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CMU SCS 

Carnegie Mellon Univ. 

Dept. of Computer Science 

15-415/615 - DB Applications 

C. Faloutsos – A. Pavlo 

Lecture#15: Query Optimization 

CMU SCS 

Last Class 

• Set Operations 

• Aggregate Operations 

• Explain 
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Today‟s Class 

• History & Background 

• Relational Algebra Equivalences 

• Plan Cost Estimation 

• Plan Enumeration 

• Nested Sub-queries 
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CMU SCS 
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Cost-based Query Sub-System 

  
Query Parser 

Query Optimizer 

Plan 
Generator 

Plan Cost 
Estimator 

Catalog Manager 

Query Plan Evaluator 
Schema Statistics 

Select * 

From Blah B 

Where B.blah = blah 
Queries 

CMU SCS 

Query Optimization 

• Remember that SQL is declarative. 

– User tells the DBMS what answer they want, 

not how to get the answer. 

• There can be a big difference in 

performance based on plan is used: 

– See last week: 5.7 days vs. 45 seconds 
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Quick DB History Lesson 
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1960s – IBM IMS 

• First database system. 

• Hierarchical data model. 

• Programmer-defined physical storage format. 

• Tuple-at-a-time queries. 
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1970s – CODASYL 

• COBOL people got together and 

proposed a standard based on a 

network data model. 

• Tuple-at-a-time queries. 

– This forces the programmer to do manual query 

optimization. 
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Bachman 
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1970s – Relational Model 

• Ted Codd saw the maintenance 

overhead for IMS/Codasyl. 

• Proposed database abstraction based 

on relations: 

– Store database in simple data structures. 

– Access it through high-level language. 

– Physical storage left up to implementation. 
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Codd 
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http://en.wikipedia.org/wiki/Charles_Bachman
http://en.wikipedia.org/wiki/Edgar_Codd
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IBM System R 

• Skunkworks project at IBM Research in 

San Jose to implement Codd‟s ideas. 

• Had to figure out all of the things that we 

are discussing in this course themselves. 

• IBM never commercialized System R. 
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IBM System R 

• First implementation of a query optimizer. 

• People argued that the DBMS could never 

choose a query plan better than what a 

human could write. 

• A lot of the concepts from System R‟s 

optimizer are still used today. 
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sid bid day rname 

6 103 2014-02-01 matlock 

1 102 2014-02-02 macgyver 

2 101 2014-02-02 a-team 

1 101 2014-02-01 dallas 

Sample Database 
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SAILORS RESERVES 
sid sname rating age 

1 Christos 999 45.0 

3 Obama 50 52.0 

2 Tupac 32 26.0 

6 Bieber 10 19.0 

Sailors(sid: int, sname: varchar, rating: int, age: real) 

Reserves(sid: int, bid: int, day: date, rname: varchar) 

Boats(bid: int, bname: varchar, color: varchar) 

bid bname color 

101 The GZA red 

102 The RZA white 

103 Raekwon green 

104 O.D.B. brown 

BOATS 

http://www.hoofersailing.org/
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CMU SCS 

Query Optimization 

• Bring query in internal form (eg., parse tree) 

• … into “canonical form” (syntactic q-opt) 

• Generate alternative plans. 

• Estimate cost for each plan. 

• Pick the best one. 
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Today‟s Class 

• History & Background 

• Relational Algebra Equivalences 

• Plan Cost Estimation 

• Plan Enumeration 

• Nested Sub-queries 
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Relational Algebra Equivalences 

• Syntactic query optimization. 

• Perform selections and projections early 

• See transformation rules in textbook. 
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Equivalence of Expressions 

• Q: How to prove a transf. rule? 

