C. Faloutsos

g CMU SCS

15-826: Multimedia Databases
and Data Mining

Lecture#5: Multi-key and
Spatial Access Methods — II — z-ordering
C. Faloutsos

g CMU SCS

Must-read material

* MM-Textbook, Chapter 5.1
* Ramakrinshan+Gehrke, Chapter 28.4

 J. Orenstein,
Spatial Query Processing in an Object-Oriented
Database System, Proc. ACM SIGMOD, May,
1986, pp. 326-336, Washington D.C.

15-826 Copyright: C. Faloutsos (2016) 2

g MU SCS
Outline

Goal: ‘Find similar / interesting things’
* Intro to DB

¢ Indexing - similarity search
» Data Mining

15-826 Copyright: C. Faloutsos (2016)

g CMU SCS

Indexing - Detailed outline

* primary key indexing
* secondary key / multi-key indexing
* spatial access methods

— problem dfn

— z-ordering

— R-trees

* text

L]
15-826 Copyright: C. Faloutsos (2016) 4

15-826

C. Faloutsos

g CMU SCS
Spatial Access Methods -

problem
 Given a collection of geometric objects
(points, lines, polygons, ...)

+ organize them on disk, to answer spatial
queries (like??)

15-826 Copyright: C. Faloutsos (2016)

% MU SCS
Spatial Access Methods -

problem
* Given a collection of geometric objects
(points, lines, polygons, ...)
 organize them on disk, to answer
— point queries

— range queries |:| X
— k-nn queries o o \

— spatial joins (‘all pairs’ queries) | « ==

15-826 Copyright: C. Faloutsos (2016)

g CMU SCS
Spatial Access Methods -

problem
 Given a collection of geometric objects
(points, lines, polygons, ...)
* organize them on disk, to answer
— point queries

— range queries El o
— k-nn queries o« oo \

— spatial joins (‘all pairs’ queries) | « E—3

15-826 Copyright: C. Faloutsos (2016)

% CMU SCS
Spatial Access Methods -

problem
* Given a collection of geometric objects
(points, lines, polygons, ...)
 organize them on disk, to answer
— point queries

— k-nn queries)

— range queries @. P
o\

u -~

— spatial joins (‘all pairs’ queries)

15-826 Copyright: C. Faloutsos (2016)

15-826

C. Faloutsos

g CMU SCS
Spatial Access Methods -

problem
 Given a collection of geometric objects
(points, lines, polygons, ...)
* organize them on disk, to answer

— point queries
— range queries |:| o0
— k-nn queries R \

— spatial joins (“all pairs’ queries) I

.
o

15-826 Copyright: C. Faloutsos (2016)

% MU SCS
Spatial Access Methods -

problem
* Given a collection of geometric objects
(points, lines, polygons, ...)
 organize them on disk, to answer
— point queries

— range queries o 0
— k-nn queries
— spatial joins (‘all pairs’ within €) O

15-826 Copyright: C. Faloutsos (2016)

g CMU SCS
SAMs - motivation

* Q: applications?

15-826 Copyright: C. Faloutsos (2016)

% CMU SCS

SAMs - motivation
traditional DB GIS

age

salary

15-826 Copyright: C. Faloutsos (2016)

15-826

C. Faloutsos

g CMU SCS

SAMs - motivation
traditional DB GIS

age

salary

15-826 Copyright: C. Faloutsos (2016)

g CMU SCS

15-826

SAMs - motivation

CAD/CAM

find elements
too close
to each other

—1
—

—
—

1oan

Copyright: C. Faloutsos (2016) 14

g CMU SCS
SAMs - motivation

CAD/CAM

—

]
]
|]
1

—

15-826 Copyright: C. Faloutsos (2016)

g CMU SCS

St |\

sn\\'\

SAMs - motivation

365

S ——
1 365
day
15-826 Copyright: C. Faloutsos (2016) 16

15-826

C. Faloutsos

% CMU SCS

Indexing - Detailed outline

* primary key indexing
* secondary key / multi-key indexing
* spatial access methods

