
Faloutsos - Pavlo SCS 15-415/615

1

The Relational Model

CMU SCS 15-415/615
C. Faloutsos – A. Pavlo

 Lecture #3
R & G, Chap. 3

Faloutsos - Pavlo, 15-415/615 2

Outline

•  Introduction
•  Integrity constraints (IC)
•  Enforcing IC
•  Querying Relational Data
•  ER to tables
•  Intro to Views
•  Destroying/altering tables

Faloutsos - Pavlo, 15-415/615 3

Why Study the Relational Model?

•  Most widely used model.
– Vendors: IBM/Informix, Microsoft, Oracle,

Sybase, etc.
•  “Legacy systems” in older models

– e.g., IBM’s IMS
•  Object-oriented concepts have merged in

– object-relational model
• Informix->IBM DB2, Oracle

Faloutsos - Pavlo SCS 15-415/615

2

Faloutsos - Pavlo, 15-415/615 4

Relational Database: Definitions

•  Relational database: a set of relations
•  (relation = table)
•  specifically

Faloutsos - Pavlo, 15-415/615 5

Relational Database: Definitions

•  Relation: made up of 2 parts:
– Schema : specifies name of relation,

plus name and type of each column.
– Instance : a table, with rows and

columns.
• #rows = cardinality
• #fields = degree / arity

Faloutsos - Pavlo, 15-415/615 6

Relational Database: Definitions

•  relation: a set of rows or tuples.
–  all rows are distinct
–  no order among rows (why?)

Faloutsos - Pavlo SCS 15-415/615

3

Faloutsos - Pavlo, 15-415/615 7

Ex: Instance of Students Relation

•  Cardinality = 3, arity = 5 ,
•  all rows distinct
•  Q: do values in a column need to be
distinct?

Faloutsos - Pavlo, 15-415/615 8

•  SQL* (a.k.a. “Sequel”), standard language
•  Data Definition Language (DDL)

– create, modify, delete relations
– specify constraints
– administer users, security, etc.
– E.g.:

* Structured Query Language

SQL - A language for Relational DBs

create table student
 (ssn fixed, name char(20));

Faloutsos - Pavlo, 15-415/615 9

•  Data Manipulation Language (DML)
– Specify queries to find tuples that satisfy

criteria
– add, modify, remove tuples

SQL - A language for Relational DBs

select * from student ;

update takes set grade=4
 where name=‘smith’
 and cid = ‘db’;

Faloutsos - Pavlo SCS 15-415/615

4

Faloutsos - Pavlo, 15-415/615 10

SQL Overview

• CREATE TABLE <name> (<field>
<domain>, …)

• INSERT INTO <name> (<field
names>)
 VALUES (<field values>)

• DELETE FROM <name>
 WHERE <condition>

Faloutsos - Pavlo, 15-415/615 11

SQL Overview

• UPDATE <name>
 SET <field name> =
<value>
 WHERE <condition>

• SELECT <fields>
 FROM <name>
 WHERE <condition>

Faloutsos - Pavlo, 15-415/615 12

Creating Relations in SQL

• Creates the Students relation.

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa FLOAT)

Faloutsos - Pavlo SCS 15-415/615

5

Faloutsos - Pavlo, 15-415/615 13

Creating Relations in SQL

• Creates the Students relation.
– Note: the type (domain) of each

field is specified, and enforced by the
DBMS whenever tuples are added or
modified.

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa FLOAT)

Faloutsos - Pavlo, 15-415/615 14

Table Creation (continued)

• Another example:

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2))

Faloutsos - Pavlo, 15-415/615 15

Adding and Deleting Tuples

•  Can insert a single tuple using:

INSERT INTO Students
(sid, name, login, age, gpa)
 VALUES
(‘53688’, ‘Smith’, ‘smith@cs’,
18, 3.2)

Faloutsos - Pavlo SCS 15-415/615

6

Faloutsos - Pavlo, 15-415/615 16

Adding and Deleting Tuples

•  ‘mass’-delete (all Smiths!) :

DELETE
 FROM Students S
 WHERE S.name = ‘Smith’

Faloutsos - Pavlo, 15-415/615 17

Outline

•  Introduction
•  Integrity constraints (IC)
•  Enforcing IC
•  Querying Relational Data
•  ER to tables
•  Intro to Views
•  Destroying/altering tables

Faloutsos - Pavlo, 15-415/615 18

Keys

•  Keys help associate tuples in different
relations

•  Keys are one form of integrity constraint
(IC)

Enrolled Students

Faloutsos - Pavlo SCS 15-415/615

7

Faloutsos - Pavlo, 15-415/615 19

Keys

•  Keys help associate tuples in different
relations

•  Keys are one form of integrity constraint
(IC)

Enrolled Students

PRIMARY Key FOREIGN Key

Faloutsos - Pavlo, 15-415/615 20

Primary Keys

•  A set of fields is a superkey if:
– No two distinct tuples can have same

values in all key fields
•  A set of fields is a key for a relation if :

– minimal superkey

Student (ssn, name, address)

{ssn,name}: superkey
{ssn}: superkey, AND key
{name}: not superkey

Faloutsos - Pavlo, 15-415/615 21

Primary Keys

•  what if >1 key for a relation?

Faloutsos - Pavlo SCS 15-415/615

8

Faloutsos - Pavlo, 15-415/615 22

Primary Keys

•  what if >1 key for a relation?
–  one of the keys is chosen (by DBA) to be

the primary key. Other keys are
called candidate keys..

– Q: example of >1 superkeys?

Faloutsos - Pavlo, 15-415/615 23

Primary Keys

•  what if >1 key for a relation?
–  one of the keys is chosen (by DBA) to be

the primary key. Other keys are called
candidate keys..

– Q: example of >1 superkeys?
– A1: student: {ssn}, {student-id#},
 {driving license#, state}
– A2: Employee: {ssn}, {phone#}, {room#}
– A3: computer: {mac-address}, {serial#}

Faloutsos - Pavlo, 15-415/615 24

Primary Keys

•  E.g.
– sid is a key for Students.
– What about name?
– The set {sid, gpa} is a superkey.

Faloutsos - Pavlo SCS 15-415/615

9

Faloutsos - Pavlo, 15-415/615 25

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

Faloutsos - Pavlo, 15-415/615 26

Primary and Candidate Keys in SQL

Q: what does this mean?

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

Faloutsos - Pavlo, 15-415/615 27

Primary and Candidate Keys in SQL

“Students can take only
one course, and no two
students in a course
receive the same grade.”

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

Faloutsos - Pavlo SCS 15-415/615

10

Faloutsos - Pavlo, 15-415/615 28

Foreign Keys

Enrolled
Students

Faloutsos - Pavlo, 15-415/615 29

Foreign Keys, Referential Integrity

•  Foreign key : Set of fields `refering’ to
a tuple in another relation.
– Must correspond to the primary key of the

other relation.
– Like a `logical pointer’.

•  foreign key constraints enforce
referential integrity (i.e., no dangling
references.)

Faloutsos - Pavlo, 15-415/615 30

Foreign Keys in SQL

Example: Only existing students may enroll for
courses.
–  sid is a foreign key referring to Students:

Enrolled
Students

Faloutsos - Pavlo SCS 15-415/615

11

Faloutsos - Pavlo, 15-415/615 31

Foreign Keys in SQL

 CREATE TABLE Enrolled
 (sid CHAR(20),cid CHAR(20),grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students)

Enrolled
Students

Faloutsos - Pavlo, 15-415/615 32

Outline

•  Introduction
•  Integrity constraints (IC)
•  Enforcing IC
•  Querying Relational Data
•  ER to tables
•  Intro to Views
•  Destroying/altering tables

Faloutsos - Pavlo, 15-415/615 33

Enforcing Referential Integrity

•  Subtle issues:
•  What should be done if an Enrolled tuple with a

non-existent student id is inserted?

Enrolled
Students

Faloutsos - Pavlo SCS 15-415/615

12

Faloutsos - Pavlo, 15-415/615 34

Enforcing Referential Integrity

•  Subtle issues:
•  What should be done if an Enrolled tuple with a

non-existent student id is inserted? (Reject it!)

Faloutsos - Pavlo, 15-415/615 35

Enforcing Referential Integrity

•  Subtle issues, cont’d:
•  What should be done if a Student’s tuple is

deleted?

Enrolled
Students

Faloutsos - Pavlo, 15-415/615 36

Enforcing Referential Integrity

•  Subtle issues, cont’d:
•  What should be done if a Students tuple is

deleted?
– Also delete all Enrolled tuples that refer to it?
– Disallow deletion of a Students tuple that is

referred to?
– Set sid in Enrolled tuples that refer to it to a default

sid?
–  (In SQL, also: Set sid in Enrolled tuples that refer

to it to a special value null, denoting `unknown’ or
`inapplicable’.)

Faloutsos - Pavlo SCS 15-415/615

13

Faloutsos - Pavlo, 15-415/615 37

Enforcing Referential Integrity

•  Similar issues arise if primary key of Students
tuple is updated.

Faloutsos - Pavlo, 15-415/615 38

Integrity Constraints (ICs)

•  IC: condition that must be true for
any instance of the database; e.g.,
domain constraints.
– ICs are specified when schema is

defined.
– ICs are checked when relations are

modified.

Faloutsos - Pavlo, 15-415/615 39

Integrity Constraints (ICs)

•  A legal instance of a relation:
satisfies all specified ICs.
– DBMS should not allow illegal

instances.
•  we prefer that ICs are enforced by

DBMS (as opposed to ?)
– Blocks data entry errors, too!

Faloutsos - Pavlo SCS 15-415/615

14

Faloutsos - Pavlo, 15-415/615 40

Where do ICs Come From?

Faloutsos - Pavlo, 15-415/615 41

Where do ICs Come From?

•  the application!

Faloutsos - Pavlo, 15-415/615 42

Where do ICs Come From?

•  Subtle point: We can check a database
instance to see if an IC is violated, but we
can NEVER infer that an IC is true by looking
at an instance.
– An IC is a statement about all possible instances!
– Eg., name is not a key,
– but the assertion that sid is a key is given to us.

Faloutsos - Pavlo SCS 15-415/615

15

Faloutsos - Pavlo, 15-415/615 43

Where do ICs Come From?

•  Key and foreign key ICs are the most
common; more general ICs supported too.

Faloutsos - Pavlo, 15-415/615 44

Outline

•  Introduction
•  Integrity constraints (IC)
•  Enforcing IC
•  Querying Relational Data
•  ER to tables
•  Intro to Views
•  Destroying/altering tables

Faloutsos - Pavlo, 15-415/615 45

ER to tables outline:

•  strong entities
•  weak entities
•  (binary) relationships

–  1-to-1, 1-to-many, etc
–  total/partial participation

•  ternary relationships
•  ISA-hierarchies
•  aggregation

Faloutsos - Pavlo SCS 15-415/615

16

Faloutsos - Pavlo, 15-415/615 46

Logical DB Design: ER to Relational

•  (strong) entity sets to
tables.

Employees

ssn
name

lot

Faloutsos - Pavlo, 15-415/615 47

Logical DB Design: ER to Relational

•  (strong) entity sets to
tables.

 CREATE TABLE Employees
 (ssn CHAR(11),
 name CHAR(20),
 lot INTEGER,
 PRIMARY KEY (ssn))

Employees

ssn
name

lot

Ssn Name Lot

123-22-6666 Attishoo 48

233-31-5363 Smiley 22

131-24-3650 Smethurst 35

Faloutsos - Pavlo, 15-415/615 48

Relationship Sets to Tables

dname

budget did

since

lot

name

ssn

Works_In Employees Departments

Many-to-many:

Faloutsos - Pavlo SCS 15-415/615

17

Faloutsos - Pavlo, 15-415/615 49

Relationship Sets to Tables

dname

budget did

since

lot

name

ssn

Works_In Employees Departments

Many-to-many:

Ssn Name Lot

123-22-6666 Attishoo 48

233-31-5363 Smiley 22

131-24-3650 Smethurst 35

Ssn did since

123-22-6666 51 1/1/91

123-22-6666 56 3/3/93

233-31-5363 51 2/2/92

Faloutsos - Pavlo, 15-415/615 50

Relationship Sets to Tables

•  key of many-to-many
relationships:
– Keys from participating

entity sets (as foreign
keys).

CREATE TABLE Works_In(
 ssn CHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees,
 FOREIGN KEY (did)
 REFERENCES Departments)

Ssn did since

123-22-6666 51 1/1/91

123-22-6666 56 3/3/93

233-31-5363 51 2/2/92

Faloutsos - Pavlo, 15-415/615 51

Review: Key Constraints in ER

•  1-to-many:

dname

budget did

since

lot

name

ssn

Manages Employees Departments

Faloutsos - Pavlo SCS 15-415/615

18

Faloutsos - Pavlo, 15-415/615 52

Many-to-Many

1-to-1

1-to Many

Many-to-1

Review: Key Constraints in ER

Faloutsos - Pavlo, 15-415/615 53

ER to tables - summary of basics

•  strong entities:
– key -> primary key

•  (binary) relationships:
– get keys from all participating entities - pr.

key:
– 1-to-1 -> either key (other: ‘cand. key’)
– 1-to-N -> the key of the ‘N’ part
– M-to-N -> both keys

Faloutsos - Pavlo, 15-415/615 54

A subtle point (1-to-many)

dname
budget did

since

lot

name

ssn

Manages Employees Departments

Faloutsos - Pavlo SCS 15-415/615

19

Faloutsos - Pavlo, 15-415/615 55

Translating ER with Key Constraints

CREATE TABLE Manages(
 ssn CHAR(11),
 did INTEGER,
 since DATE,

 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
REFERENCES Employees,
 FOREIGN KEY (did)
REFERENCES Departments)

dname
budget did

since

lot

name

ssn

Manages Employees Departments

CREATE TABLE
Departments(
 did INTEGER),
 dname CHAR(20),
 budget REAL,
 PRIMARY KEY (did),
)

Two-table-solution

Faloutsos - Pavlo, 15-415/615 56

Translating ER with Key Constraints

CREATE TABLE Dept_Mgr(
 ssn CHAR(11),
 did INTEGER,
 since DATE,
 dname CHAR(20),
 budget REAL,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
 REFERENCES Employees)

dname
budget did

since

lot

name

ssn

Manages Employees Departments

Single-table-solution

Faloutsos - Pavlo, 15-415/615 57

Translating ER with Key Constraints

CREATE TABLE Manages(
 ssn CHAR(11),
 did INTEGER,
 since DATE,

 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
REFERENCES Employees,
 FOREIGN KEY (did)
REFERENCES Departments)

Vs.

dname
budget did

since

lot

name

ssn

Manages Employees Departments

CREATE TABLE Dept_Mgr(
 ssn CHAR(11),
 did INTEGER,
 since DATE,
 dname CHAR(20),
 budget REAL,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
 REFERENCES Employees)

Faloutsos - Pavlo SCS 15-415/615

20

Faloutsos - Pavlo, 15-415/615 58

Pros and cons?

Faloutsos - Pavlo, 15-415/615 59

Drill:

What if the toy department has no
manager (yet) ?

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11),
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
 REFERENCES Employees)

Faloutsos - Pavlo, 15-415/615 60

Drill:

What if the toy department has no
manager (yet) ?

A: one-table solution can not handle that.

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11),
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
 REFERENCES Employees)

Faloutsos - Pavlo SCS 15-415/615

21

Faloutsos - Pavlo, 15-415/615 61

ER to tables outline:

•  strong entities
•  weak entities
•  (binary) relationships

–  1-to-1, 1-to-many, etc
–  total/partial participation

•  ternary relationships
•  ISA-hierarchies
•  aggregation

Faloutsos - Pavlo, 15-415/615 62

Review: Participation Constraints

•  Does every department have a manager?
–  If so, this is a participation constraint: the participation of

Departments in Manages is said to be total (vs. partial).
• Every did value in Departments table must appear in a

row of the Manages table (with a non-null ssn value!)

lot
name dname

budget did

since
name dname

budget did

since

Manages

since

Departments Employees

ssn

Works_In

Faloutsos - Pavlo, 15-415/615 63

Participation Constraints in SQL

•  We can capture participation constraints involving one
entity set in a binary relationship, but little else
(without resorting to CHECK constraints).

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11) NOT NULL,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE NO ACTION)

Faloutsos - Pavlo SCS 15-415/615

22

Faloutsos - Pavlo, 15-415/615 64

Participation Constraints in SQL

•  Total participation (‘no action’ -> do NOT do the
delete)

•  Ie, a department MUST have a nanager

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11) NOT NULL,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE NO ACTION)

Faloutsos - Pavlo, 15-415/615 65

Participation Constraints in SQL

•  Partial partipation, ie, a department may be headless

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11) NOT NULL,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE SET NULL)

Faloutsos - Pavlo, 15-415/615 66

ER to tables outline:

•  strong entities
•  weak entities
•  (binary) relationships

–  1-to-1, 1-to-many, etc
–  total/partial participation

•  ternary relationships
•  ISA-hierarchies
•  aggregation

Faloutsos - Pavlo SCS 15-415/615

23

Faloutsos - Pavlo, 15-415/615 67

Review: Weak Entities

•  A weak entity can be identified uniquely only by
considering the primary key of another (owner) entity.
–  Owner entity set and weak entity set must participate in a

one-to-many relationship set (1 owner, many weak
entities).

–  Weak entity set must have total participation in this
identifying relationship set.

lot

name

age dname

Dependents Employees

ssn

Policy

cost

Faloutsos - Pavlo, 15-415/615 68

Review: Weak Entities

lot

name

age dname

Dependents Employees

ssn

Policy

cost

How to turn ‘Dependents’ into a table?

Faloutsos - Pavlo, 15-415/615 69

Translating Weak Entity Sets

•  Weak entity set and identifying relationship
set are translated into a single table.

CREATE TABLE Dep_Policy (
 dname CHAR(20),
 age INTEGER,
 cost REAL,
 ssn CHAR(11) NOT NULL,
 PRIMARY KEY (dname, ssn),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE CASCADE)

Faloutsos - Pavlo SCS 15-415/615

24

Faloutsos - Pavlo, 15-415/615 70

Translating Weak Entity Sets

•  Weak entity set and identifying relationship
set are translated into a single table.
–  When the owner entity is deleted, all owned weak

entities must also be deleted (-> ‘CASCADE’)

CREATE TABLE Dep_Policy (
 dname CHAR(20),
 age INTEGER,
 cost REAL,
 ssn CHAR(11) NOT NULL,
 PRIMARY KEY (dname, ssn),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE CASCADE)

Faloutsos - Pavlo, 15-415/615 71

ER to tables outline:

•  strong entities
•  weak entities
•  (binary) relationships

–  1-to-1, 1-to-many, etc
–  total/partial participation

•  ternary relationships
•  ISA-hierarchies
•  aggregation

Faloutsos - Pavlo, 15-415/615 72

Review: ISA Hierarchies

•  Overlap constraints: Can Joe be an Hourly_Emps as well as a
Contract_Emps entity? (Allowed/disallowed)

•  Covering constraints: Does every Employees entity also have
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Faloutsos - Pavlo SCS 15-415/615

25

Faloutsos - Pavlo, 15-415/615 73

Drill:

•  What would you do?

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

Faloutsos - Pavlo, 15-415/615 74

Translating ISA Hierarchies to Relations

•  General approach: 3 relations: Employees,
Hourly_Emps and Contract_Emps.

• how many times do we record an employee?
• what to do on deletion?
• how to retrieve all info about an employee?

EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk) CONTR(ssn, cid)

Faloutsos - Pavlo, 15-415/615 75

Translating ISA Hierarchies to Relations

•  Alternative: Just Hourly_Emps and Contract_Emps.
– Hourly_Emps: ssn, name, lot, hourly_wages,

hours_worked.
– Each employee must be in one of these two

subclasses.

H_EMP(ssn, h_wg, h_wk, name, lot)

EMP (ssn, name, lot)

CONTR(ssn, cid, name, lot)

Notice: ‘black’ is gone!

Faloutsos - Pavlo SCS 15-415/615

26

Faloutsos - Pavlo, 15-415/615 76

ER to tables outline:

•  strong entities
•  weak entities
•  (binary) relationships

–  1-to-1, 1-to-many, etc
–  total/partial participation

•  ternary relationships
•  ISA-hierarchies
•  aggregation

Faloutsos - Pavlo, 15-415/615 77

Ternary relationships; aggregation

•  rare
•  keep keys of all participating entity sets

(or: avoid such situations:
break into 2-way relationships or
add an auto-generated key

)

Faloutsos - Pavlo, 15-415/615 78

Outline

•  Introduction
•  Integrity constraints (IC)
•  Enforcing IC
•  Querying Relational Data
•  ER to tables
•  Intro to Views
•  Destroying/altering tables

Faloutsos - Pavlo SCS 15-415/615

27

Faloutsos - Pavlo, 15-415/615 79

Views

•  Virtual tables
 CREATE VIEW YoungActiveStudents
(name,grade)

 AS SELECT S.name, E.grade

 FROM Students S, Enrolled E

 WHERE S.sid=E.sid and S.age<21

•  DROP VIEW

Faloutsos - Pavlo, 15-415/615 80

Views and Security

•  DBA: grants authorization to a view for a user
•  user can only see the view - nothing else

Faloutsos - Pavlo, 15-415/615 81

Outline

•  Introduction
•  Integrity constraints (IC)
•  Enforcing IC
•  Querying Relational Data
•  ER to tables
•  Intro to Views
•  Destroying/altering tables

Faloutsos - Pavlo SCS 15-415/615

28

Faloutsos - Pavlo, 15-415/615 82

Table changes

•  DROP TABLE

•  ALTER TABLE, e.g.
ALTER TABLE students

 ADD COLUMN maiden-name CHAR(10)

Faloutsos - Pavlo, 15-415/615 83

Relational Model: Summary

•  A tabular representation of data.
•  Simple and intuitive; most widely used (plus object-

relational)
•  Integrity constraints can be specified by the DBA, based

on customer specs. DBMS checks for violations.
–  Two important ICs: primary and foreign keys
–  also: not null, unique
–  In addition, we always have domain constraints.

•  Mapping from ER to Relational is (fairly) straightforward:

Faloutsos - Pavlo, 15-415/615 84

ER to tables - summary of basics

•  strong entities:
–  key -> primary key

•  (binary) relationships:
–  get keys from all participating entities - pr. key:
–  1:1 -> either key
–  1:N -> the key of the ‘N’ part
–  M:N -> both keys

•  weak entities:
–  strong key + partial key -> primary key
–  ON DELETE CASCADE

Faloutsos - Pavlo SCS 15-415/615

29

Faloutsos - Pavlo, 15-415/615 85

ER to tables - summary of advanced

•  total/partial participation:
–  NOT NULL; ON DELETE NO ACTION

•  ternary relationships:
–  get keys from all; decide which one(s) -> prim.

key
•  aggregation: like relationships
•  ISA:

–  2 tables (‘total coverage’)
–  3 tables (most general)

