Λ Λ Λ Λ (−1) UT b = [ 1/5   2/5] T [4] 

= [4/5  8/5] T :  w= 4/5, z = 8/5
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Verify formula:

Show that  w= 4/5, z = 8/5 is

(a) A solution to 1*w + 2*z = 4 and

(b) Minimal (wrt Euclidean norm)
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Verify formula:

Show that  w= 4/5, z = 8/5 is

(a) A solution to 1*w + 2*z = 4 and

A: easy

(b) Minimal (wrt Euclidean norm)

A: [4/5   8/5] is perpenticular to [2   -1]
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Least obvious properties – cont’d

Illustration: over-specified, eg

[3 2]T [w] = [1 2]T (ie, 3 w = 1; 2 w = 2 )

1 2 3 4

1

2
reachable points (3w, 2w)

desirable point b
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Verify formula:

A = [3 2] T b = [ 1  2] T

A = U ΛΛΛΛ VT

U = ??

ΛΛΛΛ = ??

V = ??

x0 = V Λ Λ Λ Λ (−1) UT b 
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Verify formula:

A = [3 2] T b = [ 1  2] T

A = U ΛΛΛΛ VT

U = [ 3/sqrt(13)    2/sqrt(13) ] T

ΛΛΛΛ = [ sqrt(13) ]

V = [ 1 ]

x0 = V Λ Λ Λ Λ (−1) UT b = [ 7/13 ]



C. Faloutsos 15-826

10

15-826 Copyright: C. Faloutsos (2008) 28

CMU SCS

Verify formula:

[3 2]T [7/13] = [1 2]T

[21/13  14/13 ] T -> ‘red point’

1 2 3 4

1

2
reachable points (3w, 2w)

desirable point b
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Verify formula:

[3 2]T [7/13] = [1 2]T

[21/13  14/13 ] T -> ‘red point’  - perpenticular?

1 2 3 4

1

2
reachable points (3w, 2w)

desirable point b
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Verify formula:

A: [3 2] .  ( [1 2] – [21/13   14/13])  =

[3  2] .  [ -8/13    12/13] = [3  2] . [ -2   3] = 0

1 2 3 4

1

2
reachable points (3w, 2w)

desirable point b
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Least obvious properties -

cont’d
A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT

[ r x m] 

C(2): A [n x m] v1 [m x 1] = λλλλ1 u1 [n x 1] 

where v1 , u1 the first (column) vectors of  V, U. (v1

== right-singular-vector)

C(3): symmetrically: u1
T A = λλλλ1 v1

T

u1 == left-singular-vector

Therefore:
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Least obvious properties -

cont’d
A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT

[ r x m] 

C(4): AT A v1 = λλλλ1
2 v1

(fixed point - the dfn of eigenvector for a 
symmetric matrix)
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Least obvious properties -

altogether
A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT

[ r x m] 

C(1): A [n x m] x [m x 1] = b [n x 1] 

then, x0 = V ΛΛΛΛ(-1) UT b: shortest, actual or least-
squares solution

C(2): A [n x m] v1 [m x 1] = λλλλ1 u1 [n x 1] 

C(3): u1
T A = λλλλ1 v1

T

C(4): AT A v1 = λλλλ1
2 v1
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Properties - conclusions

A(0): A[n x m] = U [ n x r ] ΛΛΛΛ [ r x r ] VT
[ r x m] 

B(5): (AT A ) k  v’ ~ (constant) v1

C(1): A [n x m] x [m x 1] = b [n x 1] 

then, x0 = V ΛΛΛΛ(-1) UT b: shortest, actual or least-
squares solution

C(4): AT A v1 = λλλλ1
2 v1
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SVD - detailed outline

• ...

• Case studies

• SVD properties

• more case studies

– Kleinberg/google algorithms

– query feedbacks

• Conclusions
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Kleinberg’s algorithm

• Problem dfn: given the web and a query

• find the most ‘authoritative’ web pages for 
this query

Step 0: find all pages containing the query 
terms

Step 1: expand by one move forward and 
backward
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Kleinberg’s algorithm

• Step 1: expand by one move forward and 

backward
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Kleinberg’s algorithm

• on the resulting graph, give high score (= 

‘authorities’) to nodes that many important 

nodes point to

• give high importance score (‘hubs’) to 

nodes that point to good ‘authorities’)

hubs authorities
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Kleinberg’s algorithm

observations

• recursive definition!

