
Carnegie Mellon University
Department of Computer Science
15-415/615 - Database Applications

C. Faloutsos & A. Pavlo, Spring 2014
Prepared by Alex Beutel and Vagelis Papalexakis
DUE DATES: Ph1: 4/1, Ph2: 4/10, both at 1:30pm

Homework 7

IMPORTANT - what to hand in: For each of the two phases, please deliver all the
elements below (penalties for omissions).

• Phase 1: Due at 4/1, 1:30pm:
– hard copy: All your documentation for Phase 1.
– Blackboard submission: a file [andrew id hw7 phase1].pdf with your documen-

tation.
• Phase 2: Due at 4/10, 1:30pm

– Website: A working web site - include its URL in both hard and e-copies below.
– hard copy: the code you wrote for Phase 2.
– Blackboard submission: a zip file named[andrew id hw7 phase2].zip, with all

the necessary files for us to re-create your web site.

Important for Phase 2: The zip-file http://www.cs.cmu.edu/~christos/courses/dbms.
S14/hws/HW7/hw7.zip. contains everything you need for Phase 2.

Reminders:
• Plagiarism: Homework may be discussed with other students, but all homework is to

be completed individually.
• Late Homeworks: The usual rules: (a) hard copy to Mrs. Marilyn Walgora, and

(b) email to all TAs, with the subject line 15-415 Homework Submission (HW 7)

Phase[phase#], and the count of slip-days used (and remaining).

For your information:
• Graded out of 100 points;
• 2 questions total
• 5-10 hours for phase 1; 10-20 hours for phase 2.

1

http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW7/hw7.zip


15-415/615 Homework 7, Page 2 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

Question Points Score

Deliverables - ph1 35

Deliverables - ph2 65

Total: 100

Homework 7 continues. . .



15-415/615 Homework 7, Page 3 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

1 Introduction

The goal is to design and implement Flitter (CMU Fictitious light-weight Twitter), a very
simple version of Twitter. Your work is divided into two phases, as we discuss in the lecture
foils, following the http://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/CMU_

ONLY/Roussopoulos-Yeh.pdf The first phase consists of the requirement analysis, system
analysis, conceptual modeling and task emulation. The second phase consists of implemen-
tation and testing: Using the API we provide you in the hw7.zip file above, you will have
to implement your database design, as well as the functionality that the API supports, and
deploy your solution on a webserver.

2 Requirements

2.1 Data requirements

• User: For each user, the system needs to track the unique username, (between 4 and 50
characters) (between 2 and 50 characters), the password, the users he/she is following,
and the users that follow him/her.

• Tweet: The system needs to store the body of the tweet (at most 140 printable
characters), the username of the author, and the timestamp it was created.

2.2 Functionality requirements

In Flitter we have users who post tweets, follow other users, read tweets, etc, as described
below. You have to implement the following Tasks:

T.1 Create user account: We need the user-name of the user and the password. Prompt
for a new user-name, if the proposed one is taken.

T.2 Reset database: Keep the tables, but delete all their records.

T.3 Login: Obvious - your system would ask for a user-name and password, and authen-
ticate the user or deny further access.

T.4 Timeline: After log-in, the main page should display the user’s timeline. That is,
in chronological order (newest first), your system should show 1) all the posts of the
followees of the current user and 2) all the posts of the current user.

T.5 Post a tweet: Once authenticated, a user should be able to post a tweet. Make sure
the body obeys the specifications above (at most 140, printable characters).

T.6 Search for a user: Given query sub-string (say mic) print all the user-names that
contain this sub-string (e.g., michael, mickey, karmic )

T.7 Check if a given user follows another user: Obvious.

Homework 7 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/CMU_ONLY/Roussopoulos-Yeh.pdf
http://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/CMU_ONLY/Roussopoulos-Yeh.pdf


15-415/615 Homework 7, Page 4 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

T.8 Follow a user: Your system should allow a user to follow an unlimited number of
users, but not himself.

T.9 Unfollow a user: The reverse of the previous task. Print a warning, when user ’U’
tries to unfollow someone that ’U’ is not following.

T.10 Recommend users to follow: For a given user ’U’, your system should recommend
users to follow. In short, we want to recommend the two-step-away followees, that is,
the followees of the followees, in some priority order, and, of course, excluding users
that ’U’ is following already. ’Priority’ is the count of paths connecting user ’U’ to the
recommended user ’V’.

For example, consider the who-follows-whom graph of Figure 1. For user ’U1’, your
system should recommend ’U3’, ’U4’, in this order. The reason is that

a) the followees of the followees of ’U1’ are (’U3’, ’U6’, ’U3’, ’U4’, ’U6’);
b) ’U3’ appears twice (paths through ’U2’ and ’U5’), and gets priority over ’U4’ (who

has a single path, through ’U5’ only) and
c) ’U6’ disqualifies since ’U1’ already follows him.