 

• Use relational tuple calculus to show that 

LHS = RHS: 
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LHS RHS 

CMU SCS 

Equivalence of Expressions 
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Equivalence of Expressions 
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Equivalence of Expressions 

• Q: How to disprove a rule? 
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)2()1()21( RRRR
AAA

 

X 

A B 

Christos squirrels 
R1 

Ø 

A B 

Christos knifefights 
R2 

A B 

Christos squirrels ≠ 

CMU SCS 

Equivalence of Expressions 

• Selections: 

– Perform them early 

– Break a complex predicate, and push 

 

• Simplify a complex predicate  

– (X=Y AND Y=3) → X=3 AND Y=3 
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Equivalence of Expressions 

• Projections: 

– Perform them early (but carefully…) 

• Smaller tuples 

• Fewer tuples (if duplicates are eliminated) 

– Project out all attributes except the ones 

requested or required (e.g., joining attr.) 
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Equivalence of Expressions 

• Joins: 

– Commutative, associative 

 

 

 

• Q: How many different orderings are there 

for an n-way join? 
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Equivalence of Expressions 

• Joins: How many different orderings are 

there for an n-way join? 

• A: Catalan number ~ 4^n  

– Exhaustive enumeration: too slow. 

 

Faloutsos/Pavlo CMU SCS 15-415/615 23 

CMU SCS 

Query Optimization 

• Bring query in internal form (eg., parse tree) 

• … into “canonical form” (syntactic q-opt) 

• Generate alternative plans. 

• Estimate cost for each plan. 

• Pick the best one. 
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http://en.wikipedia.org/wiki/Catalan_number
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Cost Estimation 

• How long will a query take? 

– CPU:  Small cost; tough to estimate. 

– Disk: # of block transfers. 

• How many tuples will qualify? 

• What statistics do we need to keep? 
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Cost Estimation – Statistics 

• For each relation R we keep: 

– NR → # tuples;  

– SR → size of tuple in bytes 
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… 

SR 

#2 
#3 

#NR 

#1 

CMU SCS 

Cost Estimation – Statistics 

• For each relation R we keep: 

– NR → # tuples;  

– SR → size of tuple in bytes 

– V(A,R) → # of distinct values 

of attribute „A‟ 

– And histograms… 
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… 

SR 

#2 
#3 

#NR 

#1 
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Derivable Statistics 

• FR → max# records/block 

• BR →  # blocks 

• SC(A,R) → selection cardinality  

avg# of records with A=given  
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… 

#2 

#3 

#BR 

#1 FR 

SR 

CMU SCS 

Derivable Statistics 

• FR → max# records/block 

Blocking Factor → B/SR, where B is the 

block size in bytes. 

• BR →  # blocks → NR/FR 
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Derivable Statistics 

• SC(A,R) → Selection Cardinality 

avg# of records with A=given 

→ NR / V(A,R) 

• Note that this assumes data uniformity 

– 10,000 students, 10 colleges – how many 

students in SCS? 
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Additional Statistics 

• For index i: 

– Fi → average fanout (~50-100) 

– HTi  → # levels of index i (~2-3) 

~ log(#entries)/log(Fi) 

– LBi # → blocks at leaf level 
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HTi 
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Statistics 

• Where do we store them? 

• How often do we update them? 
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Selection Statistics 

• We saw simple predicates („name=Christos‟) 

• How about more complex predicates, like 

– „salary > 10K‟  

– „age=30 AND jobCode=“Gangstarr” ‟ 

• What is their selectivity? 
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Selections – Complex Predicates 

• Selectivity sel(P) of predicate P: 

== fraction of tuples that qualify 

sel(P) = SC(P) / NR 
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Selections – Complex Predicates 

• Assume that V(rating, SAILORS) has 5 

distinct values (i.e., 0 to 4). 

