
Faloutsos/Pavlo CMU - 15-415/615

1

CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#14: Implementation of

Relational Operations

CMU SCS

Administrivia

• HW4 is due this Thursday.

• Reminder: Mid-term on Tues March 4th

– Will cover everything up to and including this

week‟s lectures.

– Closed book, one sheet of notes (double-sided)

– We will release last year‟s exam.

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Extended Office Hours

• Christos:

– Wednesday Feb 26th 12:00pm-1:00pm

– Friday Feb 28th 3:00pm-5:00pm

• Andy:

– Friday Feb 28th 10:00am-12:00pm

– Monday Mar 3rd 9:00am-10:00am

– Tuesday Mar 4th 10:00am-12:00pm

Faloutsos/Pavlo CMU SCS 15-415/615 3

Faloutsos/Pavlo CMU - 15-415/615

2

CMU SCS

Last Class

• Sorting:

– External Merge Sort

• Projection:

– External Merge Sort

– Two-Phase Hashing

Faloutsos/Pavlo CMU SCS 15-415/615 4

These are for when
the data is larger
than the amount of
memory available.

CMU SCS

5

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Catalog Manager

Query Plan Evaluator
Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

CMU SCS

6

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Catalog Manager

Query Plan Evaluator
Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

Faloutsos/Pavlo CMU - 15-415/615

3

CMU SCS

Query Processing

• Some database operations are expensive.

• The DBMS can greatly improve

performance by being “smart”

– e.g., can speed up 1,000,000x over naïve

approach

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Query Processing

• There are clever implementation techniques

for operators.

• We can exploit “equivalencies” of relational

operators to do less work.

• Use statistics and cost models to choose

among these.

Faloutsos/Pavlo CMU SCS 15-415/615 8

Work smarter, not harder.

CMU SCS

Today‟s Class

• Introduction

• Selection

• Joins

Faloutsos/Pavlo CMU SCS 15-415/615 9

Faloutsos/Pavlo CMU - 15-415/615

4

CMU SCS

Lame Query Execution

• For each SELECT-FROM-WHERE query block

– Do cartesian products first

– Then do selections + extras:

•GROUP BY; HAVING

• Projections

•ORDER BY

• Incredibly inefficient

– Huge intermediate results!

– Makes small children cry.

Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

Query Optimizer

• “Optimizer” is a bit of a misnomer…

• Goal is to pick a “good” (i.e., low expected

cost) plan.

– Involves choosing access methods, physical

operators, operator orders, …

– Notion of cost is based on an abstract “cost

model”

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

sid bid day rname

6 103 2014-02-01 matlock

1 102 2014-02-02 macgyver

2 101 2014-02-02 a-team

1 101 2014-02-01 dallas

Sample Database

Faloutsos/Pavlo CMU SCS 15-415/615 12

SAILORS RESERVES
sid sname rating age

1 Christos 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

Sailors(sid: int, sname: varchar, rating: int, age: real)

Reserves(sid: int, bid: int, day: date, rname: varchar)

http://www.hoofersailing.org/

Faloutsos/Pavlo CMU - 15-415/615

5

CMU SCS

Sample Database

Faloutsos/Pavlo CMU SCS 15-415/615 13

SAILORS RESERVES

Each tuple is 50 bytes

80 tuples per page

500 pages total

N=500, pS=80

Each tuple is 40 bytes

100 tuples per page

1000 pages total

M=1000, pR=100

sid bid day rname

6 103 2014-02-01 matlock

1 102 2014-02-02 macgyver

2 101 2014-02-02 a-team

1 101 2014-02-01 dallas

sid sname rating age

1 Christos 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

CMU SCS

Single-Table Selection

Faloutsos/Pavlo CMU SCS 15-415/615 14

SELECT *
 FROM Reserves AS R
 WHERE R.rname < ‘C%’

srname<„C%‟ (Reserves)

RESERVES

s rname<„C%‟

CMU SCS

Single-Table Selection

• What’s the best way to execute this query?

• A: It depends on…

– What indexes and access paths are available.