!"#

!$#

!%#

!&#

!"#

!$#

!%#

!&#

!'# !'#

!(# !(#

Figure 1: Sample who-follows-whom graph. Followers (on the left) and the same users as
followees, on the right.

T.11 List the followers & followees: For a given user ’U’, list all his followers and
followees.

T.12 List all tweets of a user: For a given username ’X’, retrieve all his tweets, newest
tweet first.

T.13 String search: Given a string (say, “quake”), retrieve all tweets that contain it in
their body (eg. “OMG earthquake in oregon!”). String search should be case sensitive.

Homework 7 continues. . .



15-415/615 Homework 7, Page 5 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

T.14 User statistics: For a given user-name ’U’, display the following counts, or print a
warning if ’U’ does not exist.

(a) The number of followers
(b) The number of followees
(c) The number of tweets (You don’t need to implement this)

T.15 Global statistics The system should be able to list heavy users, and specifically:

(a) Most popular: List of K users with the most followers
(b) Most active: List of K users with the most posts
(c) Most connected (’hubs’): List of K users with the highest degree (sum of

followers plus followees).

In all the above cases, treat K as a parameter. In case of a tie in K-th place, report
only K users, favoring the alphabetically first. I.e., if K=1, and ’bob’ and ’alice’ tie in
first place, report only ’alice’.

Homework 7 continues. . .



15-415/615 Homework 7, Page 6 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

Phase 1 - Deliverables - ph1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [35pts]
No need to separate your answers

We follow the design methodology of Roussopoulos and Yeh, summarized in the lecture
foils: http://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/19methodology.
pdf. Thus, we have the following deliverables:

• Phase 1: Environment and Requirement Analysis, System Analysis and Specica-
tion, Conceptual Modeling, and Task Emulation.

• Phase 2: Implementation and Testing.

Specifically, for Phase 1, the point distribution is as follows:

(a) [2 points] The top-level information flow diagram, along with the system bound-
ary.

(b) [1 point] The list of documents.

(c) [2 points] The document forms, including the assumptions and design decisions
you made.

(d) [3 points] The ER diagram. Make sure you specify the cardinalities of the rela-
tionships, as in HW1.

(e) [2 points] The relational schema.

(f) [10 points] SQL DDL statements that create the above schema - make sure you
include all constraints (primary key, foreign key, etc)

(g) [15 points] SQL DML statements for tasks T.1-T.15.

Homework 7 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/19methodology.pdf
http://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/19methodology.pdf
http://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/19methodology.pdf
http://www.cs.cmu.edu/~christos/courses/dbms.S14/slides/19methodology.pdf


15-415/615 Homework 7, Page 7 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

Phase 2 - Deliverables - ph2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [65pts]
No need to separate your answers

The deliverables and point distribution of Phase 2 are as follows:

(a) [0 points] Download http://www.cs.cmu.edu/~christos/courses/dbms.S14/

hws/HW7/hw7.zip.

(b) [0 points] List of changes, if any, to your Phase 1 schema.

(c) [5 points] Listing of your code, below.

(d) [5 points] Listing of your testing efforts - for each task, please write down which
error cases you tested for (ie., non-existing user, illegal timestamp, etc)

(e) [50 points] The actual implementation: In hw7.zip above, we are providing you
with a basic implementation of the web application, which includes calls to the
database that you have designed but does not implement the required functionality.
Your job will be to connect the provided code with the database that you have
designed, in Phase 1 so that you have a working website that performs Tasks T.1-
T.15.

Table 1 shows the breakdown of the points. For each tasks, half of the assigned
points go to the basic implementation (i.e. having a working implementation of the
task) and the second half goes to testing and error checking.

Task Points
T.1 Account creation 3
T.2 Reset database 4
T.3 Login 3
T.4 Timeline 4
T.5 Tweet 3
T.6 Search for user 3
T.7 Check if follows 1
T.8 Follow 3
T.9 Unfollow 3
T.10 Recommend 8
T.11 Get followers & followees 3
T.12 Get all tweets of a user 3
T.13 String search 3
T.14 User statistics 3
T.15 Global statistics 3

Table 1: Point breakdown

(f) [5 points] SQL injection: In short, make sure you strip-off all the “escape” char-
acters from your SQL strings. The reason is that, apart from the above func-
tions, you want to prevent unauthorized access to your system. More specifically,

Question 2 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S14/hws/HW7/hw7.zip


15-415/615 Homework 7, Page 8 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

you want to protect your SQL queries from an attack called SQL injection (see
http://en.wikipedia.org/wiki/SQL injection). For instance, code oblivious to SQL
injection, may allow an intruder to log-in without a password. Thus, your code
should sanitize the arguments to the SQL queries from all escape characters. HINT:
check the PHP function pg escape string().

