
Faloutsos/Pavlo CMU - 15-415/615

1

CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#15: Query Optimization

CMU SCS

Last Class

• Set Operations

• Aggregate Operations

• Explain

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Today‟s Class

• History & Background

• Relational Algebra Equivalences

• Plan Cost Estimation

• Plan Enumeration

• Nested Sub-queries

Faloutsos/Pavlo CMU SCS 15-415/615 3

Faloutsos/Pavlo CMU - 15-415/615

2

CMU SCS

4

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Catalog Manager

Query Plan Evaluator
Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

CMU SCS

Query Optimization

• Remember that SQL is declarative.

– User tells the DBMS what answer they want,

not how to get the answer.

• There can be a big difference in

performance based on plan is used:

– See last week: 5.7 days vs. 45 seconds

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Quick DB History Lesson

Faloutsos/Pavlo CMU SCS 15-415/615 6

Faloutsos/Pavlo CMU - 15-415/615

3

CMU SCS

1960s – IBM IMS

• First database system.

• Hierarchical data model.

• Programmer-defined physical storage format.

• Tuple-at-a-time queries.

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

1970s – CODASYL

• COBOL people got together and

proposed a standard based on a

network data model.

• Tuple-at-a-time queries.

– This forces the programmer to do manual query

optimization.

Faloutsos/Pavlo 8

Bachman

CMU SCS 15-415/615

CMU SCS

1970s – Relational Model

• Ted Codd saw the maintenance

overhead for IMS/Codasyl.

• Proposed database abstraction based

on relations:

– Store database in simple data structures.

– Access it through high-level language.

– Physical storage left up to implementation.

Faloutsos/Pavlo 9

Codd

CMU SCS 15-415/615

http://en.wikipedia.org/wiki/Charles_Bachman
http://en.wikipedia.org/wiki/Edgar_Codd

Faloutsos/Pavlo CMU - 15-415/615

4

CMU SCS

IBM System R

• Skunkworks project at IBM Research in

San Jose to implement Codd‟s ideas.

• Had to figure out all of the things that we

are discussing in this course themselves.

• IBM never commercialized System R.

Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

IBM System R

• First implementation of a query optimizer.

• People argued that the DBMS could never

choose a query plan better than what a

human could write.

• A lot of the concepts from System R‟s

optimizer are still used today.

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

sid bid day rname

6 103 2014-02-01 matlock

1 102 2014-02-02 macgyver

2 101 2014-02-02 a-team

1 101 2014-02-01 dallas

Sample Database

Faloutsos/Pavlo CMU SCS 15-415/615 12

SAILORS RESERVES
sid sname rating age

1 Christos 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

Sailors(sid: int, sname: varchar, rating: int, age: real)

Reserves(sid: int, bid: int, day: date, rname: varchar)

Boats(bid: int, bname: varchar, color: varchar)

bid bname color

101 The GZA red

102 The RZA white

103 Raekwon green

104 O.D.B. brown

BOATS

http://www.hoofersailing.org/

Faloutsos/Pavlo CMU - 15-415/615

5

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse tree)

• … into “canonical form” (syntactic q-opt)

• Generate alternative plans.

• Estimate cost for each plan.

• Pick the best one.

Faloutsos/Pavlo CMU SCS 15-415/615 13

CMU SCS

Today‟s Class

• History & Background

• Relational Algebra Equivalences

• Plan Cost Estimation

• Plan Enumeration

• Nested Sub-queries

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Relational Algebra Equivalences

• Syntactic query optimization.

• Perform selections and projections early

• See transformation rules in textbook.

Faloutsos/Pavlo CMU SCS 15-415/615 15

Faloutsos/Pavlo CMU - 15-415/615

6

CMU SCS

Equivalence of Expressions

• Q: How to prove a transf. rule?