– What is the expected size of the result (in terms

of number of tuples and/or number of pages)

 Faloutsos/Pavlo CMU SCS 15-415/615 15

SELECT *
 FROM Reserves AS R
 WHERE R.rname < ‘C%’

Faloutsos/Pavlo CMU - 15-415/615

6

CMU SCS

Access Paths

• How the DBMS retrieves tuples from a

table for a query plan.

– File Scan (aka Sequential Scan)

– Index Scan (Tree, Hash, List, …)

• Selectivity of an access path:

– % of pages we retrieve

– e.g., Selectivity of a hash index, on range

query: 100% (no reduction!)

Faloutsos/Pavlo CMU SCS 15-415/615 16

CMU SCS

Simple Selections

• Size of result approximated as:

– (size of R) ∙ (selectivity)

• Selectivity is also called Reduction Factor.

• The estimate of reduction factors is based

on statistics – we will discuss shortly.

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Selection Options

• No Index, Unsorted Data

• No Index, Sorted Data

• B+Tree Index

• Hash Index, Equality Selection

Faloutsos/Pavlo CMU SCS 15-415/615 18

Faloutsos/Pavlo CMU - 15-415/615

7

CMU SCS

Selection Options

Faloutsos/Pavlo CMU SCS 15-415/615 19

 Scan Eq Range Ins Del

Heap B B/2 B 2 Search+1

sorted B log2B <- +m Search+B Search+B

Clust. 1.5B h <- +m Search+1 Search+1

u-tree ~B 1+h‟ <- +m‟ Search+2 Search+2

u-hash ~B ~2 B Search+2 Search+2

CMU SCS

Selection: No Index, Unsorted Data

• Must scan the whole relation.

– Cost: M

• For “Reserves” = 1000 I/Os.

Faloutsos/Pavlo CMU SCS 15-415/615 20

SELECT *
 FROM Reserves AS R
 WHERE R.rname < ‘C%’

CMU SCS

Selection: No Index, Sorted Data

• Cost of binary search + number of pages

containing results.

– Cost: log2 M + selectivity ∙ #pages

Faloutsos/Pavlo CMU SCS 15-415/615 21

SELECT *
 FROM Reserves AS R
 WHERE R.rname < ‘C%’

Faloutsos/Pavlo CMU - 15-415/615

8

CMU SCS

Selection: B+Tree Index

• With an index on selection attribute:

– Use index to find qualifying data entries,

then retrieve corresponding data records.

• Note: Hash indexes are only useful for

equality selections.

Faloutsos/Pavlo CMU SCS 15-415/615 22

SELECT *
 FROM Reserves AS R
 WHERE R.rname < ‘C%’

CMU SCS

Selection: B+Tree Index

• Cost depends on #qualifying tuples, and

clustering.

– Finding qualifying data entries (typically small)

– Plus cost of retrieving records (could be large

w/o clustering).

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

B+Tree Indexes

Faloutsos/Pavlo CMU SCS 15-415/615 24

Index entries
direct search
for data entries

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED
UNCLUSTERED

Faloutsos/Pavlo CMU - 15-415/615

9

CMU SCS

B+Tree Indexes

Faloutsos/Pavlo CMU SCS 15-415/615 25

Index entries
direct search
for data entries

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED
UNCLUSTERED

<key,rid>

rid→data

CMU SCS

Selection: B+Tree Index

• In example “Reserves” relation, if 10% of

tuples qualify (100 pages, 10,000 tuples):

– With a clustered index, cost is little more than

100 I/Os;

– If unclustered, could be up to 10,000 I/Os!

unless…

Faloutsos/Pavlo CMU SCS 15-415/615 26

SELECT *
 FROM Reserves AS R
 WHERE R.rname < ‘C%’

CMU SCS

Selection: B+Tree Index

• Refinement for unclustered indexes:

– Find qualifying data records by their rid.

– Sort rid‟s of the data records to be retrieved.

– Fetch rids in order. This ensures that each data

page is looked at just once (though # of such

pages likely to be higher than with clustering).

Faloutsos/Pavlo CMU SCS 15-415/615 27

Faloutsos/Pavlo CMU - 15-415/615

10

CMU SCS

Selection Conditions

• Q: What would you do?

• A: Try to find a selective (clustering) index.

