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PART 2:

PageRank, HITS, and 

eigenvalues
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Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

Part 3: Influence, communities
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Part 2: PageRank, HITS and 

eigenvalues

• How important is a node?

• Who is the best customer to advertise to?
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Part 2: PageRank, HITS and 

eigenvalues

• How important is a node?

• Who is the best customer to advertise to?

Answers: 

• PageRank (random surfer model)

• HITS (hubs and authorities)
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(Published) PageRank 

• Do a random walk, but

• with probability c, fly-out to a random node

• Then, the ssp vector  v obeys:

reminder
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(Published) PageRank 

1vMv
rrr

*/*)1( ncc +×−=

reminder
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(Published) PageRank 

1vMv
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*/*)1( ncc +×−=

n x 1

ssp

fly-out

probability

column-normalized

to-from adjacency matrix

number of nodes

vector

full of ‘ones’
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A clever variation

• Personalized PageRank:

• Who is the most important node in the 

vicinity of node i?
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Personalized PageRank

• [Haveliwala+]

iii ecc
rrr

**)1( +×−= vMv

ssp, when

we restart from node ‘i’
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Personalized PageRank

• [Haveliwala+]

iii ecc
rrr

**)1( +×−= vMv

ssp, when

we restart from node ‘i’
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Personalized PageRank

• [Haveliwala+]

iii ecc
rrr

**)1( +×−= vMv

1vMv
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*/*)1( ncc +×−= original

new
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Personalized PageRank

• [Haveliwala+]

• then si,j = prob( a random walker with 

restarts from node i, will find itself at node 

j)

iii ecc
rrr

**)1( +×−= vMv

1

, ]*)1([*][ −−−== MIS ccs ji
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Personalized PageRank

si,j = prob( a random walker with restarts from 

node i, will find itself at node j)

si,j : good measure of how close is node j to 

node i

1

, ]*)1([*][ −−−== MIS ccs ji
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Our wish list:

• How important is a node?

• Who is the best customer to advertise to?

ssp values answer these questions

15-826 Copyright: C. Faloutsos (2009) #17

CMU SCS

Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

• Eigenvalues and PageRank 

• SVD and HITS

Part 3: influence,  virus prop., communities
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Kleinberg’s algorithm (‘HITS’)

• Problem dfn: given the web and a query

• find the most ‘authoritative’ web pages for 

this query
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Kleinberg’s algorithm

• give high score (= ‘authorities’) to nodes 

that many important nodes point to

• give high importance score (‘hubs’) to nodes 

that point to good ‘authorities’)

hubs authorities

reminder
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SVD & HITS

• Adjacency matrix A = U ΛΛΛΛ VT 

u1: hubness scores

v1: author. scores

reminder
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Conclusions

eigenvalues/eigenvectors: vital for

• PageRank, 

• (virus propagation - coming up next!)

• (graph partitioning - not mentioned here)
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Conclusions, cont’d

SVD

• closely related: HITS/Kleinberg

• (and also LSI, KLT, PCA, Least squares, ...)

Both eigen- and singular decompositions are 

extremely useful, well understood tools for 

graphs / matrices.
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PART 3:

Influence, virus 

propagation, 

communities
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Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

• Eigenvalues and PageRank 

• SVD and HITS

Part 3: influence, virus prop., communities
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Problem definition

• Q1: How does a virus spread across an 

arbitrary network?

• Q2: will it create an epidemic?
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Framework

• Susceptible-Infected-Susceptible (SIS) 

model 

– Cured nodes immediately become susceptible 

Susceptible/

healthy

Infected 

& 

infectious

Infected by neighbor

Cured 

internally
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The model

• (virus) Birth rate β: probability than an 

infected neighbor attacks

• (virus) Death rate δ: probability that an 

infected node heals

Infected

Healthy

NN1

N3

N2

Prob. β

Prob. β

Prob. δδδδ



10

15-826 Copyright: C. Faloutsos (2009) #28

CMU SCS

The model

• Virus ‘strength’ s= β/δ

Infected

Healthy

NN1

N3

N2

Prob. β

Prob. β

Prob. δ
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Other models:

• SIR: Susceptible - infected & infectious -

recovered/removed

– eg., mumps, chickenpox; black plague
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Other models:

• and many more:

• SEIR: Susceptible; Exposed (= infected, but 

not infectious yet); I; R

• variations:

– M: passively immune, like infants

– with births/newcomers

– ...
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Epidemic threshold ττττ

of a graph, defined as the value of τ, such that

if   strength s = β / δ <  τ

an epidemic can not happen

Thus, 

• given a graph

• compute its epidemic threshold
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Epidemic threshold ττττ

What should τ depend on?