— problem dfn

— z-ordering

— R-trees

e text

15-826 Copyright: C. Faloutsos (2016)

g CMU SCS
SAMs: solutions

 z-ordering
* R-trees
* (grid files)

Q: how would you organize, e.g., n-dim
points, on disk? (C points per disk page)

15-826 Copyright: C. Faloutsos (2016)

z-ordering
Q: how would you organize, e.g., n-dim

points, on disk? (C points per disk page)
Hint: reduce the problem to 1-d points (!!)

QI1: why?

A: RN
Q2: how? e e e
15-826 Copyright: C. Faloutsos (2016)

g CMU SCS$

z-ordering

Q: how would you organize, e.g., n-dim
points, on disk? (C points per disk page)
Hint: reduce the problem to 1-d points (!!)

QI1: why?

A: B-trees! <.
Q2: how? . . e
15-826 Copyright: C. Faloutsos (2016)

20

15-826

C. Faloutsos

% CMU SCS

z-ordering

Q2: how?

A: assume finite granularity; z-ordering = bit-
shuffling = N-trees = Morton keys = geo-
coding = ...

o . ®
O °
o oo
o © °
o 1P
15-826 Copyright: C. Faloutsos (2016) 21
% CMU SCS
L
z-ordering

Q2.1: how to map n-d cells to 1-d cells?

15-826 Copyright: C. Faloutsos (2016) 23

g CMU SCS

z-ordering
Q2: how?
A: assume finite granularity (e.g., 23?x232 ;
4x4 here)
Q2.1: how to map n-d cells to 1-d cells?
15-826 Copyright: C. Faloutsos (2016) 22
z-ordering

Q2.1: how to map n-d cells to 1-d cells?
A: row-wise

Q: is it good?
]
=
]
-
15-826 Copyright: C. Faloutsos (2016) 24

15-826

C. Faloutsos

g CMU SCS

z-ordering

Q: is it good?
A: great for ‘x’ axis; bad for ‘y’ axis

% CMU SCS

z-ordering

Q: How about the ‘snake’ curve?

L L
1=
15-826 Copyright: C. Faloutsos (2016) 25
% CMU SCS
z-ordering
Q: How about the ‘snake’ curve?
A: still problems:
]
| ! I\ I
| | 2r32
] AN
¢]
2732
15-826 Copyright: C. Faloutsos (2016) 27

15-826 Copyright: C. Faloutsos (2016) 26
g CMU SCS
z-ordering
Q: Why are those curves ‘bad’?
A: no distance preservation (~ clustering)
Q: solution? ! T
] [
|
[2732
] L
L
2732
15-826 Copyright: C. Faloutsos (2016) 28

15-826

C. Faloutsos

g CMU SCS

z-ordering

Q: solution? (w/ good clustering, and easy to
compute, for 2-d and n-d?)

15-826 Copyright: C. Faloutsos (2016) 29

g CMU SCS

z-ordering

Q: solution? (w/ good clustering, and easy to
compute, for 2-d and n-d?)
A: z-ordering/bit-shuffling/linear-quadtrees

‘looks’ better:

TN .)
LNV * few long jumps;
WA * scoops out the whole quadrant
NVYN before leaving it
* a.k.a. space filling curves
15-826 Copyright: C. Faloutsos (2016) 30

g CMU SCS

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f{x,y))?
A: 3 (equivalent) answers!

(TN
AN
D\
N [V

L/ L

15-826 Copyright: C. Faloutsos (2016) 31

% CMU SCS

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f(x,1))?
Al: ‘z’ (or °N’) shapes, RECURSIVELY

NN
N AR

order-1 order-2

AN
QAN
D\
N [V

/L

order (n+1)

15-826 Copyright: C. Faloutsos (2016) 32

15-826

C. Faloutsos

g CMU SCS

z-ordering

Notice:
+ self similar (we’ll see about fractals, soon)
* method is hard to use: z =2 f(x,y)

% CMU SCS

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f{x,y))?
A: 3 (equivalent) answers!

