Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 — DB Applications

C. Faloutsos & A. Pavlo
Lecture#9 (R&G ch. 10)

Indexing
Outline

* Motivation

* ISAM

* B-trees (not in book)

* B+ trees

* duplicates

* B+ trees in practice

Faloutsos - Pavlo CMU SCS 15-415/615 2

Reminders
Pps of foils:

http://www.cs.cmu.edu/~christos/courses/
dbms.S14/slides-pps/

Q: how many want hard copies of foils?

Q’: 3-per-page
Q’’: punched-holes?

Faloutsos - Pavlo CMU SCS 15-415/615 3

CMU - 15-415 1

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Introduction

* How to support range searches?

* equality searches?

Faloutsos - Pavlo CMU SCS 15-415/615 4

% CMU SCS

Range Searches

* “Find all students with gpa > 3.0"’
* may be slow, even on sorted file
* What to do?

‘Pagﬂ H Page 2 H Page 3 ‘ Page N ‘ Data File

Faloutsos - Pavlo CMU SCS 15-415/615 5

g CMU SCS

Range Searches

* “Find all students with gpa > 3.0"’
+ may be slow, even on sorted file

« Solution: Create an ‘index’ file.

/ | ‘ ‘ ‘ Index File

/ \ v
‘ Page 1 ‘ ‘ Page 2 ‘ ‘ Page 3 ‘ Page N ‘ Data File

Faloutsos - Pavlo CMU SCS 15-415/615 6

CMU - 15-415 2

Faloutsos - Pavlo

g CMU SCS

Range Searches

e More details:

e Otherwise??

SR

/ \
‘Pagﬂ H Page 2 H Page 3 ‘ Page N ‘

Faloutsos - Pavlo CMU SCS 15-415/615

« if index file is small, do binary search there

Index File

Data File

P

CMU SCS 15-415/615

% CMU SCS

ISAM

» Repeat recursively!

Non-leaf
Pages

Pages

Faloutsos - Pavlo CMU SCS 15-415/615

e A A S Al

e ISAM

¢ OK - what if there are insertions and
overflows?

Non-leaf
Pages

Pages

Faloutsos - Pavlo CMU SCS 15-415/615

i A A S e A

CMU - 15-415

Faloutsos - Pavlo CMU SCS 15-415/615

A ISAM

* Overflow pages, linked to the primary page

& Example [SAM Tree

* 2 entries per page

Root ~—a

el]
N

| I m'ﬂ

‘10“15“ ‘20‘ 27" ‘33“37“ ‘40“‘45" ‘51"‘55" ‘63"97*‘

Faloutsos - Pavlo

CMU SCS 15-415/615

g CMU SCS

Root™|
ISAM

Details

+ format of an index page?

* how full should a newly created ISAM be?

Faloutsos - Pavlo CMU SCS 15-415/615

CMU - 15-415

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Root™|

ISAM

Details

 format of an index page?

* how full should a newly created ISAM be?
— ~80-90% (not 100%)

Faloutsos - Pavlo CMU SCS 15-415/615

% CMU SCS
ISAM i1s a STATIC Structure

« that is, index pages don’ t change
* File creation: Leaf (data) pages

allocated sequentially, sorted by search

key; then index pages allocated, then
overflow pgs.

E@mmm@-

Faloutsos - Pavlo

CMU SCS 15-415/615

CMU SCS

ISAM is a STATIC Structure

» Search: Start at root; use key
comparisons to go to leaf.
* Cost =77

S
STALENAA T

Faloutsos - Pavlo CMU SCS 15-415/615

CMU - 15-415

Faloutsos - Pavlo CMU SCS 15-415/615

CMU SCS

ISAM is a STATIC Structure

* Search: Start at root; use key
comparisons to go to leaf.

e Cost=17?

[e

Faloutsos - Pavlo CMU SCS 15-415/615 N 16

% CMU SCS
ISAM i1s a STATIC Structure

* Search: Start at root; use key
comparisons to go to leaf.

* Cost=log N ;
» F =# entries/pg (i.e., fanout),
* N =# leaf pgs

E@mmm@-

Faloutsos - Pavlo CMU SCS 15-415/615 17

CMU SCS

ISAM is a STATIC Structure

Insert: Find leaf that data entry belongs
to, and put it there. Overflow page if
necessary.

Delete: Find and remove from leaf; if
empty page, de-allocate.