• simple predicate P: A=constant 

– sel(A=constant) = 1/V(A,R) 

– eg., sel(rating=‘2’) = 1/5 

• What if V(A,R) is unknown?? 
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rating 

count 

4 0 

CMU SCS 

• Range Query: sel(rating >= „2‟) 

• sel(A>a) = (Amax – a) / (Amax – Amin) 

 

Selections – Complex Predicates 
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rating 

count 

4 0 
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• Negation: sel(rating != „2‟) 

– sel(not P) = 1 – sel(P) 

• Observation: selectivity ≈ probability 

 

Selections – Complex Predicates 
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rating 

count 

4 0 

‘P’ 
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Selections – Complex Predicates 

• Conjunction:  

– sel(rating = „2‟ and name LIKE „C%‟) 

– sel(P1 ⋀ P2) = sel(P1) ∙ sel(P2) 

– INDEPENDENCE ASSUMPTION 
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P1 P2 
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Selections – Complex Predicates 

• Disjunction:  

– sel(rating = „2‟ or name LIKE „C%‟) 

– sel(P1 ⋁ P2) 
   = sel(P1) + sel(P2) – sel(P1 ⋁ P2) 
   = sel(P1) + sel(P2) – sel(P1) ∙ sel(P2) 

– INDEPENDENCE ASSUMPTION, again 
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Selections – Complex Predicates 

• Disjunction, in general: 

– sel(P1 or P2 or … Pn) = 

– 1 - (1- sel(P1) ) ∙ (1 - sel(P2) ) ∙ … (1 - sel(Pn)) 
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P1 P2 
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Selections – Summary 

• sel(A=constant) → 1/V(A,r)  

• sel(A>a) → (Amax – a) / (Amax – Amin) 

• sel(not P) → 1 – sel(P) 

• sel(P1 and P2) → sel(P1) ∙ sel(P2) 

• sel(P1 or P2) → sel(P1) + sel(P2) – 

                           sel(P1) ∙ sel(P2)  

• sel(P1 or ... or Pn) = 1 - (1-sel(P1)) ∙ ... ∙ 

                                  (1-sel(Pn)) 
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Joins 

• Q: Given a join of R and S, what is the 

range of possible result sizes in #of tuples? 

– Hint: what if Rcols⋂ Scols = Ø?  

– Rcols⋂ Scols is a key for R and a foreign key in 

S? 
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Joins 

• Q: Given a join of R and S, what is the 

range of possible result sizes in #of tuples? 

– Hint: what if Rcols⋂ Scols = Ø?  

– Rcols⋂ Scols is a key for R and a foreign key in 

S? 
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NR ∙ NS 

≤ NS 

CMU SCS 

Result Size Estimation for Joins 

• General case: Rcols⋂ Scols = {A} where A is 

not a key for either table. 

• Hint: for a given tuple of R,  how many 

tuples of S will it match? 
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Result Size Estimation for Joins 

• General case: Rcols⋂ Scols = {A} where A is 

not a key for either table. 

– Match each R-tuple with S-tuples: 

estSize ≈ NR ∙ NS / V(A,S) 

– Symmetrically, for S: 

estSize ≈ NR ∙ NS / V(A,R) 

• Overall:  

– estSize ≈ NR ∙ NS / max( {V(A,S), V(A,R)} ) 
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CMU SCS 

Cost Estimations 

• Our formulas are nice but we assume that 

data values are uniformly distributed. 
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Uniform Approximation of D Distribution D 

CMU SCS 

Cost Estimations 

• Our formulas are nice but we assume that 

data values are uniformly distributed. 
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Uniform Approximation of D Distribution D 

# of occurrences 

Distinct values of attribute 

CMU SCS 

Histograms 

• Allows the DBMS to have leverage better 

statistics about the data. 

Equiwidth Histogram ~ Quantiles Equiwidth Histogram 

Bucket 1 

Count=8 

Bucket 2 

Count=4 

Bucket 3 

Count=15 

Bucket 4 

Count=3 

Bucket 5 

Count=15 

Bucket 1 

Count=9 

Bucket 2 

Count=10 

Bucket 3 

Count=10 

Bucket 4 

Count=7 

Bucket 5 

Count=9 
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Query Optimization 

• Bring query in internal form (eg., parse tree) 

• … into “canonical form” (syntactic q-opt) 

• Generate alternative plans. 

– Single relation. 

– Multiple relations. 

• Estimate cost for each plan. 