15-826

NEWENE;
QN N
NARTNA
N VN
order-1 order-2

Copyright: C. Faloutsos (2016)

order (n+1)

33

15-826

A

N

N

N

N
QL
N

Method #2?

N AN
N

72

Copyright: C. Faloutsos (2016)

34

% CMU SCS

bit-shuffling

z-ordering

X y
00 11
y
11
A 1
10 !\1\'{\1
01 I nD AND
00 [TNJVN
00011011 X

15-826

Copyright: C. Faloutsos (2016)

35

g CMU SCS

bit-shuffling

11
10
01
00

15-826

z-ordering

X y

V74

z=(0101),=5

\

_74
paivg

Bk
‘l\

72

00

01

10

X

11

Copyright: C. Faloutsos (2016)

36

15-826

C. Faloutsos

g CMU SCS

z-ordering

bit-shuffling

11
WINE] z=(0101),=5
1o [ERRH (0101,
8(1) {\3 "\3 How about the reverse:
(xy) =&z)?
00 01 10 TR
15-826 Copyright: C. Faloutsos (2016) 37

% CMU SCS

z-ordering

bit-shuffling

11
TNE} z=(0101),=5
10 !\1\ N (»
01 Ir\\ AN
00 N[N How about n-d spaces?
00 01 10 TR
15-826 Copyright: C. Faloutsos (2016) 38

% CMU SCS

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f{x,y))?
A: 3 (equivalent) answers!

RN
N 9
AT Method #37
INVN
15-826 Copyright: C. Faloutsos (2016) 39

z-ordering

linear-quadtrees : assign N->1, S->0 e.t.c.

W E
1 NA N 01...[11
N .
(N
NO AN
0 MNHP S 00...{ 10..
0 1
15-826 Copyright: C. Faloutsos (2016) 40

15-826

10

C. Faloutsos

g CMU SCS

z-ordering

... and repeat recursively. Eg.: z,; . .. =
WN;WN = (0101),=5
W E

1 NINE
!\1\ NH N o1..[11..
N
\

00 11

3 S 00...] 10..

15-826 Copyright: C. Faloutsos (2016) 41

g CMU SCS

z-ordering

Drill: z-value of magenta cell, with the three

methods?
W E

-4

A
N\
NV N S

%0 457

15-826 Copyright: C. Faloutsos (2016) 42

g CMU SCS

z-ordering

Drill: z-value of magenta cell, with the three

methods?
W E
method#1: 14
method#2: shuffle(11;10)=

REES N (1110),= 14
N

0 N

15-826 Copyright: C. Faloutsos (2016) 43

% CMU SCS

z-ordering
Drill: z-value of magenta cell, with the three

methods?

W E

method#1: 14

1 IR method#2: shuffle(11;10)=

(N (1110), =14

N method#3: EN;ES=...=14
0 RNEARN S

0 1

15-826 Copyright: C. Faloutsos (2016) 44

15-826

11

C. Faloutsos

g CMU SCS

z-ordering - Detailed outline

* spatial access methods
— z-ordering
* main idea - 3 methods
* use w/ B-trees; algorithms (range, knn queries ...)
* non-point (eg., region) data
* analysis; variations
— R-trees

15-826 Copyright: C. Faloutsos (2016) 45

z-ordering - usage & algo’s
Q1: How to store on disk?