S
STALENAA T

Faloutsos - Pavlo CMU SCS 15-415/615 18

CMU - 15-415 6

Faloutsos - Pavlo CMU SCS 15-415/615

% ““Example: Insert 23*, 48%, 41%,
42%

Root ~n.
=[]
I
Pages
20|33 51||63

I
[

Primary P/ \ 17/ J]

Leaf 10 ‘ 15 ‘ Jzo' 27" ‘ 33 ‘ 3 ‘ ‘ 40 ‘ 46* ‘ 51 55“ ‘63“ ‘ 97 ‘

Pages

\ \
17 ¥
Overflow 23" ‘ ‘ 48* | 41*
Pages
42+

Faloutsos - Pavlo CMU SCS 15-415/615 19

% CMU SCS

21* means

e <21> + rest of record

* (it’s a bit more complicated — but we stay
with that, for the moment).

* ‘21’ plain means just 4 bytes, to store

integer 21
21* —>‘ 21 ‘ (name, age, etc) ‘ ~record
21 > divider
Faloutsos - Pavlo CMU SCS 15-415/615 20

g CMU SCS

... then delete 42*, 51%*, 97*

Root —~n.

Index m.l
b

Primary ,,/ \ 17/ T \\

Leaf 10"15"J20' 27'H ‘37'”40‘46” 55“63“‘ ‘
Pages \ \

{
Overflow 23* ‘ ‘ 48" a1

Pages

w Note that 51* appears in index levels, but not in leaf!

Faloutsos - Pavlo CMU SCS 15-415/615 21

CMU - 15-415 7

Faloutsos - Pavlo

g CMU SCS

* Pros
—-227?
* Cons

- 177

Faloutsos - Pavlo

ISAM ---- Issues?

CMU SCS 15-415/615

CMU SCS 15-415/615

% CMU SCS

+ ISAM

* Motivation

Outline

* B-trees (not in book)

Faloutsos - Pavlo

* B+ trees
* duplicates

* B+ trees in practice

CMU SCS 15-415/615

g CMU SCS

Faloutsos - Pavlo

B-trees

* the most successful family of index
schemes (B-trees, B*trees, B*-trees)

* Can be used for primary/secondary,
clustering/non-clustering index.

* balanced “n-way” search trees

CMU SCS 15-415/615

CMU - 15-415

Faloutsos - Pavlo

g CMU SCS

B-trees

[Rudolf Bayer and McCreight, E. M.
Organization and Maintenance of Large

Ordered Indexes. Acta Informatica 1,
173189, 1972.]

Faloutsos - Pavlo CMU SCS 15-415/615 25

CMU SCS 15-415/615

% CMU SCS

B-trees

Eg., B-tree of order d=1:

< s 9 [
6/<9 9

Faloutsos - Pavlo CMU SCS 15-415/615 26

g CMU SCS
B - tree properties:

¢ cach node, in a B-tree of order d:
— Key order
— at most n=2d keys

— at least d keys (except root, which may have just 1 key)
— all leaves at the same level
— if number of pointers is k, then node has exactly k-1

keys
— (leaves are empty) P Pt
(L b, 111
Faloutsos - Pavlo CMU SCS 15-415/615 27

CMU - 15-415

Faloutsos - Pavlo

g CMU SCS

Properties

o “block aware” nodes: each node -> disk
page

* O(log (N)) for everything! (ins/del/search)
e typically, if d = 50 - 100, then 2 - 3 levels

* utilization >= 50%, guaranteed; on average
69%

Faloutsos - Pavlo CMU SCS 15-415/615 28

CMU SCS 15-415/615

% CMU SCS
Queries

¢ Algo for exact match query? (eg., ssn=87?)

<6 o 4o
6/<9 >0

Faloutsos - Pavlo CMU SCS 15-415/615 29

g CMU SCS
JAVA animation!

http://slady.net/java/bt/

strongly recommended! (with all usual pre-
cautions — VM etc)

Faloutsos - Pavlo CMU SCS 15-415/615 30

CMU - 15-415

10

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Queries

* Algo for exact match query? (eg., ssn=8?)

<6 lﬂlnl
<9 >

>6 9
1|43 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 31

% CMU SCS

Queries

¢ Algo for exact match query? (eg., ssn=87?)

<6 e 49k
6)/<9 <

9
>
13 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 32
g CMU SCS
Queries

¢ Algo for exact match query? (eg., ssn=8?)

Faloutsos - Pavlo CMU SCS 15-415/615 33

CMU - 15-415 11

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Queries

* Algo for exact match query? (eg., ssn=8?)