• Use relational tuple calculus to show that

LHS = RHS:

Faloutsos/Pavlo CMU SCS 15-415/615 16

)2()1()21(RRRR
PPP

)2()1()21(RRRR
PPP

LHS RHS

CMU SCS

Equivalence of Expressions

Faloutsos/Pavlo CMU SCS 15-415/615 17

))()2())(1(

)()21(

)()21(

tPRttPRt

tPRtRt

tPRRt

LHSt

)2()1()21(RRRR
PPP

CMU SCS

Equivalence of Expressions

Faloutsos/Pavlo CMU SCS 15-415/615 18

QED

RHSt

RRt

RtRt

tPRttPRt

PP

PP

)2()1(

))2(())1((

))()2())(1(

...

)2()1()21(RRRR
PPP

Faloutsos/Pavlo CMU - 15-415/615

7

CMU SCS

Equivalence of Expressions

• Q: How to disprove a rule?

Faloutsos/Pavlo CMU SCS 15-415/615 19

)2()1()21(RRRR
AAA

X

A B

Christos squirrels
R1

Ø

A B

Christos knifefights
R2

A B

Christos squirrels ≠

CMU SCS

Equivalence of Expressions

• Selections:

– Perform them early

– Break a complex predicate, and push

• Simplify a complex predicate

– (X=Y AND Y=3) → X=3 AND Y=3

Faloutsos/Pavlo CMU SCS 15-415/615 20

))...)((...()(
21^...2^1

RR
pnpppnpp

CMU SCS

Equivalence of Expressions

• Projections:

– Perform them early (but carefully…)

• Smaller tuples

• Fewer tuples (if duplicates are eliminated)

– Project out all attributes except the ones

requested or required (e.g., joining attr.)

Faloutsos/Pavlo CMU SCS 15-415/615 21

Faloutsos/Pavlo CMU - 15-415/615

8

CMU SCS

Equivalence of Expressions

• Joins:

– Commutative, associative

• Q: How many different orderings are there

for an n-way join?

Faloutsos/Pavlo CMU SCS 15-415/615 22

RSSR

)()(TSRTSR

CMU SCS

Equivalence of Expressions

• Joins: How many different orderings are

there for an n-way join?

• A: Catalan number ~ 4^n

– Exhaustive enumeration: too slow.

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse tree)

• … into “canonical form” (syntactic q-opt)

• Generate alternative plans.

• Estimate cost for each plan.

• Pick the best one.

Faloutsos/Pavlo CMU SCS 15-415/615 24

http://en.wikipedia.org/wiki/Catalan_number

Faloutsos/Pavlo CMU - 15-415/615

9

CMU SCS

Cost Estimation

• How long will a query take?

– CPU: Small cost; tough to estimate.

– Disk: # of block transfers.

• How many tuples will qualify?

• What statistics do we need to keep?

Faloutsos/Pavlo CMU SCS 15-415/615 25

CMU SCS

Cost Estimation – Statistics

• For each relation R we keep:

– NR → # tuples;

– SR → size of tuple in bytes

Faloutsos/Pavlo CMU SCS 15-415/615 26

…

SR

#2
#3

#NR

#1

CMU SCS

Cost Estimation – Statistics

• For each relation R we keep:

– NR → # tuples;

– SR → size of tuple in bytes

– V(A,R) → # of distinct values

of attribute „A‟

– And histograms…

Faloutsos/Pavlo CMU SCS 15-415/615 27

…

SR

#2
#3

#NR

#1

Faloutsos/Pavlo CMU - 15-415/615

10

CMU SCS

Derivable Statistics

• FR → max# records/block

• BR → # blocks

• SC(A,R) → selection cardinality

avg# of records with A=given

Faloutsos/Pavlo CMU SCS 15-415/615 28

…

#2

#3

#BR

#1 FR

SR

CMU SCS

Derivable Statistics

• FR → max# records/block

Blocking Factor → B/SR, where B is the

block size in bytes.

• BR → # blocks → NR/FR

Faloutsos/Pavlo CMU SCS 15-415/615 29

CMU SCS

Derivable Statistics

• SC(A,R) → Selection Cardinality

avg# of records with A=given

→ NR / V(A,R)

• Note that this assumes data uniformity

– 10,000 students, 10 colleges – how many

students in SCS?