• Pick the best one. 
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Plan Generation 

 

 

• What are our plan options? 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

FR 

CMU SCS 

Reminder 
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 Scan Eq Range Ins Del 

Heap B B/2 B 2 Search+1 

sorted B log2B <- +m Search+B Search+B 

Clust. 1.5B h <- +m Search+1 Search+1 

u-tree ~B 1+h‟ <- +m‟ Search+2 Search+2 

u-hash ~B ~2 B Search+2 Search+2 
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Plan Generation 

 

 

• Sequential Scan 

• Binary Search 

– if sorted & consecutive 

• Index Search 

– if an index exists 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

CMU SCS 

Sequential Scan 

 

 

• BR (worst case) 

• BR /2 (on average, if we search 

for primary key) 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

FR 

CMU SCS 

Binary Search 

 

 

• ~log(BR) + SC(A,R)/ FR  

• Extra blocks are ones that 
contain qualifying tuples 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

FR 
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Binary Search 

 

 

• ~log(BR) + SC(A,R)/ FR  

• Extra blocks are ones that 
contain qualifying tuples 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

We showed that estimating 
this is non-trivial. 

FR 

CMU SCS 

Index Search 

 

 

• Index Search: 

– levels of index +  

blocks w/ qual. tuples 
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… 

#2 

#3 

#BR 

#1 

SR 

Case#1: Primary Key 

Case#2: Secondary key – clustering index 

Case#3: Secondary key – non-clust. index 

SELECT *  
  FROM SAILORS 
WHERE rating = 10 

FR 

CMU SCS 

Index Search: Case #1 

 

 

• Primary Key 

– cost: HTi + 1 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

HTi 
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Index Search: Case #2 

 

 

• Secondary key with 

clustering index: 

– cost: HTi + SC(A,R)/FR  
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

HTi 

CMU SCS 

Index Search: Case #3 

 

 

• Secondary key with 

non-clustering index: 

– cost: HTi + SC(A,R)  
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

…
 

HTi 

CMU SCS 

Single Relation Plans 

• With no index: scan (dup-elim; sort) 

• With index: 

– Single index access path 

– Multiple index access path 

– Sorted index access path 

– Index-only access path 
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Overview – Detailed 

• Why q-opt? 

• Equivalence of expressions 

• Cost estimation 

• Plan generation 

• Plan evaluation 
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Citation 

• P. G. Selinger, M. M. Astrahan, D. D. 

Chamberlin, R. A. Lorie, and T. G. Price. 

Access path selection in a relational 

database management system. In SIGMOD 

Conference, pages 23--34, 1979. 
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Statistics for Optimization 

• NCARD(R): Cardinality of relation R in tuples 

• TCARD(R): # of pages containing tuples from R 

• P(R) = TCARD(R)/(# of non-empty pages in the 

segment) 

– If segments only held tuples from one relation there 

would be no need for P(R) 

• ICARD(I): # of distinct keys in index I 

• NINDX(I): # of  pages in index I 
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Predicate Selectivity Estimation 
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attr = value F = 1/ICARD(attr index) – if index exists 

F = 1/10 otherwise 

attr1 = attr2 F = 1/max(ICARD(I1),ICARD(I2)) or 

F = 1/ICARD(Ii) – if only index i exists, or F = 1/10 

 

val1 < attr < val2 F = (value2-value1)/(high key-low key)  

F = 1/4 otherwise 

 

expr1 or expr2 F = F(expr1)+F(expr2)–F(expr1)*F(expr2) 

expr1 and expr2 F = F(expr1) * F(expr2) 

NOT expr F = 1 – F(expr) 

CMU SCS 

Costs per Access Path Case 
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Unique index 

matching equal 

predicate 

1+1+W 

Clustered index I 

matching >=1 preds 

F(preds)*(NINDX(I)+TCARD)+W*RSICARD 

Non-clustered index I 

matching >=1 preds 

F(preds)*(NINDX(I)+NCARD)+W*RSICARD 

Segment scan TCARD/P + W*RSICARD 

CMU SCS 

Query Optimization 

• Bring query in internal form (eg., parse tree) 

• … into “canonical form” (syntactic q-opt) 

• Generate alternative plans. 

– Single relation. 

– Multiple relations. 