H steps (= disk
accesses)

Faloutsos - Pavlo CMU SCS 15-415/615 34

% CMU SCS

Queries

¢ what about range queries? (eg., S<salary<8)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

Faloutsos - Pavlo CMU SCS 15-415/615 35

g CMU SCS

Queries

* what about range queries? (eg., S5<salary<8)

¢ Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)
< e 419 1
>6 /<9 >9
1 (3 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 36

CMU - 15-415 12

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Queries

¢ what about range queries? (eg., 5<salary<§)

¢ Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

« AR
>6 /<9

Faloutsos - Pavlo CMU SCS 15-415/615 37

% CMU SCS

Queries

¢ what about range queries? (eg., S<salary<8)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

< s 4o
>6 /<9 >9

Faloutsos - Pavlo CMU SCS 15-415/615 38

g CMU SCS

Queries

* what about range queries? (eg., S<salary<8)

¢ Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6 s H o |
>9
>6 /<9

Faloutsos - Pavlo CMU SCS 15-415/615 39

CMU - 15-415 13

Faloutsos - Pavlo

B-trees: Insertion

e Insert in leaf; on overflow, push middle up
(recursively)
 split: preserves B - tree properties

Faloutsos - Pavlo CMU SCS 15-415/615

CMU SCS 15-415/615

% CMU SCS

B-trees

Easy case: Tree TO; insert ‘8’

< s 9 [
6/<9 9

>
13 7 13
Faloutsos - Pavlo CMU SCS 15-415/615

41

g CMU SCS

B-trees

Tree TO; insert ‘8’

<6 o 419 |
>6 >9

Faloutsos - Pavlo CMU SCS 15-415/615

42

CMU - 15-415

14

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees

Hardest case: Tree TO; insert ‘2’

<6 e 419 1
<9 >9

>6
1|3 7 13
2
Faloutsos - Pavlo CMU SCS 15-415/615 3

% CMU SCS

B-trees

Hardest case: Tree TO; insert ‘2’

push middle up

Faloutsos - Pavlo CMU SCS 15-415/615 44

g CMU SCS

B-trees

Hardest case: Tree TO; insert ‘2’

Faloutsos - Pavlo CMU SCS 15-415/615 45

CMU - 15-415 15

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees

Hardest case: Tree TO; insert ‘2’

Final state

Faloutsos - Pavlo CMU SCS 15-415/615 46

% CMU SCS

B-trees: Insertion

e Insert in leaf; on overflow, push middle up
(recursively — ‘propagate split’)

e split: preserves all B - tree properties (!!)

* notice how it grows: height increases when
root overflows & splits

e Automatic, incremental re-organization
(contrast with ISAM!)

Faloutsos - Pavlo CMU SCS 15-415/615 47

B Pseudo-code
INSERTION OF KEY 'K’
find the correct leaf node "L’ ;
if ("L’ overflows){
split "L, and push middle key to parent node 'P’;
if (P’ overflows){

repeat the split recursively; }
else{
add the key 'K’ in node "L’;

/* maintaining the key orderin 'L" */ }

Faloutsos - Pavlo CMU SCS 15-415/615 48

CMU - 15-415 16

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Overview

e B —trees

— Dfn, Search, insertion, deletion

Faloutsos - Pavlo CMU SCS 15-415/615 49

% CMU SCS

Deletion

Rough outline of algo:
* Delete key;
¢ on underflow, may need to merge

In practice, some implementors just allow
underflows to happen...

Faloutsos - Pavlo CMU SCS 15-415/615 50

g CMU SCS

B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

<6 e 4o |
>9

>6 /<9
1|43 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 51

CMU - 15-415 17

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

< e 40 N
N >6 <9 S

Faloutsos - Pavlo CMU SCS 15-415/615 52

% CMU SCS

B-trees — Deletion

e Casel: delete a key at a leaf — no underflow

 Case2: delete non-leaf key — no underflow

* Case3: delete leaf-key; underflow, and ‘rich
sibling’

* Case4: delete leaf-key; underflow, and 'poor
sibling’

Faloutsos - Pavlo CMU SCS 15-415/615 53

g CMU SCS

B-trees — Deletion

e Casel: delete a key at a leaf — no underflow
(delete 3 from TO)

<6 !N
>9

>6 /<9
1 |3 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 54

CMU - 15-415 18

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

* Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

Delete &
<6 ’B!nl promote, ie:
>6 /<9 >9
1|43 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 55

% CMU SCS

B-trees — Deletion

e Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

N Delete &
<6 I-!nl promote, ie:
>6 /<9 >9
1|3 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 56

g CMU SCS

B-trees — Deletion

e Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

\‘ Delete &
<6 319 promote, ie:

Faloutsos - Pavlo CMU SCS 15-415/615 57

CMU - 15-415 19

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

* Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

FINAL TREE
3 3410 s
<9 >9

Faloutsos - Pavlo CMU SCS 15-415/615 58

% CMU SCS

B-trees — Deletion

e Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

* Q: How to promote?