A:
Q2: How to answer range queries etc

NLA N
Q)

ADAN
NV

72

15-826 Copyright: C. Faloutsos (2016) 46

z-ordering - usage & algo’s

Q1: How to store on disk?
A: treat z-value as primary key; feed to B-tree

PGH
SF \ R Z cname etc
N\ 5 |SF
,\\ ,\\ 12 |PGH
INVN

15-826 Copyright: C. Faloutsos (2016) 47

g CMU SCS

z-ordering - usage & algo’s
MAJOR ADVANTAGES w/ B-tree:

* already inside commercial systems (no
coding/debugging!)
* concurrency & recovery is ready
PGH

SF ! \ 4 V4 cname etc

N 5 |SF
AN ANY 12 |PGH
I'N VN

15-826 Copyright: C. Faloutsos (2016) 48

15-826

12

C. Faloutsos

% CMU SCS

z-ordering - usage & algo’s

Q2: queries? (eg.: find city at (0,3))?

SF \ R Z cname etc
B T
,\\ ,\\ 12 |PGH
INVN

Copyright: C. Faloutsos (2016)

15-826 49

% CMU SCS

z-ordering - usage & algo’s

Q2: queries? (eg.: find city at (0,3))?
A: find z-value; search B-tree

PGH
Z cname etc

SF INE
B S
aN WA 12 |[PGH
PN VN

Z/

15-826 Copyright: C. Faloutsos (2016) 50

% CMU SCS

z-ordering - usage & algo’s

Q2: range queries?

Z cname etc

N 5 |SF
AT 12 [PGH
PNVN

15-826 Copyright: C. Faloutsos (2016) 51

g CMU SCS

z-ordering - usage & algo’s

Q2: range queries?
A: compute ranges of z-values; use B-tree

PGH
9,11-15
Z cname etc

SF !k 4
N 5 |SF
I'N I\

15-826 Copyright: C. Faloutsos (2016)

52

15-826

13

C. Faloutsos

% CMU SCS

z-ordering - usage & algo’s

Q2’: range queries - how to reduce # of
qualifying of ranges?

PGH
9,11-15 Z cname etc

SF !}\ 4
N 5 |SF
AT <<EEEEJ 12 [PGH
PNVN

L/

15-826 Copyright: C. Faloutsos (2016)

53

z-ordering - usage & algo’s

Q2’: range queries - how to reduce # of
qualifying of ranges?
A: Augment the query!

PGH
9,11-15 > 8-15
cname etc

W | N

SF \ 4
N SF
N |12 PGH
| \

Z/

15-826 Copyright: C. Faloutsos (2016)

z-ordering - usage & algo’s
Q2’’: range queries - how to break a query
into ranges?

k¢ N [. 9,11-15
TN
PNN

15-826 Copyright: C. Faloutsos (2016)

55

54

z-ordering - usage & algo’s
Q2’’: range queries - how to break a query

into ranges?
A: recursively, quadtree-style; decompose
only non-full quadrants

—12-15 9,11-15

15-826 Copyright: C. Faloutsos (2016)

56

15-826

14

C. Faloutsos

z-ordering - usage & algo’s
Q2’’: range queries - how to break a query

into ranges?
A: recursively, quadtree-style; decompose
only non-full quadrants

—12-15 >_ 9,11-15
- 9,11

Copyright: C. Faloutsos (2016)

15-826 57

% CMU SCS

z-ordering - Detailed outline

* spatial access methods

— z-ordering
* main idea - 3 methods
* use w/ B-trees; algorithms (range, knn queries ...)
* non-point (eg., region) data
* analysis; variations
— R-trees

15-826 Copyright: C. Faloutsos (2016) 58

% CMU SCS

z-ordering - usage & algo’s
Q3: k-nn queries? (say, 1-nn)?

PGH

SF !k R Z cname etc
N

5 |SF
N\ AN 12 |PGH
| N

15-826 Copyright: C. Faloutsos (2016)

59

g CMU SCS

z-ordering - usage & algo’s

Q3: k-nn queries? (say, 1-nn)?
A: traverse B-tree; find nn wrt z-values and ...

