
Faloutsos & Pavlo SCS 15-415/615

1

CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

Lecture #16: Schema Refinement &
Normalization - Functional Dependencies

(R&G, ch. 19)

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 2

Functional dependencies

•  motivation: ‘good’ tables

takes1 (ssn, c-id, grade, name, address)

‘good’ or ‘bad’?

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 3

Functional dependencies

takes1 (ssn, c-id, grade, name, address)

Faloutsos & Pavlo SCS 15-415/615

2

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 4

Functional dependencies

‘Bad’ – Q: why?

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 5

Functional Dependencies

•  A: Redundancy
–  space
–  inconsistencies
–  insertion/deletion anomalies (later…)

•  Q: What caused the problem?

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 6

Functional dependencies

•  A: ‘name’ depends on the ‘ssn’
•  define ‘depends’

Faloutsos & Pavlo SCS 15-415/615

3

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 7

Overview

•  Functional dependencies
– why
–  definition
– Armstrong’s “axioms”
–  closure and cover

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 8

Functional dependencies

Definition:
 ‘a’ functionally determines ‘b’

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 9

Functional dependencies

Informally: ‘if you know ‘a’, there is only one
‘b’ to match’

Faloutsos & Pavlo SCS 15-415/615

4

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 10

Functional dependencies

formally:

if two tuples agree on the ‘X’ attribute,
the *must* agree on the ‘Y’ attribute, too
(eg., if ssn is the same, so should address)

€

X →Y ⇒ (t1[x] = t2 [x]⇒ t1[y] = t2 [y])

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 11

Functional dependencies

•  ‘X’, ‘Y’ can be sets of attributes
•  Q: other examples?? (no repeat courses)

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 12

Functional dependencies

•  ssn -> name, address
•  ssn, c-id -> grade

Faloutsos & Pavlo SCS 15-415/615

5

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 13

Overview

•  Functional dependencies
– why
–  definition
– Armstrong’s “axioms”
–  closure and cover

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 14

Master goal

•  Given tables
– STUDENT(ssn, ….)
– TAKES(ssn, cid, …)

•  And FD (ssn -> …, cid-> …)
•  WRITE CODE
•  To automatically generate ‘good’ schemas

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 15

Functional dependencies

Closure of a set of FD: all implied FDs - eg.:
ssn -> name, address
ssn, c-id -> grade

imply
ssn, c-id -> grade, name, address
ssn, c-id -> ssn

Faloutsos & Pavlo SCS 15-415/615

6

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 16

FDs - Armstrong’s axioms

Closure of a set of FD: all implied FDs - eg.:
ssn -> name, address
ssn, c-id -> grade

how to find all the implied ones, systematically?

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 17

FDs - Armstrong’s axioms

“Armstrong’s axioms” guarantee soundness and
completeness:

•  Reflexivity:
 eg., ssn, name -> ssn
•  Augmentation

 eg., ssn->name then ssn,grade-> name,grade

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 18

FDs - Armstrong’s axioms

•  Transitivity

 ssn -> address
 address -> county-tax-rate
THEN:

 ssn -> county-tax-rate

Faloutsos & Pavlo SCS 15-415/615

7

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 19

FDs - Armstrong’s axioms

Reflexivity:
Augmentation:
Transitivity:

‘sound’ and ‘complete’

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 20

FDs - Armstrong’s axioms

Additional rules:
•  Union

•  Decomposition
•  Pseudo-transitivity

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 21

FDs - Armstrong’s axioms

Prove ‘Union’ from three axioms:

Faloutsos & Pavlo SCS 15-415/615

8

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 22

FDs - Armstrong’s axioms

Prove ‘Union’ from three axioms:

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 23

FDs - Armstrong’s axioms

Prove Pseudo-transitivity:

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 24

FDs - Armstrong’s axioms

Prove Decomposition

Faloutsos & Pavlo SCS 15-415/615

9

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 25

Overview

•  Functional dependencies
– why
–  definition
– Armstrong’s “axioms”
–  closure and cover

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 26

FDs - Closure F+

Given a set F of FD (on a schema)
F+ is the set of all implied FD. Eg.,
takes(ssn, c-id, grade, name, address)

 ssn, c-id -> grade
 ssn-> name, address }F

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 27

FDs - Closure F+

 ssn, c-id -> grade
 ssn-> name, address
 ssn-> ssn
 ssn, c-id-> address
 c-id, address-> c-id
 ...

