

\qquad
\qquad
\qquad
\qquad
\qquad

$5{ }^{\text {a }}$ cmuscs	
SVD - Detailed outline	
- Motivation	
- Definition - properties	
- Interpretation	
- Complexity	
- Case studies	
-. SVD properties	
- More case studies	
- Conclusions	
${ }_{15} 5.826$ Copyighic C. Falutos (2008)	5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SVD - Other properties summary

- can produce orthogonal basis (obvious) (who cares?)
- can solve over- and under-determined linear problems (see $\mathrm{C}(1)$ property)
- can compute 'fixed points' (= 'steady state prob. in Markov chains') (see C(4) property)

15-826

${ }^{30 \mathrm{Bm}}$ SVD -outline of properties

\qquad

- (A): obvious
- (B): less obvious \qquad
- (C): least obvious (and most powerful!)
\qquad
\qquad
\qquad
15-826 Copyright: C. Faloutsos (2008) 8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Less obvious properties repeated:

\qquad
\qquad
$\mathrm{A}(0): \mathbf{A}_{[\mathrm{n} \times \mathrm{m}]}=\mathbf{U}_{[\mathrm{n} \times \mathrm{r}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}^{\mathrm{T}}{ }_{[\mathrm{rrm}]}$
$\mathrm{B}(1): \mathbf{A}_{[\mathrm{nx} \mathrm{m]}}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{mxn]}}=\mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}}$
$\mathrm{B}(2):\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{m} \mathrm{\times n]}]} \mathbf{A}_{[\mathrm{nx} \mathrm{m]}]}=\mathbf{V} \boldsymbol{\Lambda}^{2} \mathbf{V}^{\mathrm{T}}$
B(3): $\left(\left(\mathbf{A}^{\mathrm{T}}\right)_{[m \times n]} \mathbf{A}_{[n \times m]}\right)^{\mathrm{k}}=\mathbf{V} \mathbf{\Lambda}^{2 \mathrm{k}} \mathbf{V}^{\mathrm{T}}$
$\mathrm{B}(4):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \sim \mathrm{v}_{1} \lambda_{1}{ }^{2 \mathrm{k}} \mathrm{v}_{1}{ }^{\mathrm{T}}$
B(5): $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \mathbf{v}^{\prime} \sim$ (constant) \mathbf{v}_{1}

15-826

\qquad

\qquad
\qquad
\qquad

Verify formula:

Show that $w=4 / 5, z=8 / 5$ is
(a) A solution to $1 * \mathrm{w}+2 * \mathrm{z}=4$ and
(b) Minimal (wrt Euclidean norm)

\qquad

\qquad
\qquad
\qquad
\qquad

Verify formula:
$\left[\begin{array}{ll}3 & 2\end{array}\right]^{\mathrm{T}}[7 / 13]=\left[\begin{array}{ll}1 & 2\end{array}\right]^{\mathrm{T}}$
\qquad
[21/13 $14 / 13]^{\mathrm{T}}$-> 'red point' - perpenticular? \qquad

$8^{8 \text { Least obvious properties - }} \begin{gathered}\text { cont'd }\end{gathered}$

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{Trx}]}^{\mathbf{T}}$
$\mathrm{C}(4): \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{v}_{\mathbf{1}}=\boldsymbol{\lambda}_{\mathbf{1}}{ }^{\mathbf{2}} \mathbf{v}_{\mathbf{1}}$
(fixed point - the dfn of eigenvector for a symmetric matrix)