• avg. degree? and/or highest degree? 

• and/or variance of degree?

• and/or third moment of degree?

15-826 Copyright: C. Faloutsos (2009) #33

CMU SCS

Epidemic threshold

• [Theorem] We have no epidemic, if 

β/δ <τ = 1/ λ1,A
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Epidemic threshold

• [Theorem] We have no epidemic, if 

β/δ <τ = 1/ λ1,A

largest eigenvalue

of adj. matrix A
attack prob.

recovery prob.
epidemic threshold

Proof: [Wang+03]
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Experiments (Oregon)
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ββββ/δδδδ = τ

(at the threshold)

ββββ/δδδδ < τ

(below threshold)
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Our wish list:

• Who is the best person/computer to 

immunize against a virus?
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Our wish list:

• Who is the best person/computer to 

immunize against a virus? Highest diff in λ1
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Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

• Eigenvalues and PageRank 

• SVD and HITS

Part 3: influence, virus prop., communities
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Graph clustering & mining

• Q1: which edges/nodes are ‘abnormal’?

• Q2: split a graph in k ‘natural’ communities 

- but how to determine k?
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Graph partitioning

• Documents x terms

• Customers x products

• Users x web-sites
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Graph partitioning

• Documents x terms

• Customers x products

• Users x web-sites

• Q: HOW MANY 

PIECES?
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Graph partitioning

• Documents x terms

• Customers x products

• Users x web-sites

• Q: HOW MANY 

PIECES?

• A: MDL/ compression



15

15-826 Copyright: C. Faloutsos (2009) #43

CMU SCS

Cross-associations

1x2
2x2

15-826 Copyright: C. Faloutsos (2009) #44

CMU SCS

Cross-associations

2x3 3x3 3x4
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Cross-associations
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Cross-associations
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Graph clustering & mining

• Q1: which edges/nodes are ‘abnormal’?

• Q2: split a graph in k ‘natural’ communities 

- but how to determine k?

• A2: choose the k that leads to best overall 

compression (= MDL = Minimum 

Description Language)
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Cross-associations

outlier edgemissing edge



17

15-826 Copyright: C. Faloutsos (2009) #49

CMU SCS

Conclusions

• virus propagation: eigenvalue determines 

the epidemic threshold (SIS model)

• communities/graph partitioning: MDL
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Resources: Software and urls

• SVD packages: in many systems (matlab, 

mathematica, LINPACK, LAPACK)

• stand-alone, free code: SVDPACK from 

Michael Berry

http://www.cs.utk.edu/~berry/projects.html
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Books

• Faloutsos, C. (1996). Searching Multimedia 

Databases by Content, Kluwer Academic Inc. 

• Jolliffe, I. T. (1986). Principal Component  

Analysis, Springer Verlag.
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Books

• [Press+92] William H. Press, Saul A. Teukolsky, 

William T. Vetterling and  Brian P. Flannery: 

Numerical Recipes in C,   Cambridge University 

Press, 1992, 2nd Edition. (Great description, 

intuition and code for SVD)
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Discussion

A lot of recent interest - topics we didn’t 

cover:

• Relational learning, e.g., [David Jensen; 

Daphne Koller; Saso Dzeroski]

• Frequent sub-graphs, e.g., [Jiawei Han, Jian

Pei; George Karypis, Vipin Kumar; 

Mohammed Zaki]
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Discussion cont’d

• Graph partitioning, e.g., [METIS (Karypis)]

• Social networks, e.g., [Kathleen Carley; 

Wasserman+Faust]

• Web mining, e.g., [Soumen Chakrabarti]
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Overall conclusions

• Surprising patterns in graphs

• Powerful tools exist:

– Self-similarity, fractals, Kronecker

– SVD, eigenvalues

– MDL for partitioning