* A: pick the largest key from the left sub-tree
(or the smallest from the right sub-tree)

* Observation: every deletion eventually
becomes a deletion of a leaf key

Faloutsos - Pavlo CMU SCS 15-415/615 59

g CMU SCS

B-trees — Deletion

e Casel: delete a key at a leaf — no underflow

e Case2: delete non-leaf key — no underflow

¢ Case3: delete leaf-key; underflow, and ‘rich
sibling’

e Case4: delete leaf-key; underflow, and ‘poor
sibling’

Faloutsos - Pavlo CMU SCS 15-415/615 60

CMU - 15-415 20

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling” (eg.,
delete 7 from TO)

Delete &
<6 ’B!nl borrow, ie:
>6 /<9 >9
1|3 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 61

% CMU SCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &

w« MR e
9

Rich sibling

~.

>6,/<9 9

1|3 Y 13

Faloutsos - Pavlo CMU SCS 15-415/615 62

g CMU SCS

B-trees — Deletion

* Case3: underflow & ‘rich sibling’

* ‘rich’ = can give a key, without
underflowing

* ‘borrowing’ a key: THROUGH the
PARENT!

Faloutsos - Pavlo CMU SCS 15-415/615 63

CMU - 15-415 21

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling” (eg.,
delete 7 from TO)

Delete &

<6 ’B!nl borrow, ie:
Rich sibling < >9
~._ >6,/ <

Faloutsos - Pavlo CMU SCS 15-415/615 64

% CMU SCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
<6 Ig!nl borrow, ie:
>6 9 >0
1|3 13
Faloutsos - Pavlo CMU SCS 15-415/615 65

g CMU SCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
<6 ’!nl borrow, ie:
>6 /<9 >
1 6 13
Faloutsos - Pavlo CMU SCS 15-415/615 66

CMU - 15-415 22

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling” (eg.,
delete 7 from TO)

FINAL TREE Delete &

<3 ’!nl borrow,
>9

through the
>3 /<9 parent

Faloutsos - Pavlo CMU SCS 15-415/615 67

% CMU SCS

B-trees — Deletion

e Casel: delete a key at a leaf — no underflow

¢ Case2: delete non-leaf key — no underflow
* Case3: delete leaf-key; underflow, and ‘rich

sibling’

e Case4: delete leaf-key; underflow, and ‘poor
sibling’

Faloutsos - Pavlo CMU SCS 15-415/615 68

g CMU SCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

<6 !N
>9

>6 /<9
1 |3 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 69

CMU - 15-415 23

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

<6 !N
>9

Faloutsos - Pavlo CMU SCS 15-415/615 70

% CMU SCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

A: merge w/
‘poor’ sibling

Faloutsos - Pavlo CMU SCS 15-415/615 71

g CMU SCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

e Merge, by pulling a key from the parent

* exact reversal from insertion: ‘split and push
up’, vs. ‘merge and pull down’

o Je.:

Faloutsos - Pavlo CMU SCS 15-415/615 72

CMU - 15-415 24

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

A: merge w/

<6 ‘poor’ sibling

1 ffs]
]

Faloutsos - Pavlo CMU SCS 15-415/615 73

% CMU SCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

FINAL TREE
<6 e 4]
>6
oL) 7 1o)
]]

Faloutsos - Pavlo CMU SCS 15-415/615 74

g CMU SCS

B-trees — Deletion

* Case4: underflow & ‘poor sibling’

e -> ‘pull key from parent, and merge’
* Q: What if the parent underflows?

* A: repeat recursively

Faloutsos - Pavlo CMU SCS 15-415/615 75

CMU - 15-415 25

Faloutsos - Pavlo

g CMUSCS
B-tree deletion - pseudocode

DELETION OF KEY 'K’
locate key "K', in node "N’
if("N’ is a non-leaf node) {
delete 'K’ from "N’;
find the immediately largest key "K1’;
/* which is guaranteed to be on a leaf node "L’ */
copy 'K1’ in the old position of 'K’ ;
invoke this DELETION routine on ' K1’ from the leaf node "L’ ;
else {
/*"N’ is a leaf node */
... (next slide..)

