
Faloutsos/Pavlo CMU - 15-415/615

1

CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#12: External Sorting

CMU SCS

CMU SCS 15-415/615 4

Today's Class

• Sorting Overview

• Two-way Merge Sort

• External Merge Sort

• Optimizations

• B+trees for sorting

Faloutsos/Pavlo

CMU SCS

Why do we need to sort?

Faloutsos/Pavlo CMU SCS 15-415/615 5

Faloutsos/Pavlo CMU - 15-415/615

2

CMU SCS

Why do we need to sort?

• SELECT...ORDER BY

– e.g., find students in increasing gpa order

• Bulk loading B+ tree index.

• Duplicate elimination (DISTINCT)

• SELECT...GROUP BY

• Sort-merge join algorithm involves

sorting.

 Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Why do we need to sort?

• What do we do if the data that we want to

sort is larger than the amount of memory

that is available to the DBMS?

• What if multiple queries are running at the

same time and they all want to sort data?

• Why not just use virtual memory?

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Overview

• Files are broken up into N pages.

• The DBMS has a finite number of B fixed-

size buffers.

• Let’s start with a simple example…

Faloutsos/Pavlo CMU SCS 15-415/615 8

Faloutsos/Pavlo CMU - 15-415/615

3

CMU SCS

Two-way Merge Sort

• Pass 0: Read a page, sort it, write it.

– only one buffer page is used

• Pass 1,2,3,…: requires 3 buffer pages

– merge pairs of runs into runs twice as long

– three buffer pages used.

Faloutsos/Pavlo 9

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

CMU SCS

Two-way External Merge Sort

• Each pass we read +

write each page in file.

Faloutsos/Pavlo 10

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

CMU SCS

Two-way External Merge Sort

• Each pass we read +

write each page in file.

Faloutsos/Pavlo 11

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Faloutsos/Pavlo CMU - 15-415/615

4

CMU SCS

Two-way External Merge Sort

• Each pass we read +

write each page in file.

Faloutsos/Pavlo 12

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

CMU SCS

Two-way External Merge Sort

• Each pass we read +

write each page in file.

Faloutsos/Pavlo 13

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

CMU SCS

Two-way External Merge Sort

• Each pass we read +

write each page in file.

• N pages in the file =>

• So total cost is:

• Divide and conquer:

sort subfiles and merge

Faloutsos/Pavlo 14

lo g
2

1N

2 1
2

N Nlo g

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Faloutsos/Pavlo CMU - 15-415/615

5

CMU SCS

Two-way External Merge Sort

• This algorithm only requires three buffer

pages.

• Even if we have more buffer space

available, this algorithm does not utilize it

effectively.

• Let’s look at the general algorithm…

Faloutsos/Pavlo 15-415/615 15

CMU SCS

General External Merge Sort

• B>3 buffer pages.

• How to sort a file with N pages?

Faloutsos/Pavlo 15-415/615 16

B Main memory buffers
Disk Disk

.

CMU SCS

General External Merge Sort

Faloutsos/Pavlo 15-415/615 17

N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2

.

• Pass 0: Use B buffer pages. Produce

sorted runs of B pages each.

• Pass 1,2,3,…: Merge B-1 runs.

Faloutsos/Pavlo CMU - 15-415/615

6

CMU SCS

Sorting

• Create sorted runs of size B (how many?)

• Merge them (how?)

Faloutsos/Pavlo 15-415/615 18

B

... ...

CMU SCS

Sorting

• Create sorted runs of size B

• Merge first B-1 runs into a sorted run of

 (B-1)∙B, ...

Faloutsos/Pavlo 15-415/615 19

B

... ...
…..

CMU SCS

Sorting

• How many steps we need to do?

 ‘i’, where B∙(B-1)^i > N

• How many reads/writes per step? N+N

Faloutsos/Pavlo 15-415/615 20

B

... ...
…..