Faloutsos/Pavlo CMU SCS 15-415/615 28

SELECT *
 FROM Reserves AS R
 WHERE (R.day < ‘2014-02-01’ AND
 R.rname = ‘Christos’)
 OR R.bid = 5
 OR R.sid = 3

CMU SCS

Selection Conditions

• Convert to conjunctive normal form (CNF):

Faloutsos/Pavlo CMU SCS 15-415/615 29

SELECT *
 FROM Reserves AS R
 WHERE (R.day < ‘2014-02-01’ AND
 R.rname = ‘Christos’)
 OR R.bid = 5
 OR R.sid = 3

(R.day<‘2014-02-01’ OR R.bid=5 OR R.sid=3)
AND

(R.rname=‘Christos’ OR R.bid=5 OR R.sid=3)

CMU SCS

Selection Conditions

• A B-tree index matches (a conjunction of)

terms that involve only attributes in a prefix

of the search key.

– Index on <a,b,c> matches (a=5 AND b=3), but

not b=3.

• For Hash index, we must have all attributes

in search key.

Faloutsos/Pavlo CMU SCS 15-415/615 30

Faloutsos/Pavlo CMU - 15-415/615

11

CMU SCS

Two Approaches to Selection

• Approach #1: Find the cheapest access

path, retrieve tuples using it, and apply any

remaining terms that don‟t match the index

• Approach #2: Use multiple indexes to find

the intersection of matching tuples.

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Approach #1

• Find the cheapest access path, retrieve

tuples using it, and apply any remaining

terms that don‟t match the index:

– Cheapest access path: An index or file scan

with fewest I/Os.

– Terms that match this index reduce the number

of tuples retrieved; other terms help discard

some retrieved tuples, but do not affect number

of tuples/pages fetched.

Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

Approach #1 – Example

• A B+ tree index on day can be used;

– then, bid=5 and sid=3 must be checked for

each retrieved tuple.

• Similarly, a hash index on <bid,sid> could

be used;

– Then, day<‘2014-02-01’ must be checked.

Faloutsos/Pavlo CMU SCS 15-415/615 33

(day<‘2014-02-01’ AND bid=5 AND sid=3)

Faloutsos/Pavlo CMU - 15-415/615

12

CMU SCS

Approach #1 – Example

• How about a B+tree on <rname,day>?

• How about a B+tree on <day,rname>?

• How about a Hash index on <day,rname>?

Faloutsos/Pavlo CMU SCS 15-415/615 34

(day<‘2014-02-01’ AND bid=5 AND sid=3)

What if we have multiple indexes?

CMU SCS

Approach #2

• Get rids from first index; rids from second

index; intersect and fetch.

• If we have 2 or more matching indexes:

– Get sets of rids of data records using each

matching index.

– Then intersect these sets of rids.

– Retrieve the records and apply any remaining

terms.

Faloutsos/Pavlo CMU SCS 15-415/615 35

CMU SCS

Approach #2 – Example

• With a B+ tree index on day and an index

on sid,

– We can retrieve rids of records satisfying

day<‘2014-02-01’ using the first,

– rids of recs satisfying sid=3 using the second,

– intersect,

– retrieve records and check bid=5.

Faloutsos/Pavlo CMU SCS 15-415/615 36

(day<‘2014-02-01’ AND bid=5 AND sid=3)

Faloutsos/Pavlo CMU - 15-415/615

13

CMU SCS

Approach #2 – Example

Faloutsos/Pavlo CMU SCS 15-415/615 37

(day<‘2014-02-01’ AND bid=5 AND sid=3)

day<‘2014-02-01’ sid=3

record ids record ids

bid=5

fetch records

CMU SCS

Approach #2 – Example

Faloutsos/Pavlo CMU SCS 15-415/615 38

(day<‘2014-02-01’ AND bid=5 AND sid=3)

day<‘2014-02-01’ sid=3

record ids record ids

bid=5

fetch records

Set intersection can be
done with bitmaps, hash
tables, or bloom filters.

CMU SCS

Summary

• For selections, we always want an index.

– B+Trees are more versatile.

– Hash indexes are faster, but only support

equality predicates.

• Last resort is to just scan entire table.

Faloutsos/Pavlo CMU SCS 15-415/615 39

Faloutsos/Pavlo CMU - 15-415/615

14

CMU SCS

Today‟s Class

• Introduction

• Selection

• Joins

Faloutsos/Pavlo CMU SCS 15-415/615 40

CMU SCS

Joins

• R⨝S is very common and thus must be

carefully optimized.

• R×S followed by a selection is inefficient

because cross-product is large.

• There are many approaches to reduce join

cost, but no one works best for all cases.

• Remember, join is associative and

commutative.

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

Faloutsos/Pavlo CMU SCS 15-415/615 42

Faloutsos/Pavlo CMU - 15-415/615

15

CMU SCS

Joins

• Join techniques we will cover:

– Nested Loop Joins

– Index Nested Loop Joins

– Sort-Merge Joins

– Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Joins

• Assume:

– M pages in R, pR tuples per page, m tuples total

– N pages in S, pS tuples per page, n tuples total

– In our examples, R is Reserves and S is Sailors.

• We will consider more complex join

conditions later.

• Cost metric: # of I/Os

Faloutsos/Pavlo CMU SCS 15-415/615 44

We will ignore
output costs

CMU SCS

First Example

• Assume that we don‟t know anything about

the tables and we don‟t have any indexes.

Faloutsos/Pavlo CMU SCS 15-415/615 45

SELECT *
 FROM Reserves R, Sailors S
 WHERE R.sid = S.sid

Faloutsos/Pavlo CMU - 15-415/615

16

CMU SCS

Simple Nested Loop Join

• Algorithm #0: Simple Nested Loop Join

Faloutsos/Pavlo CMU SCS 15-415/615 46

foreach tuple r of R
 foreach tuple s of S
 output, if they match

R(A,..)

S(A,)

CMU SCS

Simple Nested Loop Join

• Algorithm #0: Simple Nested Loop Join

Faloutsos/Pavlo CMU SCS 15-415/615 47

foreach tuple r of R
 foreach tuple s of S
 output, if they match

outer relation

inner relation
R(A,..)

S(A,)

CMU SCS

Simple Nested Loop Join

• Algorithm #0: Why is it bad?

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: M + (pR ∙ M) ∙ N

Faloutsos/Pavlo CMU SCS 15-415/615 48

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Faloutsos/Pavlo CMU - 15-415/615

17

CMU SCS

Simple Nested Loop Join

• Actual number:

– M + (pR ∙ M) ∙ N = 1000 + 100 ∙ 1000 ∙ 500

 = 50,001,000 I/Os

– At 10ms/IO, Total time ≈ 5.7 days

• What if smaller relation (S) was outer?

– Slightly better…

• What assumptions are being made here?

– 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

Simple Nested Loop Join

• Actual number:

– M + (pR ∙ M) ∙ N = 1000 + 100 ∙ 1000 ∙ 500

 = 50,001,000 I/Os

– At 10ms/IO, Total time ≈ 5.7 days

• What if smaller relation (S) was outer?

– Slightly better…

• What assumptions are being made here?

– 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCS 15-415/615 50

SSD ≈ 1.3 hours
at 0.1ms/IO

CMU SCS

Simple Nested Loop Join

• Actual number:

– M + (pR ∙ M) ∙ N = 1000 + 100 ∙ 1000 ∙ 5000

 = 50,001,000 I/Os

– At 10ms/IO, Total time ≈ 5.7 days

• What if smaller relation (S) was outer?

– Slightly better…

• What assumptions are being made here?

– 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCS 15-415/615 51

SSD ≈ 1.3 hours
at 0.1ms/IO

Faloutsos/Pavlo CMU - 15-415/615

18

CMU SCS

Simple Nested Loop Join

• Actual number:

– M + (pR ∙ M) ∙ N = 1000 + 100 ∙ 1000 ∙ 5000

 = 50,001,000 I/Os

– At 10ms/IO, Total time ≈ 5.7 days

• What if smaller relation (S) was outer?

– Slightly better…

• What assumptions are being made here?