PGH

SF !k R Z cname etc
N

NOCAN

5 |SF
12 |PGH
| N

15-826 Copyright: C. Faloutsos (2016)

60

15-826

15

C. Faloutsos

g CMU SCS

z-ordering - usage & algo’s

... ask a range query.

PGH
SF !k t
N nn wrt z-value
NOEAND A
NN mll | |

15-826 Copyright: C. Faloutsos (2016) 61

% CMU SCS

z-ordering - usage & algo’s

Q4: all-pairs queries? (all pairs of cities
within 10 miles from each other?)

15-826 Copyright: C. Faloutsos (2016)

PGH
SF !\lk\ 1 (we’ll see ‘spatial joins’ later: find
AN N all PA counties that intersect a lake)
NVN

63

% CMU SCS

z-ordering - usage & algo’s
... ask a range query.

PGH

SE \
N \ nnwrtz-value
AN ™~
| \ | . |

Copyright: C. Faloutsos (2016)

15-826 62

g CMU SCS

z-ordering - Detailed outline

* spatial access methods

— z-ordering
* main idea - 3 methods
* use w/ B-trees; algorithms (range, knn queries ...)

* non-point (eg., region) data
* analysis; variations

— R-trees

15-826 Copyright: C. Faloutsos (2016)

64

15-826

16

C. Faloutsos

g CMU SCS

z-ordering - regions

Q: z-value for a region?

A

15-826

ANt
!\‘\ NS
NOLAN
[\

Copyright: C. Faloutsos (2016)

65

% CMU SCS

z-ordering - regions

Q: z-value for a region?
A: 1 or more z-values; by quadtree

decomposition
A B
TN Zg= 7?
N\J KN

NS ze="7?

[\

C

15-826 Copyright: C. Faloutsos (2016)

66

% CMU SCS

z-ordering - regions

“don’t care”

Q: z-value for a region? 7= 11**/
W E zc="7
A B 00
1 !\ll\\ N N 01...[11...
0o R S 00...{ 10..
0o €

15-826

Copyright: C. Faloutsos (2016)

67

11

g CMU SCS

z-ordering - regions

“don’t care”

7

Q: z-value for a region? zg=11%*
W E z-={0010; 1000}
A B 00
1 MENE N 01...[11
SVESE
0 |’\ ‘ll\ S 00... 10..
o € 4
15-826 Copyright: C. Faloutsos (2016)

68

11

15-826

17

C. Faloutsos

g CMU SCS

A

Q: How to store in B-tree?

B

15-826

Copyright: C. Faloutsos (2016)

Q: How to search (range etc queries)

z-ordering - regions

69

% CMU SCS

A

e
%4
1,

B

15-826

Copyright: C. Faloutsos (2016)

z

z-ordering - regions

Q: How to store in B-tree? A: sort (*<0<1)
Q: How to search (range etc queries)

obj-id etc

0010

C

0101

1000

11**

A
C
B

70

% CMU SCS

z-ordering - regions

Q: How to search (range etc queries) - eg ‘red’

range query
A B
AN
MIEN
N N
NV

15-826

Copyright: C. Faloutsos (2016)

z

obj-id etc

0010

C

0101

1000

11**

A
C
B

71

g CMU SCS

z-ordering - regions

Q: How to search (range etc queries) - eg ‘red’

A: break query in z-values; check B-tree

range query
A
ANt
N\| KN
N N
NV N
C

15-826

Copyright: C. Faloutsos (2016)

V4

obj-id etc

0010

C

0101

1000

11**

A
C
B

72

15-826

18

C. Faloutsos

z-ordering - regions

Almost identical to range queries for point
data, except for the “don’t cares” - i.e.,

1100 92 11%*
A z obj-id ete
N 0010 |C
r\\l\ t‘l 0101 |A
FREIER 1000|C
1L 11** |B

15-826 Copyright: C. Faloutsos (2016) 73

g CMU SCS

z-ordering - regions

Almost identical to range queries for point
data, except for the “don’t cares™ - i.e.,
z1=1100 ?? 11** =22

Specifically: does z1 contain/avoid/intersect
z2?