Faloutsos - Pavlo CMU SCS 15-415/615 76

CMU SCS 15-415/615

% CMU SCS

B-tree deletion - pseudocode

/*’N’ is a leaf node */
ift’ N’ underflows){
let’ N1’ be the sibling of "N’;
if(" N1’ is "rich"){ /*ie., N1 can lend us a key */
borrow a key from *N1” THROUGH the parent node;
Yelse{ /*N1is 1 key away from underflowing */
MERGE: pull the key from the parent ' P’
and merge it with the keys of "N’ and "N1’ into a new

node;
ift ' P’ underflows){ repeat recursively }
}
}
Faloutsos - Pavlo CMU SCS 15-415/615 77

g CMU SCS
Outline

* Motivation

« ISAM

* B-trees (not in book)
— algorithms
— extensions

* B+ trees
* duplicates
* B+ trees in practice

Faloutsos - Pavlo CMU SCS 15-415/615 78

CMU - 15-415

26

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Variations

* How could we do even better than the B-
trees above?

Faloutsos - Pavlo CMU SCS 15-415/615 79

% CMU SCS

B*-tree

¢ In B-trees, worst case util. = 50%, if we
have just split all the pages

¢ how to increase the utilization of B - trees?

o _with B* - trees!

Faloutsos - Pavlo CMU SCS 15-415/615 80

g CMU SCS

B-trees and B*-trees

Eg., Tree TO; insert ‘2’

<6 e 4o |
>9

>6 /<9
1|43 7 13
2
Faloutsos - Pavlo CMU SCS 15-415/615 81

CMU - 15-415 27

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

< Gy Nt
% <9 9
1|3 7 13

2

Faloutsos - Pavlo CMU SCS 15-415/615 82

% CMU SCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

FINAL TREE
<3

Faloutsos - Pavlo CMU SCS 15-415/615 83

g CMU SCS

B*-trees: deferred split!

* Notice: shorter, more packed, faster tree

« It’ s a rare case, where space utilization and
speed improve together

» BUT: What if the sibling has no room for
our ‘lending’ ?

Faloutsos - Pavlo CMU SCS 15-415/615 84

CMU - 15-415 28

Faloutsos - Pavlo

g CMU SCS

B*-trees: deferred split!

* A:2-to-3 split: get the keys from the
sibling, pool them with ours (and a key
from the parent), and split in 3.

» Could we extend the idea to 3-to-4 split, 4-
to-5 etc?

Faloutsos - Pavlo CMU SCS 15-415/615

CMU SCS 15-415/615

% CMU SCS

B*-trees: deferred split!

» A: 2-to-3 split: get the keys from the
sibling, pool them with ours (and a key
from the parent), and split in 3.

* Could we extend the idea to 3-to-4 split, 4-
to-5 etc?

* Yes, but: diminishing returns

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Outline
* Motivation
e ISAM
* B-trees (not in book)
* B+ trees

* duplicates
» B+ trees in practice

Faloutsos - Pavlo CMU SCS 15-415/615

CMU - 15-415

29

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B+ trees - Motivation

For clustering index, data records are

scattered:
<6 Ho 41 |
>6 /<9 >9
1|3 7 13
Faloutsos - Pavlo CMU SCS 15-415/615 88

% CMU SCS

Solution: B* - trees

* facilitate sequential ops

e They string all leaf nodes together
 AND

e replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

(vital, for clustering index!)

Faloutsos - Pavlo CMU SCS 15-415/615 89

g CMU SCS
B+ trees
< s 4o |
>=6 /<9 =9
1 |3 6 |i|7 9 |13
Faloutsos - Pavlo CMU SCS 15-415/615 90

CMU - 15-415 30

Faloutsos - Pavlo CMU SCS 15-415/615

g CMUSCS

B+ trees
< e 419 1
>=6 /<9 =9
1|3 6 ||7 9 |13
Faloutsos - Pavlo CMU SCS 15-415/615 91

% CMU SCS

B+trees

* More details: next (and textbook)
* In short: on split
— at leaf level: COPY middle key upstairs

— at non-leaf level: push middle key upstairs (as
in plain B-tree)

Faloutsos - Pavlo CMU SCS 15-415/615 92

g CMU SCS

Example B+ Tree

* Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

» Search for 5%, 1{?‘, all data entries >=
264%™

‘z* [3' [E [;'/‘714'[15-[[T‘\:s'[200 22*[/‘\‘;4'[27'[29'[ma~[34[38*[39"

Based on the search for 15%, we know it is not in the tree!