Question 2 continues. . .

http://en.wikipedia.org/wiki/SQL_injection


15-415/615 Homework 7, Page 9 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

3 Setup and Hints for Phase 2

3.1 VERY IMPORTANT: Set up

As in the previous homeworks, you will use Postgres; the full documentation for Postgres
is at http://www.postgresql.org/docs/.

For Phase 2, you need access to a webserver. You will use the webserver that is provided
by the CMU Computer Club, which allows web content to be served directly from your
Andrew s home directory in AFS without manual publishing. More details are in here:
http://www.club.cc.cmu.edu/doc/contribweb.php.

To get started, please follow the following steps:

1. Log-in here http://my.contrib.andrew.cmu.edu using your Andrew ID, in order to
set up your account for the Contributed server.

2. Read carefully the information provided by the Computer Club on how to set up
your Postgres account and access the database on their server:

http://www.club.cc.cmu.edu/doc/contribweb/sql.php.

3. Unzip hw7.zip and copy its contents on a folder called flitter s14 inside the www

directory on your andrew AFS account.

4. Edit config.php to have the appropriate parameters for your site (the web address
and your Postgres database information). Also, make sure that your files are set to
be both read and executed by anyone (chmod +rx).

5. Open your favorite web browser and go to http://www.contrib.andrew.cmu.edu/

~andrew_id/flitter_s14 replacing andrew id with your own Andrew ID. Make
sure that you can see the Login screen of Flitter.

6. You are ready to start implementing functions.php!

3.2 IMPORTANT: Customization

• functions.php: The provided hw7.zip includes a source file functions.php which
contains the definitions of the API functions that you will have to implement. This
is the main file that you need to edit.

• config.php: Moreover, you will have to edit config.php and fill in your own log-in
information for the database, as well as your host information.

3.3 Strong hints

Running prototype : See http://gs11696.sp.cs.cmu.edu/~abeutel/flitter/.
for a prototype with all required functions. You are strongly encouraged to use this
website in order to guide your own implementation, especially in cases when you are not
sure if your design/implementation is working correctly.

Question 2 continues. . .

http://www.postgresql.org/docs/
http://www.club.cc.cmu.edu/doc/contribweb.php
http://my.contrib.andrew.cmu.edu
http://www.club.cc.cmu.edu/doc/contribweb/sql.php
http://www.contrib.andrew.cmu.edu/~andrew_id/flitter_s14
http://www.contrib.andrew.cmu.edu/~andrew_id/flitter_s14
http://www.contrib.andrew.cmu.edu/~andrew_id/flitter_s14
http://www.contrib.andrew.cmu.edu/~andrew_id/flitter_s14
http://gs11696.sp.cs.cmu.edu/~abeutel/flitter/
http://gs11696.sp.cs.cmu.edu/~abeutel/flitter/


15-415/615 Homework 7, Page 10 of 10 Ph1: 4/1; Ph2: 4/10, 1:30pm

Some sample unit tests : Additionally, we provide you with a set of unit tests,
similar to the ones that we will use for grading Phase 2. These unit tests load data to
the database and then evaluate functions of the API that you have implemented. You
are welcome to develop your own unit tests based on the provided ones. To run the
tests, follow these steps:

1. Go to your Flitter website (any page) on your browser.

2. Open the javascript console on your browser. Here is how to do it in different
browsers:

http://webmasters.stackexchange.com/questions/8525/how-to-open-the-javascript-
console-in-different-browsers

3. Running generate data() resets the database and then loads the test data.

4. Running test basic functionality() runs the unit tests and checks the correct
operation of the implemented functions.

3.4 Optional documentation

For this phase, you will have to write some PHP, and in case you want to develop your
own unit tests, some javascript and JSON object manipulation in PHP. Here we point
you to some useful links:

1. PHP manual http://www.php.net/

2. Arrays in PHP http://www.php.net/manual/en/language.types.array.php

3. PHP and Postgres http://www.php.net/manual/en/book.pgsql.php.

4. Javascript tutorial http://www.w3schools.com/js/DEFAULT.asp

5. JSON in PHP http://www.php.net/manual/en/ref.json.php

End of Homework 7

http://webmasters.stackexchange.com/questions/8525/how-to-open-the-javascript-console-in-different-browsers
http://webmasters.stackexchange.com/questions/8525/how-to-open-the-javascript-console-in-different-browsers
http://www.php.net/
http://www.php.net/manual/en/language.types.array.php
http://www.php.net/manual/en/book.pgsql.php
http://www.w3schools.com/js/DEFAULT.asp
http://www.php.net/manual/en/ref.json.php

	Introduction
	Requirements
	Data requirements
	Functionality requirements

	Setup and Hints for Phase 2
	VERY IMPORTANT: Set up
	IMPORTANT: Customization
	Strong hints
	Optional documentation