– 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCS 15-415/615 52

SSD ≈ 1.3 hours
at 0.1ms/IO

CMU SCS

Block Nested Loop Join

• Algorithm #1: Block Nested Loop Join

Faloutsos/Pavlo CMU SCS 15-415/615 53

read block from R
 read block from S
 output, if tuples match

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Block Nested Loop Join

• Algorithm #1: Things are better.

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: M + (M∙N)

Faloutsos/Pavlo CMU SCS 15-415/615 54

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Faloutsos/Pavlo CMU - 15-415/615

19

CMU SCS

Block Nested Loop Join

• Algorithm #1: Optimizations

• Which one should be the outer relation?

– The smallest (in terms of # of pages)

Faloutsos/Pavlo CMU SCS 15-415/615 55

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Block Nested Loop Join

• Actual number:

– M + (M∙N) = 1000 + 1000 ∙ 500 = 501,000 I/Os

– At 10ms/IO, Total time ≈ 1.4 hours

Faloutsos/Pavlo CMU SCS 15-415/615 56

CMU SCS

Block Nested Loop Join

• Actual number:

– M + (M∙N) = 1000 + 1000 ∙ 500 = 501,000 I/Os

– At 10ms/IO, Total time ≈ 1.4 hours

• What if we use the smaller one as the outer

relation?

Faloutsos/Pavlo CMU SCS 15-415/615 57

SSD ≈ 50 seconds
at 0.1ms/IO

Faloutsos/Pavlo CMU - 15-415/615

20

CMU SCS

Block Nested Loop Join

• Actual number:

– N + (M∙N) = 500 + 1000 ∙ 500 = 500,500 I/Os

– At 10ms/IO, Total time ≈ 1.4 hours

• What if we have B buffers available?

– Give B-2 buffers to outer relation, 1 to inner

relation, 1 for output

Faloutsos/Pavlo CMU SCS 15-415/615 58

CMU SCS

Block Nested Loop Join

• Algorithm #1: Using multiple buffers.

Faloutsos/Pavlo CMU SCS 15-415/615 59

read B-2 blocks from R
 read block from S
 output, if tuples match

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Block Nested Loop Join

• Algorithm #1: Using multiple buffers.

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: M+ (M/(B-2) ∙N)

Faloutsos/Pavlo CMU SCS 15-415/615 60

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Faloutsos/Pavlo CMU - 15-415/615

21

CMU SCS

Block Nested Loop Join

• Algorithm #1: Using multiple buffers.

• But if the outer relation fits in memory:

– Cost: M+N

Faloutsos/Pavlo CMU SCS 15-415/615 61

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Joins

• Join techniques we will cover:

– Nested Loop Joins

– Index Nested Loop Joins

– Sort-Merge Joins

– Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 62

CMU SCS

Index Nested Loop

• Why do basic nested loop joins suck?

– For each tuple in the outer table, we have to do

a sequential scan to check for a match in the

inner table.

• A better approach is to use an index to find

inner table matches.

– We could use an existing index, or even build

one on the fly.

Faloutsos/Pavlo CMU SCS 15-415/615 63

Faloutsos/Pavlo CMU - 15-415/615

22

CMU SCS

Index Nested Loop Join

• Algorithm #2: Index Nested Loop Join

Faloutsos/Pavlo CMU SCS 15-415/615 64

foreach tuple r of R
 foreach tuple s of S, where ri==sj
 output

Index Probe
R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Index Nested Loop

• Algorithm #2: Index Nested Loop Join

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: M + m ∙ C

Faloutsos/Pavlo CMU SCS 15-415/615 65

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Look-up Cost

CMU SCS

Nested Loop Joins Guideline

• Pick the smallest table as the outer relation

– i.e., the one with the fewest pages

• Put as much of it in memory as possible

• Loop over the inner

Faloutsos/Pavlo CMU SCS 15-415/615 66

Faloutsos/Pavlo CMU - 15-415/615

23

CMU SCS

Joins

• Join techniques we will cover:

– Nested Loop Joins

– Index Nested Loop Joins

– Sort-Merge Joins

– Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 67

CMU SCS

Sort-Merge Join

• First sort both tables on joining attribute.

• Then step through each one in lock-step to

find matches.

Faloutsos/Pavlo CMU SCS 15-415/615 68

CMU SCS

Sort-Merge Join

• This algorithm is useful if:

– One or both tables are already sorted on join

attribute(s)

– Output is required to be sorted on join attributes

• The “Merge” phase can require some back

tracking if duplicate values appear in join

column.

Faloutsos/Pavlo CMU SCS 15-415/615 69

Faloutsos/Pavlo CMU - 15-415/615

24

CMU SCS

Sort-Merge Join

• Algorithm #3: Sort-Merge Join

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: (2M ∙ logM/logB) + (2N ∙ logN/logB)

 + M + N

Faloutsos/Pavlo CMU SCS 15-415/615 70

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Sort-Merge Join

• Algorithm #3: Sort-Merge Join

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: (2M ∙ logM/logB) + (2N ∙ logN/logB)

 + M + N

Faloutsos/Pavlo CMU SCS 15-415/615 71

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Sort Cost Sort Cost

Merge Cost

CMU SCS

Sort-Merge Join Example

Faloutsos/Pavlo CMU SCS 15-415/615 72

SELECT *
 FROM Reserves R, Sailors S
 WHERE R.sid = S.sid

sid bid day rname

6 103 2014-02-01 matlock

1 102 2014-02-02 macgyver

2 101 2014-02-02 a-team

1 101 2014-02-01 dallas

sid sname rating age

1 Christos 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

Sort! Sort!

Faloutsos/Pavlo CMU - 15-415/615

25

CMU SCS

Sort-Merge Join Example

Faloutsos/Pavlo CMU SCS 15-415/615 73

SELECT *
 FROM Reserves R, Sailors S
 WHERE R.sid = S.sid

sid bid day rname

1 102 2014-02-02 macgyver

1 101 2014-02-01 dallas

2 101 2014-02-02 a-team

6 103 2014-02-01 matlock

sid sname rating age

1 Christos 999 45.0

2 Tupac 32 26.0

3 Obama 50 52.0

6 Bieber 10 19.0

Merge! Merge!

✔

✔

✔

✔

CMU SCS

Sort-Merge Join Example

• With 100 buffer pages, both Reserves and

Sailors can be sorted in 2 passes:

– Cost: 7,500 I/Os

– At 10ms/IO, Total time ≈ 75 seconds

• Block Nested Loop:

– Cost: 2,500 to 15,000 I/Os

Faloutsos/Pavlo CMU SCS 15-415/615 74

CMU SCS

Sort-Merge Join Example

• With 100 buffer pages, both Reserves and

Sailors can be sorted in 2 passes:

– Cost: 7,500 I/Os

– At 10ms/IO, Total time ≈ 75 seconds

• Block Nested Loop:

– Cost: 2,500 to 15,000 I/Os

Faloutsos/Pavlo CMU SCS 15-415/615 75

SSD ≈ 0.75 seconds
at 0.1ms/IO

Faloutsos/Pavlo CMU - 15-415/615

26

CMU SCS

Sort-Merge Join

• Worst case for merging phase?

– When all of the tuples in both relations contain

the same value in the join attribute.

– Cost: (M ∙ N) + (sort cost)

• Don‟t worry kids! This is unlikely!

Faloutsos/Pavlo CMU SCS 15-415/615 76

CMU SCS

Sort-Merge Join Optimizations

• All the refinements from external sorting

• Plus overlapping of the merging of sorting

with the merging of joining.

Faloutsos/Pavlo CMU SCS 15-415/615 77

CMU SCS

Joins

• Join techniques we will cover:

– Nested Loop Joins

– Index Nested Loop Joins

– Sort-Merge Joins

– Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 78

Faloutsos/Pavlo CMU - 15-415/615

27

CMU SCS

In-Memory Hash Join

Faloutsos/Pavlo CMU SCS 15-415/615 79

R(A, ...)
S(A,)

h1

• Algorithm #4: In-Memory Hash Join

build hash table H for R
foreach tuple s of S
 output, if h(sj)∈ H

This assumes H
fits in memory!

Hash Probe

h1

⋮

Hash Table

CMU SCS

Grace Hash Join

• Hash join when tables don‟t fit in memory.