F+

Faloutsos & Pavlo SCS 15-415/615

10

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 28

FDs - Closure A+

Given a set F of FD (on a schema)
A+ is the set of all attributes determined by A:
takes(ssn, c-id, grade, name, address)

 ssn, c-id -> grade
 ssn-> name, address

{ssn}+ =??

}F

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 29

FDs - Closure A+

takes(ssn, c-id, grade, name, address)
 ssn, c-id -> grade

 ssn-> name, address

{ssn}+ ={ssn,
 name, address }

}F

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 30

FDs - Closure A+

takes(ssn, c-id, grade, name, address)
 ssn, c-id -> grade

 ssn-> name, address

{c-id}+ = ??

}F

Faloutsos & Pavlo SCS 15-415/615

11

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 31

FDs - Closure A+

takes(ssn, c-id, grade, name, address)
 ssn, c-id -> grade

 ssn-> name, address

{c-id, ssn}+ = ??

}F

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 32

FDs - Closure A+

if A+ = {all attributes of table}
then ‘A’ is a superkey

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 33

FDs - A+ closure - not in book
Diagrams

AB->C (1)
A->BC (2)
B->C (3)
A->B (4)

C A

B

Faloutsos & Pavlo SCS 15-415/615

12

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 34

FDs - ‘canonical cover’ Fc

Given a set F of FD (on a schema)
Fc is a minimal set of equivalent FD. Eg.,
takes(ssn, c-id, grade, name, address)

 ssn, c-id -> grade
 ssn-> name, address
 ssn,name-> name, address
 ssn, c-id-> grade, name

F

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 35

FDs - ‘canonical cover’ Fc

 ssn, c-id -> grade
 ssn-> name, address
 ssn,name-> name, address
 ssn, c-id-> grade, name

F

Fc

takes(ssn, c-id, grade, name, address)

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 36

FDs - ‘canonical cover’ Fc

•  why do we need it?
•  define it properly
•  compute it efficiently

Faloutsos & Pavlo SCS 15-415/615

13

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 37

FDs - ‘canonical cover’ Fc

•  why do we need it?
–  easier to compute candidate keys

•  define it properly
•  compute it efficiently

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 38

FDs - ‘canonical cover’ Fc

•  define it properly - three properties
–  1) the RHS of every FD is a single attribute
–  2) the closure of Fc is identical to the closure

of F (ie., Fc and F are equivalent)
–  3) Fc is minimal (ie., if we eliminate any

attribute from the LHS or RHS of a FD,
property #2 is violated

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 39

#3: we need to eliminate ‘extraneous’
attributes. An attribute is ‘extraneous if
–  the closure is the same, before and after its

elimination
–  or if F-before implies F-after and vice-versa

FDs - ‘canonical cover’ Fc

Faloutsos & Pavlo SCS 15-415/615

14

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 40

FDs - ‘canonical cover’ Fc

 ssn, c-id -> grade
 ssn-> name, address
 ssn,name-> name, address
 ssn, c-id-> grade, name

F

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 41

FDs - ‘canonical cover’ Fc

 Algorithm:
•  examine each FD; drop extraneous LHS or

RHS attributes; or redundant FDs
•  make sure that FDs have a single attribute in

their RHS
•  repeat until no change

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 42

FDs - ‘canonical cover’ Fc

 Trace algo for
AB->C (1)
A->BC (2)
B->C (3)
A->B (4)

Faloutsos & Pavlo SCS 15-415/615

15

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 43

FDs - ‘canonical cover’ Fc

 Trace algo for
AB->C (1)
A->BC (2)
B->C (3)
A->B (4)
 split (2):

AB->C (1)
A->B (2’)
A->C (2’’)
B->C (3)
A->B (4)

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 44

FDs - ‘canonical cover’ Fc

AB->C (1)
A->B (2’)
A->C (2’’)
B->C (3)
A->B (4)

AB->C (1)

A->C (2’’)
B->C (3)
A->B (4)

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 45

FDs - ‘canonical cover’ Fc

AB->C (1)

A->C (2’’)
B->C (3)
A->B (4)

(2’’): redundant (implied
by (4), (3) and transitivity

AB->C (1)

B->C (3)
A->B (4)

Faloutsos & Pavlo SCS 15-415/615

16

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 46

FDs - ