Faloutsos/Pavlo

% CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#6: Fun with SQL (partl)

CMU - 15-415/615

CMU SCS

General Overview - Rel. Model

» Formal query languages
— rel algebra and calculi

« Commercial query languages

- SQL

Q I'\“Intergalactic
— Datalog Standard”
~LINQ
— Xquery

— Pig (Hadoop)

CMU SCS 15-415/615

CMU SCS

Relational Languages

« A major strength of the relational model:
supports simple, powerful querying of data.

« User only needs to specify the answer that
they want, not how to compute it.

» The DBMS is responsible for efficient
evaluation of the query.

— Query optimizer: re-orders operations and
generates query plan

CMU SCS 15-415/615 3

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Relational Languages

» Standardized DML/DDL
— DML — Data Manipulation Language
— DDL — Data Definition Language

« Also includes:
— View definition
— Integrity & Referential Constraints
— Transactions

CMU SCS 15-415/615

g CMU SCS

History

* Originally “SEQUEL” from IBM’s
System R prototype.
— Structured English Query Language
— Adopted by Oracle in the 1970s.
« ANSI Standard in 1986, ISO in 1987
— Structured Query Language

CMU SCS 15-415/615

% CMU SCS

History

« Current standard is SQL:2011
— SQL:2008 — TRUNCATE, Fancy ORDER
— SQL:2003 — XML, windows, sequences,

auto-generated IDs.
— SQL:1999 — Regex, triggers, OO

» Most DBMSs at least support SQL-92

* System Comparison:
— http://troels.arvin.dk/db/rdbms/

CMU SCS 15-415/615

http://troels.arvin.dk/db/rdbms/

Faloutsos/Pavlo

% CMU SCS]
Overview

« DML
— select, from, where, renaming
— set operations
— ordering
— aggregate functions
— nested subqueries

« Other parts: DDL, embedded SQL, auth etc

CMU SCS 15-415/615

CMU - 15-415/615

g CMU SCS
Intro to SQL

« SELECT

« FROM

« WHERE

» Formal Semantics

CMU SCS 15-415/615 8

% CMU SCS
Example Database

CUSTOMER ACCOUNT
acctno bname amt
Georg Hegel A-123 A-123 | Redwood | 1800
Friedrich Engels | A-456 A-789 | Downtown | 2000
Max Stirner A-789 A-123 | Perry 1500
A-456 | Downtown | 1000

Faloutsos/Pavio CMU SCS 15-415/615 9

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

First SQL Example

bname Ino Elld

SELECT bname Downtown L-170 |3000
FROM account Redwood L-230 |4000
WHERE amt > 1000 Perry L-260 |1700
Redwood L-450 |3000

Similar to...

T prame (O am>1000 (@ccount)) But not quite....

bname bname

Downtown Downtown 3
Redwood Redwood <71 Duplicates
Perry Perry /
Redwood
CMU SCS 15-415/61! 10
CMU sCS
First SQL Example
bname Ino amt
SELECT DISTINCT bname Downtown L-170 |3000
FROM loan Redwood L-230 |4000
WHERE amt > 1000 Perry L-260 |1700
Redwood L-450 | 3000

Now we get the same result
as the relational algebra

bname .
W Why preserve dupllcates’?
Redwood « Eliminating them is costly
Perry * Users often don’t care.

CMU SCS 15-415/615 1

CMU sCS

Multi-Relation Queries

Georg Hegel A-123
Friedrich Engels | A-456
Max Stirner A-789

SELECT cname, amt
FROM customer, account
WHERE customer.acctno =

account.acctno
AND account.amt > 1000

acctno bname amt
A-123 | Redwood | 1800
A-789 | Downtown | 2000
Tename, amt(Gam>1000 (CUStOMeErXaccount)) [153 Perry 1500

A-456 | Downtown | 1000

Same as

cname amt

Georg Hegel 1800

Max Stirner 2000

Georg Hegel 1500 12

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Basic SQL Query Grammar

SELECT [DISTINCT|ALL] target-list
FROM
[WHERE qualification]

. : A list of relation names

» Target-List: A list of attributes from the tables
referenced in relation-list

 Qualification: Comparison of attributes or
constants using operators =, #, <, >, <, and >.

CMU SCS 15-415/615 13

CMU SCS

SELECT Clause

 Use * to get all attributes
{SELECT * FROM account

ESELECT account.* FROM account

+ Use DISTINCT to eliminate dupes
{SELECT DISTINCT bname FROM account

« Target list can include expressions
{SELECT bname, amt*1.05 FROM account

CMU SCS 15-415/615 14

CMU SCS

FROM Clause

+ Binds tuples to variable names

SELECT * FROM depositor, account
WHERE depositor.acctno = account.acctno

Define what kind of join to use

SELECT depositor.*, account.amt
FROM depositor LEFT OUTER JOIN account
WHERE depositor.acctno = account.acctno

CMU SCS 15-415/615 15

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

WHERE Clause

« Complex expressions using AND, OR, and NOT

SELECT * FROM account
WHERE amt > 1000
AND (bname = “Downtown” OR
NOT bname = “Perry”)

Special operators BETWEEN, IN:

SELECT * FROM account
WHERE (amt BETWEEN 100 AND 200)
AND bname IN (“Leon”, “Perry”)

CMU SCS 15-415/615 16

g CMU SCS]
Renaming

 The AS keyword can also be used to rename
tables and columns in SELECT queries.

« Allows you to target a specific table

instance when you reference the same table
multiple times.

CMU SCS 15-415/615 17

% CMU SCS
Renaming — Table Variables

« Find customers with an account in the
“Downtown” branch with more than $100.

SELECT customer.cname, account.amt
FROM customer, account

WHERE customer.acctno = account.acctno
AND account.bname = “Downtown”
AND account.amt > 1000

CMU SCS 15-415/615 18

Faloutsos/Pavlo

% CMU SCS

Renaming — Table Variables

» Find customers with an account in the
“Downtown” branch with more than $100.

WHERE C.acctno = A.acctno
AND A.bname = “Downtown
AND A.amt > 1000

SELECT C.cname, A.amt AS camt
FROM customer AS C, account AS A

”

CMU SCS 15-415/615

CMU - 15-415/615

g CMU SCS

Renaming — Self-Join

« Find all unique accounts

that are open at more than |A12% [Redwood | 1800
branch A-789 | Downtown | 2000
one) A-123 | Perry 1500
A-456 | Downtown | 1000

SELECT DISTINCT al.acctno

WHERE al.acctno = a2.acc
AND al.bname != a2.bna

tno
me

FROM account AS al, account AS a2

CMU SCS 15-415/615

% CMU SCS

Find all unique accounts

acctno

A-123

Renaming — Theta-Join

bname
Redwood

amt
1800

that are open at more than

A-789

Downtown

2000

one branch and have an

A-123

Perry

1500

amount greater than $1600.

A-456

Downtown

1000

SELECT DISTINCT al.acctno

WHERE al.acctno = a2.acc
AND al.bname != a2.bna
AND al.amt > 1600

tno
me

FROM account AS al, account AS a2

CMU SCS 15-415/615

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Formal Semantics of SQL

» To express SQL, must extend to a bag algebra:
— A bag is like a set, but can have duplicates
—Example: {4, 5, 4, 6}

0D a
A-123 | Redwood | 1800
A-789 | Downtown | 2000
A-123 | Redwood | 1800
A-456 | Downtown | 1000

CMU SCS 15-415/615 22

CMU SCS

Formal Semantics of SQL

* A SQL query is defined in terms of the
following evaluation strategy:
1. Execute FROM clause
Compute cross-product of all tables
2. Execute WHERE clause
Check conditions, discard tuples

3. Execute SELECT clause
Delete unwanted columns.

* Probably the worst way to compute!

CMU SCS 15-415/615 23

% CMU SCS
Execution Example

* Find the students that got a “D” grade in
any course.

SELECT S.name, E.cid
FROM students AS S, enrolled AS E
WHERE S.sid = E.sid AND E.grade="“D"

Faloutsos/Pavio CMU SCS 15-415/615 24

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Step 1 — Cross Product

id cid grade

S|
sid name login age gpa 53831 | Pilates101 C
53666 | Faloutsos | christos@cs 45 11.8 53832 | Reqgae203 D
| 53688 | Bieber | jbieber@cs [21 139 | [53650 Topologyl12 | A
53666 | Massage105 D

S.name S.login S.age S.gpa E.grade

53666 |Faloutsos |christos@cs 45 (1.8 53831 |Pilates101 G
53666 |Faloutsos | christos@cs 45 1.8 53832 | Reggae203 D
53666 | Faloutsos | christos@cs 45 1.8 53650 | Topology112 A
53666 |Faloutsos | christos@cs 45 1.8 53666 | Massagel05 D
53688 | Bieber jbieber@cs 21 (3.9 53831 |Pilates101 ©
53688 | Bieber jbieber@cs 21 |39 53831 | Reggae203 D
53688 | Bieber jbieber@cs 21 |39 53650 | Topology112 A
53688 |Bieber | jhieber@cs 21 [3.9 [53666 |M 105 D

o
&

CMU SCS 15-415/615

CMU SCS

Step 2 — Discard Tuples

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade

53666 | Faloutsos |christos@cs | 45 |18 153666 [Massage105

SELECT S.name, E.cid
FROM Students AS S, Enrolled AS E

WHERE [S.sid = E.sid|AND [E.grade = “D”

CMU SCS 15-415/615 26

CMU sCS

Step 3 — Discard Columns

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade

53666 _[Faloutsos | christos JRAUCHINRT 6| Massage105 | D___|

SELECT|S.name, E.cid|
FROM Students AS S, Enrolled AS E

WHERE S.sid = E.sid AND E.grade = “D”

CMU SCS 15-415/615 27

Faloutsos/Pavlo

% CMU SCS
More SQL

* INSERT
UPDATE
DELETE
TRUNCATE

CMU SCS 15-415/615 28

CMU - 15-415/615

g CMU SCS
INSERT

« Provide target table, columns, and values for
new tuples:

INSERT INTO account
(acctno, bname, amt)
VALUES
(“A-999”, “Pittsburgh”, 1000);

Short-hand version:

INSERT INTO account VALUES
(“A-999”, “Pittsburgh”, 1000);

CMU SCS 15-415/615 29

% CMU SCS
UPDATE

e UPDATE must list what columns to update and
their new values (separated by commas).

« Can only update one table at a time.

* WHERE clause allows query to target multiple
tuples at a time.

UPDATE account
SET bname = “Compton”,
amt = amt + 100
WHERE acctno = “A-999”
AND bname = “Pittsburgh”

10

Faloutsos/Pavlo

% CMU SCS
DELETE

« Similar to single-table SELECT statements.

« The WHERE clause specifies which tuples will
deleted from the target table.

 The delete may cascade to children tables.

CMU - 15-415/615

{DELETE FROM account WHERE amt < 0

CMU SCS 15-415/615 31

g CMU SCS
TRUNCATE

» Remove all tuples from a table.

« This is usually faster than DELETE, unless it
needs to check foreign key constraints.

{TRUNCATE account

CMU SCS 15-415/615 32

% CMU SCS
Even More SQL

* NULLs

String Operations
Output Redirection
Set/Bag Operations
« Output Control

» Aggregates

CMU SCS 15-415/615 33

11

Faloutsos/Pavlo

% CMU SCS
NULLs

 The “dirty little secret” of SQL, since it can be
a value for any attribute.

bname city assets
Oakland Pittsburgh $9,000,000 |

Compton Los Angeles NULL
Long Beach | Los Angeles $400,000
Harlem New York $1,700,000

+ What does this mean?
— We don’t know Compton assets?
— Compton has no assets?

CMU SCS 15-415/615 34

CMU - 15-415/615

g CMU SCS
NULLs

« Find all branches that have null assets.

bname city assets
Oakland Pittsburgh $9,000,000
Compton Los Angeles NULL
Long Beach | Los Angeles $400,000

Harlem New York $1,700,000
{SELECT * FROM branxiRE assets = NULL
bname city assets
CMU SCS 15-415/615 35

% CMU SCS
NULLs

» Find all branches that have null assets.

bname city assets
Oakland Pittsburgh $9,000,000
Compton Los Angeles NULL
Long Beach | Los Angeles $400,000
Harlem New York $1,700,000

{SELECT * FROM branch WHERE assets IS NULL |

bname city assets
Compton Los Angeles NULL

CMU SCS 15-415/615 36

12

Faloutsos/Pavlo

% CMU SCS
NULLs

« Arithmetic operations with NULL values is
always NULL.

CMU - 15-415/615

SELECT 1+NULL AS add null,
1-NULL AS sub null,
1*NULL AS mul null,
1/NULL AS div_null;

add_null sub_null mul_null div_null
NULL NULL NULL NULL
37
g CMU SCS

« Comparisons with NULL values varies.

SELECT true = NULL AS eq bool,
true != NULL AS neq bool,
true AND NULL AS and bool,
NULL = NULL AS eq null,
NULL IS NULL AS is null;

eq_bool neq_bool and_false eq_null is_null
NULL NULL NULL NULL TRUE
CMU SCS 15-415/615 38
g CMU SCS

String Operations

String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
DB2 Sensitive Single Only
Oracle Sensitive Single Only

{WHERE UPPER(name) = ‘EURKEL’ SQL-92 |

{WHERE name = “EURKEL”

MySOL &

13

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS]]
String Operations

» LIKE is used for string matching.

« String-matching operators
— “%” Matches any substring (incl. empty).
— “_” Match any one character

SELECT * FROM enrolled AS e
WHERE e.cid LIKE ‘Pilates%’

SELECT * FROM student AS s
WHERE s.name LIKE ‘%loutso_’

CMU SCS 15-415/615 40

CMU SCS

String Operations

* SQL-92 defines string functions.
— Many DBMSs also have their own unique
functions

« Can be used in either output and predicates:

SELECT SUBSTRING(name,0,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(e.name) LIKE ‘FALOUS’

CMU SCS 15-415/615 41

% CMU SCS]]
Output Redirection

« Store query results in another table:
— Table must not already be defined.
— Table will have the same # of columns with the
same types as the input.

SELECT DISTINCT cid INTO Courselds SQL-92
FROM Enrolled;

CREATE TABLE Courselds (MySQL
SELECT DISTINCT cid FROM Enrolled);

CMU SCS 15-415/615 42

14

Faloutsos/Pavlo

% CMU SCS]]
Output Redirection

« Insert tuples from query into another table:
— Inner SELECT must generate the same columns as
the target table
— DBMSs have different options/syntax on what to
do with duplicates.

CMU - 15-415/615

INSERT INTO Courselds SQL-92
(SELECT DISTINCT cid FROM Enrolled);

CMU SCS 15-415/615 43

CMU SCS

Set/Bag Operations

« Set Operations:
—UNION

— INTERSECT
—EXCEPT

 Bag Operations:
—UNION ALL
— INTERSECT ALL
—EXCEPT ALL

CMU SCS 15-415/615 44

% CMU SCS]
Set Operations

(SELECT cname FROM depositor)
(SELECT cname FROM borrower)

UNION

Returns names of customers with saving accts, loans, or both.

INTERSECT

Returns names of customers with saving accts AND loans.

EXCEPT

Returns names of customers with saving accts but NOT loans.

CMU SCS 15-415/615 45

15

Faloutsos/Pavlo

% CMU SCS]
Bag Operations

 There are m copies of a in table R and n
copies of ain table S.

» How many copies of a in...

CMU - 15-415/615

—R UNION ALL S Sm+n
—R INTERSECT ALL S —min(m, n)
—R EXCEPT ALL S — max(0, m-n)
CMU SCS 15-415/615 46
g CMU SCS
Output Control

* ORDER BY <column*> [ASC|DESC]
— Order the output tuples by the values in one or more
of their columns.

SELECT sid, grade FROM enrolled
WHERE cid = ‘Pilates105’ 53334 | A
53650 B
ORDER BY grade 66 1 o
SELECT sid FROM enrolled
WHERE cid = ‘Pilates105’ 53650
] 53123
ORDER BY grade DESC, sid ASC 23334
CMU SCS 15-415/615 47
Output Control

* LIMIT <count> [offset]
— Limit the # of tuples returned in output.
— Can set an offset to return a “range”

SELECT sid, name FROM Student

WHERE logip-tTKE ‘oeacc!
LIMIT 10 First 10 rows

SELECT sid, name FROM Student
WHERE login LIKE ‘%Q@cs

LIMIT 20 OFFSET 10 Skip first 10 rows,

Return the following 20

CMU SCS 15-415/615 48

16

Faloutsos/Pavlo

% CMU SCS
Aggregates

« Functions that return a single value from a
bag of tuples:

—AVG(col)— Return the average col value.
—MIN(col)— Return minimum col value.
—MAX (col)— Return maximum col value.
—SUM(col)— Return sum of values in col.
—COUNT (col) — Return # of values for col.

CMU SCS 15-415/615

CMU - 15-415/615

g CMU SCS
Aggregates

« Functions can only be used in the SELECT
attribute output list.

* Get the number of students with a @cs login:

FROM student WHERE login LIKE ‘%@cs’

SELECT COUNT(login) AS cnt

CMU SCS 15-415/615

% CMU SCS
Aqggregates

+ Can use multiple functions together at the
same time.

» Get the number of students and their GPA that
have a @cs login.

AVG(gpa) COUNT(sid)

FROM student WHERE login LIKE ‘%@cs’

SELECT AVG(gpa), COUNT(sid)

CMU SCS 15-415/615

17

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Aggregates

* COUNT, SUM, AVG support DISTINCT

« Get the number of unique students that have an
@cs login.

COUNT(DISTINCT login)

SELECT COUNT(DISTINCT login) [10
FROM student WHERE login LIKE ‘%@cs’

CMU SCS 15-415/615 52

g CMU SCS
Aggregates

« Output of other columns outside of an aggregate
is undefined:

AVG(s.gpa) ecid

SELECT AVG(s.gpa), e.cid m
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

e Unless...

CMU SCS 15-415/615 53

% CMU SCS
GROUPBY

* Project tuples into subsets and calc aggregates
against each subset.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid

e.sid s.sid s.gpa e.cid
53435 53435 | 2.25 Pilates101
| 53439 [53439 [270 [Pilates101 1 AS i ilel
53423 53'_47.’% 208 Tonoloav112 3:39 Reggae203
56023 56023 | 2.75 |Reggae203 T8 Topog;logylu
59439 59439 | 3.90 Reggae203 189 Massage105
53961 53961 | 3.50 Reqgae203
58345 | 58345 | 1.89 | Massagel05

18

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
GROUPBY

» Non-aggregated values in SELECT output
clause must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name| x

FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

CMU SCS 15-415/615 55

g CMU SCS
GROUPBY

» Non-aggregated values in SELECT output
clause must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid, s.name

CMU SCS 15-415/615 56

% CMU SCS
HAVING

« Filters output results
« Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING avg gpa > 2.75;

245 |Pilatest0l M
3.39 Reggae203 3.39 Reggae203
2.98 Topology112 [2.98 | Topology112 |
1.89 Massage105 57

19

Faloutsos/Pavlo

CMU SCS

All-in-One Example

« Store the total balance of the cities that have
branches with more than $1m in assets and
where the total balance is more than $700,
sorted by city name in descending order.

CMU - 15-415/615

SELECT bcity, SUM(balance) AS totalbalance
INTO BranchAcctSummary
FROM branch AS b, account AS a
WHERE b.bname=a.bname AND assets > 1000000
GROUP BY bcity
HAVING totalbalance >= 700
ORDER BY bcity DESC

CMU SCS

All-in-One Example

Steps 1,2 : FROM, WHERE

b.bname b.city b.assets a.bname a.acct_no a.balance
Downtown | Boston $9,000,000 | Downtown | A-101 $500
Compton Los Angeles | $2,100,000 | Compton A-215 $700
Long Beach | Los Angeles |$1,400,000 | Long Beach | A-102 $400
Harlem New York | $7,000,000 | Harlem A-202 $350
Marcy New York |$2,100,000 | Marcy A-305 $900
Marcy New York |$2,100,000 | Marcy A-217 $750

CMU SCS

All-in-One Example
Step 3: GROUP BY

Boston 500

Step 4: SELECT Los Angeles | 1100

New York |2000

Step 5: HAVI NG -neles balance

2000

Step 6: ORDER BY EENEENETIEN

Step 7: INTO < Store in new table >

20

Faloutsos/Pavlo CMU - 15-415/615

Summary
SELECT[DISTINCT] 4 p* (or p)
FROM 1 X*
WHERE 2 s*
INTO 7 <
GROUP BY 8 Cannot Express
HAVING 5 S*
ORDER BY 6 Cannot Express
61
CMU sCs
Advantages of SQL

» Write once, run everywhere (in theory...)
— Different DBMSs
— Single-node DBMS vs. Distributed DBMS

SELECT cname, amt
FROM customer, account

WHERE customer.acctno = account.acctno
AND account.amt > 1000

CMU SCS

Distributed Execution
SELECT|cname, amt|

FROM customer, account

WHERE| customer.acctno = account.acctno |

AND| account.amt > 1000

Query a e 0 oD a
Georg Hegel A-123 A-123 | Redwood | 1800
Friedrich Engels | A-456 A-789 | Downtown | 2000
Max Stirner A-789 2 A-123 || Perry 1500
s [wze o) A-456 | Downtown | 1000

21

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Stupid Joins Are Stupid

SELECT cname, amt
FROM customer, account
WHERE| customer.cname = account.bname |
AND account ~m* -
QW Send customer to every node?
Send account to every node?

% CMU SCS
NoSQL

» NoSQL really means non-relational
— Many NoSQL DBMSs are just key-value stores
M name login age gpa
53666 | — | Faloutsos | christos@cs 45118
|53688 | —; |Bieber | jbieber@cs [21]39 |
— Queries are often written in procedural code.

+ Relax the guarantees of the relational model
to gain better horizontal scalability.

Redis Lo 1% <OF

Cassandras
CouchDB

. mongoDB

CMU SCS

NoSQL: Not Only SQL!

» Many NoSQL systems now support a SQL-
like dialect.

— Facebook’s Hive (http:/bit.ly/qld8np)
— Cassandra CQL (http://bit.ly/nGJLtX)
« Other systems support declarative
languages:
— Yahoo’s Pig + Hadoop (http://bit.ly/pLbhtN)

22

http://bit.ly/qId8np
http://bit.ly/nGJLtX
http://bit.ly/pLbhtN

Faloutsos/Pavlo

CMU SCS

Additional Information

* Online SQL validators:
— http://developer.mimer.se/validator/
— http://format-sgl.com

« Links to Postgres, MySQL, and SQL.ite
documentation will be posted.

« When in doubt, try it out!

CMU SCS 15-415/615

CMU - 15-415/615

g CMU SCS
Next Class
- DDLs
« Complex Joins
* Views
» Nested Subqueries
« Triggers

Stored Procedures

CMU SCS 15-415/615

23

http://developer.mimer.se/validator/
http://format-sql.com/
http://format-sql.com/
http://format-sql.com/