– Partition Phase: Hash both tables on the join

attribute into partitions.

– Probing Phase: Compares tuples in

corresponding partitions for each table.

• Named after the GRACE database machine.

Faloutsos/Pavlo CMU SCS 15-415/615 80

CMU SCS

Grace Hash Join

• Hash R into (0, 1, ..., „max‟) buckets

• Hash S into buckets (same hash function)

Faloutsos/Pavlo CMU SCS 15-415/615 81

R(A, ...)
S(A,)

⋮

h1

⋮

h1

Faloutsos/Pavlo CMU - 15-415/615

28

CMU SCS

Grace Hash Join

• Join each pair of matching buckets:

– Build another hash table for HS(i), and probe it

with each tuple of HR(i)

Faloutsos/Pavlo CMU SCS 15-415/615 82

R(A, ...)
S(A,)

⋮

h1

⋮

h1

HR(i) HS(i)

0

1

2

max

CMU SCS

Grace Hash Join

• Choose the (page-wise) smallest - if it fits in

memory, do a nested loop join

– Build a hash table (with h2() != h())

– And then probe it for each tuple of the other

Faloutsos/Pavlo CMU SCS 15-415/615 83

CMU SCS

Grace Hash Join

• What if HS(i) is too large to fit in memory?

– Recursive Partitioning!

– More details (overflows, hybrid hash joins)

available in textbook (Ch 14.4.3)

Faloutsos/Pavlo CMU SCS 15-415/615 84

Faloutsos/Pavlo CMU - 15-415/615

29

CMU SCS

Grace Hash Join

• Cost of hash join?

– Assume that we have enough buffers.

– Cost: 3(M + N)

• Partitioning Phase: read+write both tables

– 2(M+N) I/Os

• Probing Phase: read both tables

– M+N I/Os

Faloutsos/Pavlo CMU SCS 15-415/615 85

CMU SCS

Grace Hash Join

• Actual number:

– 3(M + N) = 3 ∙ (1000 + 500) = 4,500 I/Os

– At 10ms/IO, Total time ≈ 45 seconds

Faloutsos/Pavlo CMU SCS 15-415/615 86

SSD ≈ 0.45 seconds
at 0.1ms/IO

CMU SCS

Sort-Merge Join vs. Hash Join

• Given a minimum amount of memory both

have a cost of 3(M+N) I/Os.

• When do we want to choose one over the

other?

Faloutsos/Pavlo CMU SCS 15-415/615 87

Faloutsos/Pavlo CMU - 15-415/615

30

CMU SCS

Sort-Merge Join vs. Hash Join

• Sort-Merge:

– Less sensitive to data skew.

– Result is sorted (may help upstream operators).

– Goes faster if one or both inputs already sorted.

• Hash:

– Superior if relation sizes differ greatly.

– Shown to be highly.

Faloutsos/Pavlo CMU SCS 15-415/615 88

CMU SCS

Sort-Merge Join vs. Hash Join

• Sort-Merge:

– Less sensitive to data skew.

– Result is sorted (may help upstream operators).

– Goes faster if one or both inputs already sorted.

• Hash:

– Superior if relation sizes differ greatly.

– Shown to be highly.

Faloutsos/Pavlo CMU SCS 15-415/615 89

CMU SCS

Sort-Merge Join vs. Hash Join

• Sort-Merge:

– Less sensitive to data skew.

– Result is sorted (may help upstream operators).

– Goes faster if one or both inputs already sorted.

• Hash:

– Superior if relation sizes differ greatly.

– Shown to be highly parallelizable.

Faloutsos/Pavlo CMU SCS 15-415/615 90

Faloutsos/Pavlo CMU - 15-415/615

31

CMU SCS

Summary

• There are multiple ways to do selections if

you have different indexes.

• Joins are difficult to optimize.

– Index Nested Loop when selectivity is small.

– Sort-Merge/Hash when joining whole tables.

Faloutsos/Pavlo CMU SCS 15-415/615 91

CMU SCS

Next Class

• Set & Aggregate Operations

• Query Optimizations

• Brief Midterm Review

Faloutsos/Pavlo CMU SCS 15-415/615 92