Q: what is the criterion to decide?

15-826 Copyright: C. Faloutsos (2016) 74

g CMU SCS

z-ordering - regions

z1=1100 ?? 11** =22
Specifically: does z1 contain/avoid/intersect
727
Q: what is the criterion to decide?

A: Prefix property: let r1, 12 be the
corresponding regions, and let r1 be the
smallest (=> zI has fewest ‘*’s). Then:

15-826 Copyright: C. Faloutsos (2016) 75

z-ordering - regions
* 12 will either contain completely, or avoid

completely rl.
« it will contain r1, if z2 is the prefix of z1

A B
1100 ?? 11**
NS .
N\J region of z1:
NN completely contained in
NN region of 72
15-826 C Copyright: C. Faloutsos (2016) 76

15-826

19

C. Faloutsos 15-826

g CMU SCS g CMU SCS

z-ordering - regions z-ordering - regions
Drill (True/False). Given: Drill (True/False). Given:
* z1=011001%* * z1=011001%*
° 22: 01****** ° Z2: Ol******
o z3=0100%*** o 73=0100%***
T/F 12 contains rl T/F 12 contains rl1 - TRUE (prefix property)
T/F r3 contains rl T/F 13 contains rl1 - FALSE (disjoint)
T/F 13 contains 12 T/F 13 contains 12 - FALSE (12 contains r3)
15-826 Copyright: C. Faloutsos (2016) 77 15-826 Copyright: C. Faloutsos (2016) 78

g CMU SCS % CMU SCS

z-ordering - regions z-ordering - regions
Drill (True/False). Given: Drill (True/False). Given:
* z1=011001%** » e z1=011001%** »
o 7= ()] Fw*kAkX o 7= ()] FHkkkk
o 73=0100%**** o 73=(]00%*%*
z3
T/F 12 contains rl1 - TRUE (prefix property)
T/F 13 contains r1 - FALSE (disjoint)
T/F 13 contains r2 - FALSE (r2 contains r3)
15-826 Copyright: C. Faloutsos (2016) 79 15-826 Copyright: C. Faloutsos (2016) 80

20

C. Faloutsos

z-ordering - regions

Spatial joins: find (quickly) all

counties intersecting lakes
[/
/ L\ . Q
\ _—\
15-826 Copyright: C. Faloutsos (2016)

81

z-ordering - regions

Spatial joins: find (quickly) all

z-ordering - regions

Spatial joins: find (quickly) all

counties intersecting lakes

@/ /

\ \

—_
/
/
. wASl
[/
TR
[/
)

15-826 Copyright: C. Faloutsos (2016)

83

counties intersecting lakes
L 0
[= \ /
AL
15-826 Copyright: C. Faloutsos (2016) 82
z-ordering - regions
Spatial joins: find (quickly) all
counties intersecting lakes
Naive algorithm: O(N * M)
Something faster?
15-826 Copyright: C. Faloutsos (2016) 84

15-826

21

C. Faloutsos

z-ordering - regions

Spatial joins: find (quickly) all

counties intersecting lakes
z obj-id etc z obj-id etc
0010 |ALG 0011 |Erie
0101 |Erie
1000 {WAS
11** |ALG 10** {Ont.
15-826 Copyright: C. Faloutsos (2016) 85

z-ordering - regions

Spatial joins: find (quickly) all
counties intersecting lakes

Solution: merge the lists of (sorted) z-values,
looking for the prefix property

footnote#1: ‘*’ needs careful treatment
footnote#2: need dup. elimination

15-826 Copyright: C. Faloutsos (2016) 86

g CMU SCS
z-ordering - Detailed outline

* spatial access methods
— z-ordering
* main idea - 3 methods
* use w/ B-trees; algorithms (range, knn queries ...)
* non-point (eg., region) data

* analysis; variations
— R-trees

15-826 Copyright: C. Faloutsos (2016) 87

% CMU SCS

z-ordering - variations

Q: is z-ordering the best we can do?