Faloutsos/Pavlo CMU SCS 15-415/615 30

Faloutsos/Pavlo CMU - 15-415/615

11

CMU SCS

Additional Statistics

• For index i:

– Fi → average fanout (~50-100)

– HTi → # levels of index i (~2-3)

~ log(#entries)/log(Fi)

– LBi # → blocks at leaf level

Faloutsos/Pavlo CMU SCS 15-415/615 31

HTi

CMU SCS

Statistics

• Where do we store them?

• How often do we update them?

Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

Selection Statistics

• We saw simple predicates („name=Christos‟)

• How about more complex predicates, like

– „salary > 10K‟

– „age=30 AND jobCode=“Gangstarr” ‟

• What is their selectivity?

Faloutsos/Pavlo CMU SCS 15-415/615 33

Faloutsos/Pavlo CMU - 15-415/615

12

CMU SCS

Selections – Complex Predicates

• Selectivity sel(P) of predicate P:

== fraction of tuples that qualify

sel(P) = SC(P) / NR

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU SCS

Selections – Complex Predicates

• Assume that V(rating, SAILORS) has 5

distinct values (i.e., 0 to 4).

• simple predicate P: A=constant

– sel(A=constant) = 1/V(A,R)

– eg., sel(rating=‘2’) = 1/5

• What if V(A,R) is unknown??

Faloutsos/Pavlo CMU SCS 15-415/615 35

rating

count

4 0

CMU SCS

• Range Query: sel(rating >= „2‟)

• sel(A>a) = (Amax – a) / (Amax – Amin)

Selections – Complex Predicates

Faloutsos/Pavlo CMU SCS 15-415/615 36

rating

count

4 0

Faloutsos/Pavlo CMU - 15-415/615

13

CMU SCS

• Negation: sel(rating != „2‟)

– sel(not P) = 1 – sel(P)

• Observation: selectivity ≈ probability

Selections – Complex Predicates

Faloutsos/Pavlo CMU SCS 15-415/615 37

rating

count

4 0

‘P’

CMU SCS

Selections – Complex Predicates

• Conjunction:

– sel(rating = „2‟ and name LIKE „C%‟)

– sel(P1 ⋀ P2) = sel(P1) ∙ sel(P2)

– INDEPENDENCE ASSUMPTION

Faloutsos/Pavlo CMU SCS 15-415/615 38

P1 P2

CMU SCS

Selections – Complex Predicates

• Disjunction:

– sel(rating = „2‟ or name LIKE „C%‟)

– sel(P1 ⋁ P2)
 = sel(P1) + sel(P2) – sel(P1 ⋁ P2)
 = sel(P1) + sel(P2) – sel(P1) ∙ sel(P2)

– INDEPENDENCE ASSUMPTION, again

Faloutsos/Pavlo CMU SCS 15-415/615 39

Faloutsos/Pavlo CMU - 15-415/615

14

CMU SCS

Selections – Complex Predicates

• Disjunction, in general:

– sel(P1 or P2 or … Pn) =

– 1 - (1- sel(P1)) ∙ (1 - sel(P2)) ∙ … (1 - sel(Pn))

Faloutsos/Pavlo CMU SCS 15-415/615 40

P1 P2

CMU SCS

Selections – Summary

• sel(A=constant) → 1/V(A,r)

• sel(A>a) → (Amax – a) / (Amax – Amin)

• sel(not P) → 1 – sel(P)

• sel(P1 and P2) → sel(P1) ∙ sel(P2)

• sel(P1 or P2) → sel(P1) + sel(P2) –

 sel(P1) ∙ sel(P2)

• sel(P1 or ... or Pn) = 1 - (1-sel(P1)) ∙ ... ∙

 (1-sel(Pn))

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

Joins

• Q: Given a join of R and S, what is the

range of possible result sizes in #of tuples?

– Hint: what if Rcols⋂ Scols = Ø?

– Rcols⋂ Scols is a key for R and a foreign key in

S?