Faloutsos/Pavlo CMU - 15-415/615

7

CMU SCS

Cost of External Merge Sort

• Number of passes:

• Cost = 2N∙(# of passes)

Faloutsos/Pavlo 15-415/615 21

1
1

lo g /
B

N B

CMU SCS

Example

• Sort 108 page file with 5 buffer pages:

– Pass 0: = 22 sorted runs of 5 pages

each (last run is only 3 pages)

– Pass 1: = 6 sorted runs of 20 pages

each (last run is only 8 pages)

– Pass 2: 2 sorted runs, 80 pages and 28 pages

– Pass 3: Sorted file of 108 pages

Faloutsos/Pavlo 15-415/615 22

1 0 8 5/

2 2 4/

Formula check: ┌log4 22┐= 3 … + 1 4 passes ✔

CMU SCS

of Passes of External Sort

Faloutsos/Pavlo 15-415/615 23

 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

Cost = 2N∙(# of passes)

Faloutsos/Pavlo CMU - 15-415/615

8

CMU SCS

CMU SCS 15-415/615 24

Today's Class

• Sorting Overview

• Two-way Merge Sort

• External Merge Sort

• Optimizations

• B+trees for sorting

Faloutsos/Pavlo

CMU SCS

Optimizations

• Which internal sort algorithm should we

uses for Phase 0?

• How do we prevent the DBMS from

blocking when it needs input?

Faloutsos/Pavlo CMU SCS 15-415/615 25

CMU SCS

Internal Sort Algorithm

• Quicksort is a fast way to sort in memory.

• But we get B buffers, and produce one run
of length B each time.

• Can we produce longer runs than that?

Faloutsos/Pavlo 15-415/615 26

Faloutsos/Pavlo CMU - 15-415/615

9

CMU SCS

Heapsort

• Alternative sorting algorithm (a.k.a.
“replacement selection”)

• Produces runs of length ~ 2∙B

• Clever, but not implemented, for subtle

reasons: tricky memory management on

variable length records

Faloutsos/Pavlo 15-415/615 27

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 28

10

14

17

11

15 18 16

pick smallest, write to output buffer:

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 29

...

14

17

11

15 18 16

10

pick smallest, write to output buffer:

Faloutsos/Pavlo CMU - 15-415/615

10

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 30

22

14

17

11

15 18 16

get next key; put at top and ‘sink’ it

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 31

11

14

17

22

15 18 16

get next key; put at top and ‘sink’ it

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 32

11

14

17

16

15 18 22

get next key; put at top and ‘sink’ it

Faloutsos/Pavlo CMU - 15-415/615

11

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 33

11

14

17

16

15 18 22

When done, pick top (= smallest)
and output it, if ‘legal’ (ie., >=10 in

our example

This way, we can keep on reading
new key values (beyond the B

ones of quicksort)

CMU SCS

Blocked I/O & Double-buffering

• So far, we assumed random disk access.

• The cost changes if we consider that runs

are written (and read) sequentially.

• What could we do to exploit it?

Faloutsos/Pavlo 15-415/615 34

CMU SCS

Blocked I/O & Double-buffering

• So far, we assumed random disk access.

• The cost changes if we consider that runs

are written (and read) sequentially.

• What could we do to exploit it?

– Blocked I/O: exchange a few r.d.a for several

sequential ones using bigger pages.

– Double-buffering: mask I/O delays with

prefetching.

Faloutsos/Pavlo 15-415/615 35

Faloutsos/Pavlo CMU - 15-415/615

12

CMU SCS

Blocked I/O

• Normally, B buffers of size (say) 4K

Faloutsos/Pavlo 15-415/615 36

6 Main memory buffers

INPUT 1

INPUT 5

OUTPUT

Disk Disk

INPUT 2

.

CMU SCS

Blocked I/O

• Normally, B buffers of size (say) 4K

• INSTEAD: B/b buffers, of size ‘b’ kilobytes

Faloutsos/Pavlo 15-415/615 37

6 Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

.