A
L/
P4 g VAN

15-826 Copyright: C. Faloutsos (2016) 88

15-826

22

C. Faloutsos

g CMU SCS

z-ordering - variations

Q: is z-ordering the best we can do?
A: probably not - occasional long ‘jumps’
Q: then?

g CMU SCS

z-ordering - variations

Q: is z-ordering the best we can do?
A: probably not - occasional long ‘jumps’
Q: then? Al: Gray codes

AN
LNV QN
DAY
N VN
15-826 Copyright: C. Faloutsos (2016) 89
(Gray codes)
* Ingenious way to spot flickering LED —
binary: 000 0
0or 1
010 2
3.5V 011 3
F. Gray. Pulse code communication, 100 4
March 17, 1953 101 5
U.S. Patent 2,632,058 110 6
7
15-826 Copyright: C. Faloutsos (2016) 91

AN -1
(YN SV
DAY M
N VN Tl
15-826 Copyright: C. Faloutsos (2016) 90
(Gray codes)
* Ingenious way to spot flickering LED
0
1
15-826 Copyright: C. Faloutsos (2016) 92

15-826

23

C. Faloutsos

g CMU SCS

(Gray codes)
* Ingenious way to spot flickering LED
0 .0
1 A
15-826 Copyright: C. Faloutsos (2016)

93

% MU SCS
(Gray codes)

* Ingenious way to spot flickering LED
0 .0

s

15-826 Copyright: C. Faloutsos (2016) 94

g CMU SCS

(Gray codes)
* Ingenious way to spot flickering LED
0 .0
1 1
-
.0
15-826 Copyright: C. Faloutsos (2016)

95

% CMU SCS

(Gray codes)
* Ingenious way to spot flickering LED
0 00
1 01
@ 11
10
15-826 Copyright: C. Faloutsos (2016) 96

15-826

24

C. Faloutsos

g CMU SCS

(Gray codes)
* Ingenious way to spot flickering LED
0 00 000 O
1 01 001 1
g 11 011 2
10 @ 010 3
110 4
111 5
101 6
100 7

15-826 Copyright: C. Faloutsos (2016)

97

g CMU SCS

z-ordering - variations

Q: is z-ordering the best we can do?
A: probably not - occasional long ‘jumps’
Q: then? Al: Gray codes — CAN WE DO BETTER?

% CMU SCS

z-ordering - variations

A2: Hilbert curve! (a.k.a. Hilbert-Peano

curve)
[WINES |
LNV QN .
DAY g B B
N VN L
15-826 Copyright: C. Faloutsos (2016)

99

AN 1
(YN SV
DAY Yy
N VN Tl
15-826 Copyright: C. Faloutsos (2016) 98
(break)

Giuseppe Peano
(1858-1932)

15-826 Copyright: C. Faloutsos (2016)

David Hilbert
(1862-1943)

100

15-826

25

C. Faloutsos

z-ordering - variations

‘Looks’ better (never long jumps). How to

derive it?
[TNES mn B W -
LNV QN .|
N AN g B B
N VN HT O
15-826 Copyright: C. Faloutsos (2016) 101

z-ordering - variations

‘Looks’ better (never long jumps). How to

derive it?
1 | =
R x| |
order-1 order-2 - order (n+1)

15-826 Copyright: C. Faloutsos (2016) 102

z-ordering - variations

Q: function for the Hilbert curve (4 = f(x,y))?
A: bit-shuffling, followed by post-processing,
to account for rotations. Linear on # bits.