Faloutsos/Pavlo CMU SCS 15-415/615 42

Faloutsos/Pavlo CMU - 15-415/615

15

CMU SCS

Joins

• Q: Given a join of R and S, what is the

range of possible result sizes in #of tuples?

– Hint: what if Rcols⋂ Scols = Ø?

– Rcols⋂ Scols is a key for R and a foreign key in

S?

Faloutsos/Pavlo CMU SCS 15-415/615 43

NR ∙ NS

≤ NS

CMU SCS

Result Size Estimation for Joins

• General case: Rcols⋂ Scols = {A} where A is

not a key for either table.

• Hint: for a given tuple of R, how many

tuples of S will it match?

Faloutsos/Pavlo CMU SCS 15-415/615 44

CMU SCS

Result Size Estimation for Joins

• General case: Rcols⋂ Scols = {A} where A is

not a key for either table.

– Match each R-tuple with S-tuples:

estSize ≈ NR ∙ NS / V(A,S)

– Symmetrically, for S:

estSize ≈ NR ∙ NS / V(A,R)

• Overall:

– estSize ≈ NR ∙ NS / max({V(A,S), V(A,R)})

Faloutsos/Pavlo CMU SCS 15-415/615 45

Faloutsos/Pavlo CMU - 15-415/615

16

CMU SCS

Cost Estimations

• Our formulas are nice but we assume that

data values are uniformly distributed.

Faloutsos/Pavlo CMU SCS 15-415/615 46

Uniform Approximation of D Distribution D

CMU SCS

Cost Estimations

• Our formulas are nice but we assume that

data values are uniformly distributed.

Faloutsos/Pavlo CMU SCS 15-415/615 47

Uniform Approximation of D Distribution D

of occurrences

Distinct values of attribute

CMU SCS

Histograms

• Allows the DBMS to have leverage better

statistics about the data.

Equiwidth Histogram ~ Quantiles Equiwidth Histogram

Bucket 1

Count=8

Bucket 2

Count=4

Bucket 3

Count=15

Bucket 4

Count=3

Bucket 5

Count=15

Bucket 1

Count=9

Bucket 2

Count=10

Bucket 3

Count=10

Bucket 4

Count=7

Bucket 5

Count=9

Faloutsos/Pavlo CMU - 15-415/615

17

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse tree)

• … into “canonical form” (syntactic q-opt)

• Generate alternative plans.

– Single relation.

– Multiple relations.

• Estimate cost for each plan.

• Pick the best one.

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

Plan Generation

• What are our plan options?

Faloutsos/Pavlo CMU SCS 15-415/615 50

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

FR

CMU SCS

Reminder

Faloutsos/Pavlo CMU SCS 15-415/615 51

 Scan Eq Range Ins Del

Heap B B/2 B 2 Search+1

sorted B log2B <- +m Search+B Search+B

Clust. 1.5B h <- +m Search+1 Search+1

u-tree ~B 1+h‟ <- +m‟ Search+2 Search+2

u-hash ~B ~2 B Search+2 Search+2

Faloutsos/Pavlo CMU - 15-415/615

18

CMU SCS

Plan Generation

• Sequential Scan

• Binary Search

– if sorted & consecutive

• Index Search

– if an index exists

Faloutsos/Pavlo CMU SCS 15-415/615 52

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

CMU SCS

Sequential Scan

• BR (worst case)

• BR /2 (on average, if we search

for primary key)

Faloutsos/Pavlo CMU SCS 15-415/615 53

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

FR

CMU SCS

Binary Search

• ~log(BR) + SC(A,R)/ FR

• Extra blocks are ones that
contain qualifying tuples

Faloutsos/Pavlo CMU SCS 15-415/615 54

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

FR

Faloutsos/Pavlo CMU - 15-415/615

19

CMU SCS

Binary Search

• ~log(BR) + SC(A,R)/ FR

• Extra blocks are ones that
contain qualifying tuples

Faloutsos/Pavlo CMU SCS 15-415/615 55

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

We showed that estimating
this is non-trivial.