• Estimate cost for each plan. 

• Pick the best one. 
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Queries over Multiple Relations 

• As number of joins increases, number of 

alternative plans grows rapidly 

– We need to restrict search space. 

• Fundamental decision in System R: only 

left-deep join trees are considered. 
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Queries over Multiple Relations 

• Fundamental decision in System R: only 

left-deep join trees are considered. 
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B A 

C 

D 

B A 

C 

D 

C D B A 

CMU SCS 

Queries over Multiple Relations 

• Fundamental decision in System R: only 

left-deep join trees are considered. 
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B A 

C 

D 

B A 

C 

D 

C D B A X X 
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Queries over Multiple Relations 

• Fundamental decision in System R: only 

left-deep join trees are considered. 

– Allows for fully pipelined plans where 

intermediate results not written to temp files. 

– Not all left-deep trees are fully pipelined (e.g., 

SM join). 
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Queries over Multiple Relations 

• Enumerate the orderings (= left deep tree) 

• Enumerate the plans for each operator 

• Enumerate the access paths for each table 

 

• Use dynamic programming to save cost 

estimations. 
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CMU SCS 

(Reminder: Dynamic 

Programming) 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Cheapest flight PIT -> PVG? 

$800 
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(Reminder: Dynamic 

Programming) 
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PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Assumption: NO package deals:  cost CDG->PVG  

is always $800, no matter how reached CDG 

$800 

CMU SCS 

(Reminder: Dynamic 

Programming) 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Solution: compute partial optimal, left-to-right: 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

CMU SCS 

(Reminder: Dynamic 

Programming) 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Solution: compute partial optimal, left-to-right: 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 
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CMU SCS 

(Reminder: Dynamic 

Programming) 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Solution: compute partial optimal, left-to-right: 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

CMU SCS 

(Reminder: Dynamic 

Programming) 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Solution: compute partial optimal, left-to-right: 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

CMU SCS 

(Reminder: Dynamic 

Programming) 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

So, best price is $1,500 – which legs? 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 
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CMU SCS 

(Reminder: Dynamic 

Programming) 

Faloutsos CMU SCS 15-415/615 79 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

So, best price is $1,500 – which legs? 

A: follow the winning edges, backwards 

CMU SCS 

(Reminder: Dynamic 

Programming) 
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PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

So, best price is $1,500 – which legs? 

A: follow the winning edges, backwards 

CMU SCS 

(Reminder: Dynamic 

Programming) 
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PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

So, best price is $1,500 – which legs? 

A: follow the winning edges, backwards 
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CMU SCS 

(Reminder: Dynamic 

Programming) 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

Q: what are the states, costs and arrows, in q-opt? 

CMU SCS 

(Reminder: Dynamic 

Programming) 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

Q: what are the states, costs and arrows, in q-opt? 

A: set of intermediate result tables 

CMU SCS 

Q-Opt + Dynamic Programming 

• E.g., compute    R join S join T 
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R 

S 

T 

R join S 

T 

R 

S join T 

R join S join T … 

150 (SM) 

2,500 (NL) 

… 

… 
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CMU SCS 

Q-Opt + Dynamic Programming 

• Details: how to record the fact that, say R is 

sorted on R.a? or that the user requires 

sorted output? 

• Consider the following query: 
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SELECT * 
  FROM R, S, T 
 WHERE R.a = S.a AND S.b = T.b 
 ORDER BY R.a  

CMU SCS 

Q-Opt + Dynamic Programming 

• E.g., compute    R join S join T order by R.a 
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R 

S 

T 

R join S 

T 

R 

S join T 

R join S join T … 

150 (SM) 

2,500 (NL) 

CMU SCS 

Q-Opt + Dynamic Programming 

• E.g., compute    R join S join T order by R.a 
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R 

S 

T 

R join S 

T 

R 

S join T 

R join S join T … 

150 (SM) 

2,500 (NL) R join S join T, 

sorted R.a 

sort 

Any other changes? 
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CMU SCS 

Q-Opt + Dynamic Programming 
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R 