See textbook, for pointers to code/
algorithms (eg., [Jagadish, 90])

15-826 Copyright: C. Faloutsos (2016) 103

z-ordering - variations

Q: how about Hilbert curve in 3-d? n-d?
A: Exists (and is not unique!). Eg., 3-d,
order-1 Hilbert curves (Hamiltonian paths

on cube)
#1 #2

o 1) e

15-826 Copyright: C. Faloutsos (2016) 104

15-826

26

C. Faloutsos

% CMU SCS

z-ordering - Detailed outline

* spatial access methods
— z-ordering
* main idea - 3 methods
* use w/ B-trees; algorithms (range, knn queries ...)
* non-point (eg., region) data
* analysis; variations
— R-trees

15-826 Copyright: C. Faloutsos (2016) 105

z-ordering - analysis

Q: How many pieces (‘quad-tree blocks’) per
region?

A: proportional to perimeter (surface etc)

K

Iy
-

15-826 Copyright: C. Faloutsos (2016) 106

i

z-ordering - analysis

(How long is the coastline, say, of England?

Paradox: The answer changes with the yard-
stick > fractals ...)

)

%
%

15-826 Copyright: C. Faloutsos (2016) 107

i

z-ordering - analysis

Q: Should we decompose a region to full
detail (and store in B-tree)?

)

iy
g

15-826 Copyright: C. Faloutsos (2016) 108

s

15-826

27

C. Faloutsos

z-ordering - analysis

Q: Should we decompose a region to full
detail (and store in B-tree)?

A: NO! approximation with 1-3 pieces/z-
values is best [Orenstein90]

15-826 Copyright: C. Faloutsos (2016) 109

z-ordering - analysis

Q: how to measure the ‘goodness’ of a curve?

| ITNE] |
L\l N |
D AN |
INVN AN N

15-826 Copyright: C. Faloutsos (2016) 110

z-ordering - analysis

Q: how to measure the ‘goodness’ of a curve?
A:e.g., avg. # of runs, for range queries

NN N4 |
k\l\ N |
NYOARD w1 I
IN VN 4| L
4 runs 3 runs

(#runs ~ #disk accesses on B-tree)
15-826 Copyright: C. Faloutsos (2016) 111

z-ordering - analysis

Q: So, is Hilbert really better?
A: 27% fewer runs, for 2-d (similar for 3-d)

Q: are there formulas for #runs, #of quadtree
blocks etc?

A: Yes ([Jagadish; Moon+ etc] see textbook)

15-826 Copyright: C. Faloutsos (2016) 112

15-826

28

C. Faloutsos

z-ordering - fun observations

Hilbert and z-ordering curves: “space filling
curves”: eventually, they visit every point

in n-d space - therefore:

& o
i a

order-1 order-2 ...order (n+1)

15-826 Copyright: C. Faloutsos (2016) 113

z-ordering - fun observations
.. they show that the plane has as many points

as a line (> headaches for 1900’s
mathematics/topology). (fractals, again!)

B oo
i -

order-1 order-2 ...order (n+1)

15-826 Copyright: C. Faloutsos (2016) 114

% CMU SCS

z-ordering - fun observations

Observation #2: Hilbert (like) curve for video #3g
encoding [Y. Matias+, CRYPTO “87]: o

| N
M

m
v

= i mE

15-826 Copyright: C. Faloutsos (2016) 115

z-ordering - fun observations

In general, Hilbert curve is great for
preserving distances, clustering, vector
quantization etc

15-826 Copyright: C. Faloutsos (2016) 116

15-826

29

C. Faloutsos

% CMU SCS

Indexing - Detailed outline

* primary key indexing
* secondary key / multi-key indexing

* spatial access methods
— problem dfn
— z-ordering

15-826 Copyright: C. Faloutsos (2016)

117

g CMU SCS

Conclusions

* z-ordering is a great idea (n-d points -> 1-d
points; feed to B-trees)

* used by TIGER system
http://www.census.gov/geo/www/tiger/

+ and (most probably) by other GIS products

» works great with low-dim points

15-826 Copyright: C. Faloutsos (2016) 118

15-826

30