FR

CMU SCS

Index Search

• Index Search:

– levels of index +

blocks w/ qual. tuples

Faloutsos/Pavlo CMU SCS 15-415/615 56

…

#2

#3

#BR

#1

SR

Case#1: Primary Key

Case#2: Secondary key – clustering index

Case#3: Secondary key – non-clust. index

SELECT *
 FROM SAILORS
WHERE rating = 10

FR

CMU SCS

Index Search: Case #1

• Primary Key

– cost: HTi + 1

Faloutsos/Pavlo CMU SCS 15-415/615 57

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

HTi

Faloutsos/Pavlo CMU - 15-415/615

20

CMU SCS

Index Search: Case #2

• Secondary key with

clustering index:

– cost: HTi + SC(A,R)/FR

Faloutsos/Pavlo CMU SCS 15-415/615 58

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

HTi

CMU SCS

Index Search: Case #3

• Secondary key with

non-clustering index:

– cost: HTi + SC(A,R)

Faloutsos/Pavlo CMU SCS 15-415/615 59

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

…

HTi

CMU SCS

Single Relation Plans

• With no index: scan (dup-elim; sort)

• With index:

– Single index access path

– Multiple index access path

– Sorted index access path

– Index-only access path

Faloutsos/Pavlo CMU SCS 15-415/615 60

Faloutsos/Pavlo CMU - 15-415/615

21

CMU SCS

Overview – Detailed

• Why q-opt?

• Equivalence of expressions

• Cost estimation

• Plan generation

• Plan evaluation

Faloutsos/Pavlo CMU SCS 15-415/615 61

CMU SCS

Citation

• P. G. Selinger, M. M. Astrahan, D. D.

Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational

database management system. In SIGMOD

Conference, pages 23--34, 1979.

Faloutsos/Pavlo CMU SCS 15-415/615 62

CMU SCS

Statistics for Optimization

• NCARD(R): Cardinality of relation R in tuples

• TCARD(R): # of pages containing tuples from R

• P(R) = TCARD(R)/(# of non-empty pages in the

segment)

– If segments only held tuples from one relation there

would be no need for P(R)

• ICARD(I): # of distinct keys in index I

• NINDX(I): # of pages in index I

Faloutsos/Pavlo CMU SCS 15-415/615 63

Faloutsos/Pavlo CMU - 15-415/615

22

CMU SCS

Predicate Selectivity Estimation

Faloutsos/Pavlo CMU SCS 15-415/615 64

attr = value F = 1/ICARD(attr index) – if index exists

F = 1/10 otherwise

attr1 = attr2 F = 1/max(ICARD(I1),ICARD(I2)) or

F = 1/ICARD(Ii) – if only index i exists, or F = 1/10

val1 < attr < val2 F = (value2-value1)/(high key-low key)

F = 1/4 otherwise

expr1 or expr2 F = F(expr1)+F(expr2)–F(expr1)*F(expr2)

expr1 and expr2 F = F(expr1) * F(expr2)

NOT expr F = 1 – F(expr)

CMU SCS

Costs per Access Path Case

Faloutsos/Pavlo CMU SCS 15-415/615 65

Unique index

matching equal

predicate

1+1+W

Clustered index I

matching >=1 preds

F(preds)*(NINDX(I)+TCARD)+W*RSICARD

Non-clustered index I

matching >=1 preds

F(preds)*(NINDX(I)+NCARD)+W*RSICARD

Segment scan TCARD/P + W*RSICARD

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse tree)

• … into “canonical form” (syntactic q-opt)

• Generate alternative plans.

– Single relation.

– Multiple relations.

• Estimate cost for each plan.

• Pick the best one.

Faloutsos/Pavlo CMU SCS 15-415/615 66

Faloutsos/Pavlo CMU - 15-415/615

23

CMU SCS

Queries over Multiple Relations

• As number of joins increases, number of

alternative plans grows rapidly

– We need to restrict search space.

• Fundamental decision in System R: only

left-deep join trees are considered.

Faloutsos/Pavlo CMU SCS 15-415/615 67

CMU SCS

Queries over Multiple Relations

• Fundamental decision in System R: only

left-deep join trees are considered.