CMU SCS

Blocked I/O

• Normally, B buffers of size (say) 4K

• INSTEAD: B/b buffers, of size ‘b’ kilobytes

• Advantages?

• Disadvantages?

Faloutsos/Pavlo 15-415/615 38

Faloutsos/Pavlo CMU - 15-415/615

13

CMU SCS

Blocked I/O

• Normally, B buffers of size (say) 4K

• INSTEAD: B/b buffers, of size ‘b’ kilobytes

• Advantages?

• Disadvantages?

Faloutsos/Pavlo 15-415/615 39

Fewer random disk accesses because

some of them are sequential.

CMU SCS

Blocked I/O

• Normally, B buffers of size (say) 4K

• INSTEAD: B/b buffers, of size ‘b’ kilobytes

• Advantages?

• Disadvantages?

Faloutsos/Pavlo 15-415/615 40

Fewer random disk accesses because

some of them are sequential.

Smaller fanout may cause more passes.

CMU SCS

Blocked I/O & Double-buffering

• So far, we assumed random disk access

• Cost changes, if we consider that runs are

written (and read) sequentially

• What could we do to exploit it?

– Blocked I/O: exchange a few r.d.a for several

sequential ones using bigger pages.

– Double-buffering: mask I/O delays with

prefetching.

Faloutsos/Pavlo 15-415/615 41

Faloutsos/Pavlo CMU - 15-415/615

14

CMU SCS

Double-buffering

• Normally, when, say ‘INPUT1’ is exhausted

– We issue a “read” request and then we wait …

Faloutsos/Pavlo 15-415/615 42

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2

.

CMU SCS

Double-buffering

• We prefetch INPUT1’ into “shadow block”

– When INPUT1 is exhausted, we issue a “read”,

– BUT we proceed with INPUT1’

Faloutsos/Pavlo 15-415/615 43

B Main memory buffers

OUTPUT

Disk Disk

.

INPUT 1

INPUT 1’

INPUT 2

INPUT 2’

INPUT B-1

INPUT B-1’

CMU SCS

Double-buffering

• This potentially requires more passes.

• But in practice, most files still sorted in 2-3

passes.

Faloutsos/Pavlo 15-415/615 44

B Main memory buffers

OUTPUT

Disk Disk

.

INPUT 1

INPUT 1’

INPUT 2

INPUT 2’

INPUT B-1

INPUT B-1’

Faloutsos/Pavlo CMU - 15-415/615

15

CMU SCS

CMU SCS 15-415/615 45

Today's Class

• Sorting Overview

• Two-way Merge Sort

• External Merge Sort

• Optimizations

• B+trees for sorting

Faloutsos/Pavlo

CMU SCS

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree

index on sorting column(s).

• Idea: Can retrieve records in order by

traversing leaf pages.

• Is this a good idea?

• Cases to consider:

– B+ tree is clustered

– B+ tree is not clustered

Faloutsos/Pavlo 15-415/615 46

Good Idea!

Could be Bad!

CMU SCS

Clustered B+ Tree for Sorting

• Traverse to the left-

most leaf, then

retrieve all leaf

pages.

Faloutsos/Pavlo 15-415/615 47

 Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Faloutsos/Pavlo CMU - 15-415/615

16

CMU SCS

Unclustered B+ Tree for Sorting

• Chase each pointer

to the page that

contains the data.

Faloutsos/Pavlo 15-415/615 48

In general, one I/O per data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

CMU SCS

External Sorting vs.

Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000

100,000 600,000 100,000 1,000,000 10,000,000

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

Faloutsos/Pavlo 15-415/615 49

 N: # pages

 p: # of records per page

 B=1,000 and block size=32 for sorting

 p=100 is the more realistic value.

CMU SCS

Summary

• External sorting is important

• External merge sort minimizes disk I/O:

– Pass 0: Produces sorted runs of size B (#

buffer pages).

– Later Passes: merge runs.

• Clustered B+ tree is good for sorting;

unclustered tree is usually very bad.

Faloutsos/Pavlo 15-415/615 50