Faloutsos - Pavlo CMU SCS 15-415/615 93

CMU - 15-415 31

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B+ Trees in Practice

» Typical order: 100. Typical fill-factor:
67%.
— average fanout =2*100%0.67 = 134
 Typical capacities:
— Height 4: 133% = 312,900,721 entries
— Height 3: 1333 = 2,406,104 entries

Faloutsos - Pavlo CMU SCS 15-415/615 94

% CMU SCS

B+ Trees in Practice

» Can often keep top levels in buffer pool:
—Level 1 = 1 page= 8KB
—Level2= 134 pages= 1MB
— Level 3 = 17,956 pages = 140 MB

Faloutsos - Pavlo CMU SCS 15-415/615 95

¥ ““Inserting a Data Entry into a B+
Tree

¢ Find correct leaf L.

* Put data entry onto L.
— If L has enough space, done!

— Else, must split L (into L and a new node L2)

« Redistribute entries evenly, copy up middle
key.

* parent node may overflow

— but then: push up middle key. Splits “grow” tree;
root split increases height.

Faloutsos - Pavlo CMU SCS 15-415/615 96

CMU - 15-415 32

Faloutsos - Pavlo CMU SCS 15-415/615

CMU SCS

Example B+ Tree - Inserting 8*

Root

Faloutsos - Pavlo CMU SCS 15-415/615 97

CMU SCS

Example B+ Tree - Inserting 8*

Faloutsos - Pavlo CMU SCS 15-415/615 98

CMU SCS

Example B+ Tree - Inserting 21*

Roox
=[]][]
—

ET T L] el T (o) o]

I

— — —

0 O I 5 5 S I S B s [Tz]
Faloutsos - Pavlo CMU SCS 15-415/615 99

CMU - 15-415 33

Faloutsos - Pavlo CMU SCS 15-415/615

CMU SCS

Example B+ Tree - Inserting 21*

R t*
[>T [[r[[=1]

ET Tl] el) (o]]

I

— — —
0 5 O 5 5 G s
Faloutsos - Pavlo CMU SCS 15-415/615 100

% CMU SCS

Example B+ Tree

Old root

N
{1 |

==l

Hs [][are] Hw of T [Hu

* Notice that root was split, increasing height.
* Could use defer-split here. (Pros/Cons?)

Faloutsos - Pavlo CMU SCS 15-415/615 101

¥ " Example: Data vs. Index Page
Split <
Data = nn

* leaf: ‘copy’ Page
py Split

* non-leaf: ‘push’

FEL T Pl e o o

« why not ‘copy’

X
@ non-leaves? [0 el el ==

S""z/
5|13 21|| 24

Faloutsos - Pavlo CMU SCS 15-415/615 102

CMU - 15415 34

Faloutsos - Pavlo CMU SCS 15-415/615

B Now you try...

Root

\
[[11
Iﬂ!“!nl!l ... (not shown)

CT T[T [T T] =]]

Insert the following data entries (in order): 28*, 6%, 25*

Faloutsos - Pavlo CMU SCS 15-415/615 103

% CMU SCS

Now you try...

After inserting 28*
RDON

=L 1]
Inlnlnl-l ... (not shown)

20 5 5 O S X S

N

Insert the following data entries (in order): 28*, 6%, 25*

Faloutsos - Pavlo CMU SCS 15-415/615 104

g CMU SCS

Answer...

After inserting 28*, 6*

=1 [e][=]]
CERR GO RRTR RN GGE

l—r—l
I_‘_\

Faloutsos - Pavlo CMU SCS 15-415/615 105

CMU - 15-415 35

Faloutsos - Pavlo

g CMU SCS

Answer...

After inserting 28*, 6*
[11

o 7 lle]l=]

FE T T bl) [T 1 (=]

insert 25*:
Q1: which pages will be affected:
Q2: how will the root look like after that?

CMU SCS 15-415/615

Faloutsos - Pavlo CMU SCS 15-415/615 106
% CMU SCS
Answer...
After inserting 28*, 6* Inl-l-l-l
[7 L]l
— —~ = — \
(0 0 5 O O O S XS
k 4
insert 25*:
Q1: which pages will be affected: Al: red arrows
Q2: how will the root look like after that? A2:(13;30; _;_)
Faloutsos - Pavlo CMU SCS 15-415/615 107

g CMU SCS

After inserting 25*

CEE

25% causes propagated split!