• each node (say, ‘i’-th node) has both an 

authoritativeness score ai and a hubness

score hi
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Kleinberg’s algorithm

Let E be the set of edges and A be the 

adjacency matrix: 

the (i,j) is 1 if the edge from i to j exists

Let h and a be  [n x 1] vectors with the 

‘hubness’ and ‘authoritativiness’ scores.

Then:
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Kleinberg’s algorithm

Then:

ai = hk + hl + hm

that is

ai = Sum (hj)     over all j that 

(j,i) edge exists

or

a = AT h

k

l

m

i
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Kleinberg’s algorithm

symmetrically, for the ‘hubness’:

hi = an + ap + aq

that is

hi = Sum (qj)     over all j that 

(i,j) edge exists

or

h = A a

p

n

q

i
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Kleinberg’s algorithm

In conclusion, we want vectors h and a such 

that:

h = A a

a = AT h

Recall properties:

C(2): A [n x m] v1 [m x 1] = λ1 u1 [n x 1] 

C(3): u1
T A = λ1 v1

T

=
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Kleinberg’s algorithm

In short, the solutions to

h = A a

a = AT h

are the left- and right- singular-vectors of the 

adjacency matrix A.

Starting from random a’ and iterating, we’ll 

eventually converge

(Q: to which of all the singular-vectors? why?)
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Kleinberg’s algorithm

(Q: to which of all the singular-vectors? 

why?)

A: to the ones of the strongest singular-value, 

because of property B(5):

B(5): (AT A ) k  v’ ~ (constant) v1
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Kleinberg’s algorithm - results

Eg., for the query ‘java’:

0.328 www.gamelan.com

0.251 java.sun.com

0.190 www.digitalfocus.com (“the java 

developer”)
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Kleinberg’s algorithm -

discussion

• ‘authority’ score can be used to find ‘similar 

pages’ (how?)

• closely related to ‘citation analysis’, social 

networs / ‘small world’ phenomena
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google/page-rank algorithm

• closely related: imagine a particle randomly 

moving along the edges (*)

• compute its steady-state probabilities

(*) with occasional random jumps
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google/page-rank algorithm

• ~identical problem: given a Markov Chain, 

compute the steady state probabilities p1 ... 

p5

1 2 3

4
5
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(Simplified) PageRank 

algorithm
• Let A be the transition matrix (= adjacency 

matrix); let AT become column-normalized - then

1 2 3

4
5

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

=

To

From
AT

1

1 1

1/2 1/2

1/2

1/2
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(Simplified) PageRank 

algorithm
• AT p = p

1 2 3

4
5

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

=

AT p    =      p

1

1 1

1/2 1/2

1/2

1/2
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(Simplified) PageRank 

algorithm
• AT p = 1 * p

• thus, p is the eigenvector that corresponds 

to the highest eigenvalue (=1, since the matrix is 

column-normalized)

• formal definition of eigenvector/value: soon
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(Simplified) PageRank 

algorithm
• In short: imagine a particle randomly 

moving along the edges

• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random 

jumps
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Formal definition

If A is a (n x n) square matrix

(λ , x) is an eigenvalue/eigenvector pair 

of A if

A x = λ x

CLOSELY related to singular values:
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Eigen- vs singular-values

if 

B[n x m] = U[n x r] Λ Λ Λ Λ [ [ [ [ r x r] (V[m x r])
T

then A = (BTB) is symmetric and

C(4): BT B vi = λλλλi
2 vi

ie, v1 , v2 , ...: eigenvectors of  A = (BTB) 
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Intuition

• A as vector transformation

2 1

1 3

A

1

0

x

2

1

x’

= x

x’

2

1

1

3
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Intuition

• By defn., eigenvectors remain parallel to 
themselves (‘fixed points’)

2 1

1 3

A

0.52

0.85

v1v1

=

0.52

0.853.62 *

λ1
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Convergence

• Usually, fast:
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Convergence

• Usually, fast:
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Convergence

• Usually, fast:

• depends on ratio

λ1 : λ2
λ1

λ2
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Kleinberg/google - conclusions

SVD helps in graph analysis:

hub/authority scores: strongest left- and right-

singular-vectors of the adjacency matrix

random walk on a graph: steady state 

probabilities are given by the strongest 

eigenvector of the transition matrix
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SVD - detailed outline

• ...