Faloutsos/Pavlo CMU SCS 15-415/615 68

B A

C

D

B A

C

D

C D B A

CMU SCS

Queries over Multiple Relations

• Fundamental decision in System R: only

left-deep join trees are considered.

Faloutsos/Pavlo CMU SCS 15-415/615 69

B A

C

D

B A

C

D

C D B A X X

Faloutsos/Pavlo CMU - 15-415/615

24

CMU SCS

Queries over Multiple Relations

• Fundamental decision in System R: only

left-deep join trees are considered.

– Allows for fully pipelined plans where

intermediate results not written to temp files.

– Not all left-deep trees are fully pipelined (e.g.,

SM join).

Faloutsos/Pavlo CMU SCS 15-415/615 70

CMU SCS

Queries over Multiple Relations

• Enumerate the orderings (= left deep tree)

• Enumerate the plans for each operator

• Enumerate the access paths for each table

• Use dynamic programming to save cost

estimations.

Faloutsos/Pavlo CMU SCS 15-415/615 71

CMU SCS

(Reminder: Dynamic

Programming)

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Cheapest flight PIT -> PVG?

$800

Faloutsos/Pavlo CMU - 15-415/615

25

CMU SCS

(Reminder: Dynamic

Programming)

Faloutsos CMU SCS 15-415/615 73

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Assumption: NO package deals: cost CDG->PVG

is always $800, no matter how reached CDG

$800

CMU SCS

(Reminder: Dynamic

Programming)

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

CMU SCS

(Reminder: Dynamic

Programming)

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

Faloutsos/Pavlo CMU - 15-415/615

26

CMU SCS

(Reminder: Dynamic

Programming)

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

CMU SCS

(Reminder: Dynamic

Programming)

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

CMU SCS

(Reminder: Dynamic

Programming)

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

So, best price is $1,500 – which legs?

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

Faloutsos/Pavlo CMU - 15-415/615

27

CMU SCS

(Reminder: Dynamic

Programming)

Faloutsos CMU SCS 15-415/615 79

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

CMU SCS

(Reminder: Dynamic

Programming)

Faloutsos CMU SCS 15-415/615 80

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

CMU SCS

(Reminder: Dynamic

Programming)

Faloutsos CMU SCS 15-415/615 81

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

Faloutsos/Pavlo CMU - 15-415/615

28

CMU SCS

(Reminder: Dynamic

Programming)

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

Q: what are the states, costs and arrows, in q-opt?

CMU SCS

(Reminder: Dynamic

Programming)

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

Q: what are the states, costs and arrows, in q-opt?

A: set of intermediate result tables

CMU SCS

Q-Opt + Dynamic Programming

• E.g., compute R join S join T

Faloutsos CMU SCS 15-415/615 84

R

S

T

R join S

T

R

S join T

R join S join T …

150 (SM)

2,500 (NL)

…

…

Faloutsos/Pavlo CMU - 15-415/615

29

CMU SCS

Q-Opt + Dynamic Programming

• Details: how to record the fact that, say R is

sorted on R.a? or that the user requires

sorted output?

• Consider the following query:

Faloutsos/Pavlo CMU SCS 15-415/615 85

SELECT *
 FROM R, S, T
 WHERE R.a = S.a AND S.b = T.b
 ORDER BY R.a

CMU SCS

Q-Opt + Dynamic Programming

• E.g., compute R join S join T order by R.a

Faloutsos/Pavlo CMU SCS 15-415/615 86

R

S

T

R join S

T

R

S join T

R join S join T …

150 (SM)

2,500 (NL)

CMU SCS

Q-Opt + Dynamic Programming

• E.g., compute R join S join T order by R.a

Faloutsos/Pavlo CMU SCS 15-415/615 87

R

S

T

R join S

T

R

S join T

R join S join T …

150 (SM)

2,500 (NL) R join S join T,

sorted R.a

sort

Any other changes?

