
CMU - SCS
15-415/15-615 Database Applications

Spring 2013, C. Faloutsos
Homework 3: Indexing

Due: 1:30pm on Thursday, 2/21/2013

Reminders - IMPORTANT:

• Like all homework, it has to be done individually.
• As elaborated in section 4 please submit your answers

– in hard copy, in class, 1:30pm, on Thursday, 02/21/2013, and
– e-copy of your code through blackboard, under Assignments / Homework 3.

We will create a thread for this purpose.

• Please make sure your program compiles, and works without any errors or warnings on the
andrew machines, as it will be tested there.

• Test your code for as many corner cases as you can imagine - we will grade it by running it
on a set of ’secret’ test cases we have created (like empty tree, tree with a single entry, etc
etc).

Reminders - FYI:

• Weight: 20% of homework grade.
• The points of this homework add up to 100.
• Homework prepared by Danai Koutra.
• Rough time estimates: 20 hours (∼5 hours to download, compile and understand the code,
∼ 15 hours to implement and test the required functions).

1 Preliminaries - Our B+ Tree Implementation
This assignment is designed to make you more familiar with the B+ Tree data structure. You are
given a basic B+ Tree implementation and you are asked to extend it by implementing some new

1



operation/functions, that we list in subsection 2
The specifications of the basic implementation are:

1. It creates an “inverted index” in alphabetical order in the form of a B+ tree over a given
corpus of text documents (explained in detail later).

2. It supports the following operations: insert, scan, search and print.
3. No duplicate keys are allowed in the tree. FYI: It uses a variation of “Alternative 3” and

stores a postings list for each word that appears many times.
4. It does not support deletions.
5. The tree is stored on disk.

1.1 Where to Find Makefiles, Code, etc.
The file is available at http://www.cs.cmu.edu/˜christos/courses/dbms.S13/
hws/HW3/db_asn3.zip or through AFS (/afs/cs.cmu.edu/user/christos/www/
courses/dbms.S13/hws/HW3/db_asn3.zip).

• Unzip the file.
• Type make demo to compile everything and see a demo.

The demo searches the key “american” and shows the contents of the documents containing the
key.

1.2 Description of the provided B+ tree package
The directory structure and contents are as follows:

• DOC: contains a very useful documentation of the code.
• SRC: the source code.
• Datafiles: sample data to add to the tree.
• Tests: some sample tests and their solutions.
• Some other useful files, e.g., README, makefile etc.
• IMPORTANT: Files B-TREE FILE, POSTINGSFILE, TEXTFILE, parms are cre-

ated by our B+ tree implementation, when a tree is created (recall that the implementation
is disk-resident). To allow main to access this tree (across multiple executions), make sure
that these files are not deleted and are present in the same directory as main. Conversely,
delete these files if you want to create a new tree.

In more detail, the main program file is called “main.c.” It waits for the user to enter com-
mands and responds to them as shown in Table 1.

2

http://www.cs.cmu.edu/~christos/courses/dbms.S13/hws/HW3/db_asn3.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S13/hws/HW3/db_asn3.zip
/afs/cs.cmu.edu/user/christos/www/courses/dbms.S13/hws/HW3/db_asn3.zip
/afs/cs.cmu.edu/user/christos/www/courses/dbms.S13/hws/HW3/db_asn3.zip


ARGUMENT EFFECT
C Prints all the keys that are present in the tree, in ascending lexicographical order.
i arg The program parses the text in arg which is a text file, and inserts the uncommon

words (i.e., words not present in “comwords.h”) into the B+ tree. More specifi-
cally, the uncommon words of arg make the “keys” of the B+ tree, and the value
for all these keys is set to arg. Since this tree enables us to find which words are
present in which documents, it is known as the inverted index.

p arg Prints the keys in a particular page of the B+ tree where arg is the page number.
It also prints some statistics about the page such as the number of bytes occcupied,
the number of keys in the page, etc.

s <key> searches the tree for <key> (which is a single word). If the key is found, the
program prints “Found the key!”. If not, it prints “Key not found!”.

S <key> Searches the tree for <key>. If the key is found, the program prints the documents
in which the key is present, also known as the posting list of <key>. If not, it prints
“Key not found!”.

T preTty-prints the tree. If the tree is empty, it prints “Tree empty!” instead.
x exit

Table 1: Existing interface

2 Tasks
Our implementation provides each of the described operations in Table 1. In this assignment, you
are asked to extend it to support the commands listed in Table 2.

ARGUMENT EFFECT
f <key1> <key2> [50 pts] Print in alphabetical order (forward) the distinct keys that are in the

range defined by <key1> and <key2> (including the bounds). If <key1>
and <key2> are not in alphabetical order, it should print “Invalid key or-
der!”. If no documents have keys within the given range, it should print
“Keys in the given range not found!”.

b <key1> <key2> [50 pts] Print in reverse alphabetical order (backward) the distinct keys that
are in the range defined by <key1> and <key2> (including the bounds). If
<key1> and <key2> are not in alphabetical order, it should print “Invalid
key order!”. If no documents have keys within the given range, it should
print “Keys in the given range not found!”.

Table 2: Operations to be implemented and their weights

3



Clarifications/Hints

• For your convenience, we have provided you with sample tests and their corresponding out-
puts in Tests. To see if your implementation runs correctly on the test files, type

– make test range
– make test rangeRev

test range and test rangeRev test your implementation for the ’f’ and ’b’ command,
respectively. If diff is empty for both test range and test rangeRev, then your
implementation passes the provided tests! However, we will use several other (unpublished)
test files during grading, so please also make sure to test your implementation on other
test files of your own on the andrew machines.

• See def.h for important data structure information.

3 Testing Mechanism
We will test your submission for correctness using scripts, and also look through your code.

• Correctness. An easy test is to run your code against the sample test files provided with
the assignment. For each test file, the output from your program should be exactly the same
as the solution output (i.e., diff is empty). Make sure you test your code on additional
datasets of your own. Also, consider corner cases (e.g., invalid inputs, non-existent words
etc.). For the command “b”, where you are asked to give the keys within a given range in
reverse alphabetical order, you are not allowed to store the words in alphabetical order in an
array and then print them in reverse order. You have to make use of the structure of the B+
tree. Note: We will use extra (unpublished) test cases to grade.

• Format. We will use scripts to test the output of your code. Therefore, please make sure
your output follows the same format as the sample test file solutions. That is, the result of
diff between your output and the provided outputs, should be empty.

• Code. We will check the functions that you modified in order to support the required opera-
tions (see below what to hand-in).

4 What to hand-in
In short, a hard copy of the changed functions, and a tar-file with everything we need to run our
tests.

4



1. Create a tar file of your complete source code including all and only the necessary files, as
well as the makefile (i.e., exclude *.o *.out etc files).

2. Submit the tar file via blackboard, under Assignments / Homework 3.
3. Submit in class a hard copy (e.g., pdf file) with all the changes that you made to the source

code for each operation that you are asked to implement. Please include in the pdf only the
functions that you changed.

5


	Preliminaries - Our B+ Tree Implementation
	Where to Find Makefiles, Code, etc.
	Description of the provided B+ tree package

	Tasks
	Testing Mechanism
	What to hand-in