S 

T 

R join S 

T 

R 

S join T 

R join S join T … 

150 (SM) 

2,500 (NL) R join S join T, 

sorted R.a 

sort 

150 (SM) 
R join S (R.a) 

T 2000  (NL) 

50 (HJ) 

CMU SCS 

Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

1. Enumerate relation orderings: 

R S 

B 

S R 

B 

S B 

R x 

B S 

R x 

B R 

S 

R B 

S 

CMU SCS 

Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

1. Enumerate relation orderings: 

R S 

B 

S R 

B 

S B 

R x 

B S 

R x 

B R 

S 

R B 

S 

Prune plans with 
cross-products 
immediately! 
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CMU SCS 

Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

1. Enumerate relation orderings: 

R S 

B 

S R 

B 

S B 

R x 

B S 

R x 

B R 

S 

R B 

S 

X 

X 
Prune plans with 

cross-products 
immediately! 

CMU SCS 

Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

2. Enumerate join algorithm choices: 

R S 

B 

R S 

B 

NLJ 

NLJ 

R S 

B 

NLJ 

HJ 

R S 

B 

HJ 

HJ 

R S 

B 

HJ 

NLJ 

Do this for the 
other plans.  

CMU SCS 

Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

3. Enumerate access method choices: 

R S 

B 

NLJ 

NLJ 

R S 

B 

NLJ 

NLJ 

Heap Scan Heap Scan 

Heap Scan 

R S 

B 

NLJ 

NLJ 

Heap Scan Index Scan (R.sid) 

Heap Scan 

Do this for the 
other plans.  
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Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

4. Now we can estimate the cost of each plan. 

R S 

B 

NLJ 

NLJ 

Heap Scan Index Scan (R.sid) 

Heap Scan 

CMU SCS 

Query Optimization 

• Bring query in internal form (eg., parse tree) 

• … into “canonical form” (syntactic q-opt) 

• Generate alternative plans. 

– Single relation. 

– Multiple relations. 

– Nested sub-queries. 

• Estimate cost for each plan. 

• Pick the best one. 
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CMU SCS 

Nested Sub-Queries 

• Re-write nested queries 

• to: de-correlate and/or flatten them 
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Nested Sub-Queries 
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SELECT S.sid, MIN(R.day) 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid 
   AND R.bid = B.bid 
   AND B.color = ‘red’ 
   AND S.rating = (SELECT MAX(S2.rating) 
                     FROM Sailors S2) 
 GROUP BY S.sid 
HAVING COUNT(*) > 1 

For each sailor with the highest rating (over all 
sailors) and at least two reservations for red boats, 
find the sailor id and the earliest date on which the 
sailor has a reservation for a red boat. 

CMU SCS 

Decomposing Queries into Blocks 

• The optimizer breaks up queries into blocks 

and then concentrates on one block at a time. 
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CMU SCS 

Decomposing Queries into Blocks 
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SELECT S.sid, MIN(R.day) 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid 
   AND R.bid = B.bid 
   AND B.color = ‘red’ 
   AND S.rating = (SELECT MAX(S2.rating) 
                     FROM Sailors S2) 
 GROUP BY S.sid 
HAVING COUNT(*) > 1 

Nested Block Outer Block 
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Decomposing Queries into Blocks 

• The optimizer breaks up queries into blocks 

and then concentrates on one block at a time. 

• Split n-way joins into 2-way joins, then 

individually optimize. 
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CMU SCS 

Query Optimizer Overview 

• System R:  

– Break query in query blocks 

– Simple queries (ie., no joins): look at stats 

– n-way joins: left-deep join trees; ie., only one 

intermediate result at a time 

• Pros: smaller search space; pipelining 

• Cons: may miss optimal 

– 2-way joins: NL and sort-merge 
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CMU SCS 

Conclusions 

• Ideas to remember: 

– Syntactic q-opt – do selections early 

– Selectivity estimations (uniformity, indep.; 

histograms; join selectivity) 

– Hash join (nested loops; sort-merge) 

– Left-deep joins 

– Dynamic programming 
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