Faloutsos/Pavlo CMU - 15-415/615

30

CMU SCS

Q-Opt + Dynamic Programming

Faloutsos/Pavlo CMU SCS 15-415/615 88

R

S

T

R join S

T

R

S join T

R join S join T …

150 (SM)

2,500 (NL) R join S join T,

sorted R.a

sort

150 (SM)
R join S (R.a)

T 2000 (NL)

50 (HJ)

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 89

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

1. Enumerate relation orderings:

R S

B

S R

B

S B

R x

B S

R x

B R

S

R B

S

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 90

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

1. Enumerate relation orderings:

R S

B

S R

B

S B

R x

B S

R x

B R

S

R B

S

Prune plans with
cross-products
immediately!

Faloutsos/Pavlo CMU - 15-415/615

31

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 91

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

1. Enumerate relation orderings:

R S

B

S R

B

S B

R x

B S

R x

B R

S

R B

S

X

X
Prune plans with

cross-products
immediately!

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 92

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

2. Enumerate join algorithm choices:

R S

B

R S

B

NLJ

NLJ

R S

B

NLJ

HJ

R S

B

HJ

HJ

R S

B

HJ

NLJ

Do this for the
other plans.

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 93

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

3. Enumerate access method choices:

R S

B

NLJ

NLJ

R S

B

NLJ

NLJ

Heap Scan Heap Scan

Heap Scan

R S

B

NLJ

NLJ

Heap Scan Index Scan (R.sid)

Heap Scan

Do this for the
other plans.

Faloutsos/Pavlo CMU - 15-415/615

32

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 94

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

4. Now we can estimate the cost of each plan.

R S

B

NLJ

NLJ

Heap Scan Index Scan (R.sid)

Heap Scan

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse tree)

• … into “canonical form” (syntactic q-opt)

• Generate alternative plans.

– Single relation.

– Multiple relations.

– Nested sub-queries.

• Estimate cost for each plan.

• Pick the best one.

Faloutsos/Pavlo CMU SCS 15-415/615 95

CMU SCS

Nested Sub-Queries

• Re-write nested queries

• to: de-correlate and/or flatten them

Faloutsos/Pavlo CMU SCS 15-415/615 96

Faloutsos/Pavlo CMU - 15-415/615

33

CMU SCS

Nested Sub-Queries

Faloutsos/Pavlo CMU SCS 15-415/615 97

SELECT S.sid, MIN(R.day)
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = ‘red’
 AND S.rating = (SELECT MAX(S2.rating)
 FROM Sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

For each sailor with the highest rating (over all
sailors) and at least two reservations for red boats,
find the sailor id and the earliest date on which the
sailor has a reservation for a red boat.

CMU SCS

Decomposing Queries into Blocks

• The optimizer breaks up queries into blocks

and then concentrates on one block at a time.

Faloutsos/Pavlo CMU SCS 15-415/615 98

CMU SCS

Decomposing Queries into Blocks

Faloutsos/Pavlo CMU SCS 15-415/615 99

SELECT S.sid, MIN(R.day)
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = ‘red’
 AND S.rating = (SELECT MAX(S2.rating)
 FROM Sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Nested Block Outer Block

Faloutsos/Pavlo CMU - 15-415/615

34

CMU SCS

Decomposing Queries into Blocks

• The optimizer breaks up queries into blocks

and then concentrates on one block at a time.

• Split n-way joins into 2-way joins, then

individually optimize.

Faloutsos/Pavlo CMU SCS 15-415/615 100

CMU SCS

Query Optimizer Overview

• System R:

– Break query in query blocks

– Simple queries (ie., no joins): look at stats

– n-way joins: left-deep join trees; ie., only one

intermediate result at a time

• Pros: smaller search space; pipelining

• Cons: may miss optimal

– 2-way joins: NL and sort-merge

Faloutsos/Pavlo CMU SCS 15-415/615 101

CMU SCS

Conclusions

• Ideas to remember:

– Syntactic q-opt – do selections early

– Selectivity estimations (uniformity, indep.;

histograms; join selectivity)

– Hash join (nested loops; sort-merge)

– Left-deep joins

– Dynamic programming

Faloutsos/Pavlo CMU SCS 15-415/615 103