15-826

Least obvious properties altogether

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{\text {[rxm]}}$
$\mathrm{C}(1): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{x}_{[\mathrm{m} \times \mathrm{x}]}=\mathbf{b}_{[\mathrm{nx} 1]}$
then, $\mathbf{x}_{0}=\mathbf{V} \Lambda^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$: shortest, actual or least- \qquad squares solution
$\mathrm{C}(2): \mathbf{A}_{[\mathrm{nxm}]} \mathbf{v}_{\mathbf{1}[\mathrm{m} \mathrm{\times x}]}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{u}_{\mathbf{1}_{[\mathrm{nx} 1]}}$ \qquad
$\mathrm{C}(3): \mathbf{u}_{\mathbf{1}}{ }^{\mathrm{T}} \mathbf{A}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$
$\mathrm{C}(4): \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{v}_{\mathbf{1}}=\boldsymbol{\lambda}_{\mathbf{1}}{ }^{\mathbf{2}} \mathbf{v}_{\mathbf{1}}$ \qquad
15-826

SVD - detailed outline - ... - Case studies - SVD properties - more case studies - Kleinberg/google algorithms - query feedbacks - Conclusions	
$15-826$ Copyright: C. Faloutsos (2008)	35

\qquad
\qquad

Kleinberg's algorithm

- on the resulting graph, give high score (= 'authorities') to nodes that many important \qquad nodes point to
- give high importance score ('hubs') to \qquad nodes that point to good 'authorities')

hubs $\underset{0}{\sim}$ Copyight c. Faloutos (2008)
Copyright: C. Faloutsos (2008) 3
38

Kleinberg's algorithm

Let E be the set of edges and \mathbf{A} be the adjacency matrix:
the (i, j) is 1 if the edge from i to j exists
Let h and a be [$\mathrm{n} \times 1$] vectors with the 'hubness' and 'authoritativiness' scores. Then:

Kleinberg's algorithm

$$
\begin{aligned}
& \text { In conclusion, we want vectors } \mathbf{h} \text { and } \mathbf{a} \text { such } \\
& \text { that: } \\
& \qquad \begin{array}{l}
\mathbf{h}=\mathbf{A} \mathbf{a} \\
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{array}
\end{aligned}
$$

Recall properties:
$\mathrm{C}(2): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{v}_{\mathbf{1}[\mathrm{mx} 1]}=\lambda_{1} \mathbf{u}_{\mathbf{1}[\mathrm{nx1]}}$ $\mathrm{C}(3): \mathbf{u}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{A}=\lambda_{1} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$
Copyright: C. Faloutsos (2008)
43

\qquad
\qquad
\qquad

(Simplified) PageRank algorithm

- $\mathbf{A}^{\mathbf{T}} \mathbf{p}=1$ * \mathbf{p}
- thus, \mathbf{p} is the eigenvector that corresponds to the highest eigenvalue $(=1$, since the matrix is column-normalized)
- formal definition of eigenvector/value: soon

15-826

$8^{8}{ }^{\text {cnuscs }}$
 (Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps

15-826

Formal definition

If \mathbf{A} is a ($\mathrm{n} \times \mathrm{n}$) square matrix
(λ, \mathbf{x}) is an eigenvalue/eigenvector pair of \mathbf{A} if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

CLOSELY related to singular values:
$15-826$
Copyright: C. Faloutsos (2008) 54

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Query feedbacks

Eventually, the problem becomes:

- estimate the parameters $a_{1}, \ldots a_{7}$ of the model
\qquad
- to minimize the least squares errors from the real answers so far.
Formally:

Formally, with n queries and 6-th degree polynomials: \qquad

15-826

Query feedbacks

For example, for query 'find the count of movies during (1920-1932)':
$a_{1}+a_{2} * 1932+a_{3} * 1932 * * 2+\ldots$
$\left(a_{1}+\mathrm{a}_{2} * 1920+\mathrm{a}_{3} * 1920 * * 2+\ldots\right)$

15-826
Copyright: C. Faloutsos (2008)
73

Query feedbacks enhancements

GREAT idea \#4: 'forgetting' factor - we can even down-play the weight of older queries, since the data distribution might have changed. (comes for 'free' with RLS...)

${ }^{\text {Conclusions cont'd }}$

- ... and can find fixed-points or steady-state probabilities (google/ Kleinberg/ Markov Chains)
- ... and can solve optimally over- and underconstraint linear systems (least squares / query feedbacks)

15-826