Faloutsos - Pavlo CMU SCS 15-415/615

108

CMU - 15-415

36

Faloutsos - Pavlo CMU SCS 15-415/615

& }Deleting a Data Entry from a B+

Tree

« Start at root, find leaf L where entry belongs.
* Remove the entry.
— If L is at least half-full, done!
— If L underflows
* Try to re-distribute, borrowing from sibling
(adjacent node with same parent as L).

« If re-distribution fails, merge L and sibling.
— update parent

— and possibly merge, recursively

Faloutsos - Pavlo CMU SCS 15-415/615 109

% ™" Example: Delete 19% & 20*

T
@ 13 . ’
UL LT peteting o 20 11
is easy:
y o — — — —~

3 0 5 I) s A S e R S ES S

FE T L) el T (e][]))

 Deleting 20* -> re-distribution (notice:
raose 27 COpied up)

110

g CMU SCS
... And Then Deleting 24*

Root

L Tl) el [(e T El L)

(+) 3
el] =L T

T T
EEL LI el T][22z | EEIEEE

Fe Must merge leaves ... but are we done??

CMU - 15-415 37

Faloutsos - Pavlo CMU SCS 15-415/615

g CMUSCS B Merge Non—Leaf NOdeS, Shrlnk

e 12 0 [

I~ N
=171

N~ e~ S
I 5 G I S G [seeeee7

@ Root

3 O 3 2 W S R
Faloutsos - Pavlo CMU SCS 15-415/615 112

® “ Example of Non-leaf Re-
distribution

* Tree is shown below during deletion of 24*.

* Now, we can (and must) re-distribute keys

5'[7'[5'[‘/“1\;115'[[KH\:TIWI mo*[zvi mz'l 211291/ﬂ§313413e135"

Faloutsos - Pavlo CMU SCS 15-415/615 13

g CMU SCS
After Re-distribution

+ need only re-distribute 20" ; did ‘17", too
« why would we want to re-distributed more

keys?
Root
L]
T e AN & a
o] [[=[rfo] Jile] T[] T Jooferf T Jfeeferiesf Jfssfocfoefe]
Faloutsos - Pavlo CMU SCS 15-415/615 114

CMU - 15-415 38

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Main observations for deletion

* If a key value appears twice (leaf +
nonleaf), the above algorithms delete it
from the leaf, only

» why not non-leaf, too?

Faloutsos - Pavlo CMU SCS 15-415/615 115

% CMU SCS

Main observations for deletion

« If a key value appears twice (leaf +
nonleaf), the above algorithms delete it
from the leaf, only

» why not non-leaf, too?

* ‘lazy deletions’ - in fact, some vendors just
mark entries as deleted (~ underflow),
— and reorganize/compact later

Faloutsos - Pavlo CMU SCS 15-415/615 116

g CMU SCS

Recap: main ideas

+ on overflow, split (and ‘push’, or ‘copy’)
— or consider deferred split

+ on underflow, borrow keys; or merge
— or let it underflow...

Faloutsos - Pavlo CMU SCS 15-415/615 17

CMU - 15-415 39

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Outline
* Motivation
« ISAM
* B-trees (not in book)
* B+ trees

* duplicates
» B+ trees in practice
— prefix compression; bulk-loading; ‘order’

Faloutsos - Pavlo CMU SCS 15-415/615 118

% CMU SCS

B+ trees with duplicates

* Everything so far: assumed unique key
values

* How to extend B+-trees for duplicates?
— Alt. 2: <key, rid>
— Alt. 3: <key, {rid list}>

* 2 approaches, roughly equivalent

Faloutsos - Pavlo CMU SCS 15-415/615 119

g CMU SCS

B+ trees with duplicates

* approach#1: repeat the key values, and
extend B+ tree algo’ s appropriately - eg.
many ‘14’ s

[z [o]5[7] [o]# e [1e] [w]w]z2]z] [#]2r]=]]

Faloutsos - Pavlo CMU SCS 15-415/615 120

CMU - 15415 40

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

B+ trees with duplicates

* approach#1: subtle problem with deletion:

* treat rid as part of the key, thus making it

unique
‘z [3 [5 [7 ‘ ‘13[14 [“ [14.‘ ‘14*[14* 22*[23" ‘ [27[29'[‘
Faloutsos - Pavlo CMU SCS 15-415/615 121