• Case studies

• SVD properties

• more case studies

– google/Kleinberg algorithms

– query feedbacks

• Conclusions
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Query feedbacks

[Chen & Roussopoulos, sigmod 94]

sample problem:

estimate selectivities (e.g., ‘how many movies 
were made between 1940 and 1945?’

for query optimization,

LEARNING from the query results so far!!
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Query feedbacks

Idea #1: consider a function for the CDF 
(cummulative distr. function), eg., 6-th 
degree polynomial (or splines, or anything 
else)

year

count, so far
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Query feedbacks

For example

F(x) = # movies made until year ‘x’

= a1 + a2 * x + a3 * x2 + … a7 * x6

15-826 Copyright: C. Faloutsos (2008) 66

CMU SCS

Query feedbacks

GREAT idea #2: adapt your model, as you see 
the actual counts of the actual queries

year

count, so far
actual

original estimate
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Query feedbacks

year

count, so far
actual

original estimate
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Query feedbacks

year

count, so far
actual

original estimate

a query
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Query feedbacks

year

count, so far
actual

original estimate

new estimate
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Query feedbacks

Eventually, the problem becomes:

- estimate the parameters a1, ... a7 of the model

- to minimize the least squares errors from the 
real answers so far.

Formally:
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Query feedbacks

Formally, with n queries and 6-th degree 
polynomials:

X11 X12 X17

Xn1 Xn2 Xn7

b1

b2

bn

a1

a2

a7

=
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Query feedbacks

where xi,j such that Sum (xi,j * ai) = our 
estimate for the # of movies and bj: the 
actual 

X11 X12 X17

Xn1 Xn2 Xn7

b1

b2

bn

a1

a2

a7

=



C. Faloutsos 15-826

25

15-826 Copyright: C. Faloutsos (2008) 73

CMU SCS

Query feedbacks

For example, for query ‘find the count of 
movies during (1920-1932)’:

a1 + a2 * 1932 + a3 * 1932**2 + … 

-

(a1 + a2 * 1920 + a3 * 1920**2 + … )

X11 X12 X17

Xn1 Xn2 Xn7

b1

b2

bn

a1

a2

a7

=
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Query feedbacks

And thus X11 = 0; X12 = 1932-1920, etc

a1 + a2 * 1932 + a3 * 1932**2 + … 

-

(a1 + a2 * 1920 + a3 * 1920**2 + … )
X11 X12 X17

Xn1 Xn2 Xn7

b1

b2

bn

a1

a2

a7

=
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Query feedbacks

In matrix form:

X11 X12 X17

Xn1 Xn2 Xn7

b1

b2

bn

a1

a2

a7

=

X                          a      =         b

1st query

n-th query
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Query feedbacks

In matrix form: 

X a =  b

and the least-squares estimate for a is

a = V ΛΛΛΛ(−1) UT b

according to property  C(1) 

(let X = U ΛΛΛΛ VT )
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Query feedbacks -
enhancements

the solution

a = V ΛΛΛΛ(−1) UT b

works, but needs expensive SVD each 
time a new query arrives

GREAT Idea #3: Use ‘Recursive Least 
Squares’, to adapt a incrementally.

Details: in paper - intuition:
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Query feedbacks -
enhancements

Intuition:

x

b
a1 x + a2

least squares fit
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Query feedbacks -
enhancements

Intuition:

x

b
a1 x + a2

least squares fit

new query
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Query feedbacks -
enhancements

Intuition:

x

b
a1 x + a2

least squares fit

new query

a’1 x + a’2
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Query feedbacks -
enhancements

the new coefficients  can be quickly 
computed from the old ones, plus 
statistics in a (7x7) matrix

(no need to know the details, although 
the RLS is a brilliant method)
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Query feedbacks -
enhancements

GREAT idea #4: ‘forgetting’ factor - we 
can even down-play the weight of 
older queries, since the data 
distribution might have changed.

(comes for ‘free’ with RLS...)
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Query feedbacks - conclusions

SVD helps find the Least Squares 
solution, to adapt to query feedbacks

(RLS = Recursive Least Squares is a 
great method to incrementally update 
least-squares fits)
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SVD - detailed outline

• ...

• Case studies

• SVD properties

• more case studies

– google/Kleinberg algorithms

– query feedbacks

• Conclusions
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Conclusions

• SVD: a valuable tool

• given a document-term matrix, it finds 

‘concepts’ (LSI)

• ... and can reduce dimensionality (KL)

• ... and can find rules (PCA; RatioRules)
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Conclusions cont’d

• ... and can find fixed-points or steady-state 

probabilities (google/ Kleinberg/ Markov 

Chains)

• ... and can solve optimally over- and under-

constraint linear systems (least squares / 

query feedbacks)
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