% CMU SCS

B+ trees with duplicates

« approach#2: store each key value: once

* but store the {rid list} as variable-length
field (and use overflow pages, if needed)

[=17 (o] e Calae]] [T]

CMU SCS 15-415/615 122

Faloutsos - Pavlo

g CMU SCS

B+ trees with duplicates

N S AN
Il 17] [l dum] [zefao]][] [=]]
{rid list, cont’ d}
Faloutsos - Pavlo CMU SCS 15-415/615 123

CMU - 15-415 41

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Outline
* Motivation
« ISAM
* B-trees (not in book)
* B+ trees

* duplicates
» B+ trees in practice
— prefix compression; bulk-loading; ‘order’

Faloutsos - Pavlo CMU SCS 15-415/615 124

% CMU SCS

Prefix Key Compression

* Important to increase fan-out. (Why?)

» Key values in index entries only “direct
traffic’ ; can often compress them.

[Papadopoulos ‘ Pernikovskaya

Faloutsos - Pavlo CMU SCS 15-415/615 125

g CMU SCS

Prefix Key Compression

 Important to increase fan-out. (Why?)

» Key values in index entries only "direct
traffic’ ; can often compress them.

|

Imlﬁ |<room for more separators/keys>|

Faloutsos - Pavlo CMU SCS 15-415/615 126

CMU - 15-415 42

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS

Bulk Loading of a B+ Tree

* In an empty tree, insert many keys
* Why not one-at-a-time?

Faloutsos - Pavlo CMU SCS 15-415/615 127

CMU SCS

Bulk Loading of a B+ Tree

* Initialization: Sort all data entries
+ scan list; whenever enough for a page, pack

 <repeat for upper level - even faster than
book’ s algo>

Roat™

Sorted pages of data entries; not yet in B+ tree

ﬂﬁﬁ

Faloutsos - Pavlo CMU SCS 15-415/615 128

* Bulk Loading (Contd.)

\

Root
*Book’ s algo

- 1 Data entry pages
*(any problems?) /ﬁf—u 2])JEIEK ot yet in B+ tree

[3«] [] [rofre [12f1 [aofz2] fesfor [osias]

~
Root " [[2of]]

Data entry pages
not yet in B+ tree

(el 1 [l=l 0 [z 1 (T=] 1

ARYAY AN

Frlousos - Favlo (] (&9 frofr] [12]13] [20f22] [25]31] [ssoe] [safarfasr

CMU - 15415 43

Faloutsos -

Pavlo

g CMU SCS

Outline
* Motivation
« ISAM
* B-trees (not in book)
* B+ trees

* duplicates

» B+ trees in practice
— prefix compression; bulk-loading; ‘order’

Faloutsos - Pavlo CMU SCS 15-415/615 130

CMU SCS 15-415/615

A Note on 'Order’

Order (d) concept replaced by physical space
criterion in practice (‘at least half-full’).

Why do we need the distinction?

VARCHAR| [VARCHAR

VARCHAR ||VARCHAR

Faloutsos - Pavlo CMU SCS 15-415/615 131

CMU SCS

A Note on ‘Order’

Order (d) concept replaced by physical space
criterion in practice (at least half-full).

Why do we need it?

— Index pages can typically hold many more entries
than leaf pages.

— Variable sized records and search keys mean different
nodes will contain different numbers of entries.

— Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Faloutsos - Pavlo CMU SCS 15-415/615 132

CMU - 15-415

44

Faloutsos - Pavlo

A Note on 'Order

* Many real systems are even sloppier than this:
they allow underflow, and only reclaim space
when a page is completely empty.

* (what are the benefits of such ‘slopiness’ ?)

Faloutsos - Pavlo CMU SCS 15-415/615 133

CMU SCS 15-415/615

Conclusions

¢ Btree is the prevailing indexing method

¢ Excellent, O(logN) worst-case performance
for ins/del/search; (~3-4 disk accesses in
practice)

» guaranteed 50% space utilization; avg 69%

Faloutsos - Pavlo CMU SCS 15-415/615 134

Conclusions

* Can be used for any type of index: primary/
secondary, sparse (clustering), or dense
(non-clustering)

¢ Several fine-tuning extensions on the basic
algorithm
— deferred split; prefix compression; (underflows)

— bulk-loading
— duplicate handling

Faloutsos - Pavlo CMU SCS 15-415/615 135

CMU - 15-415

45

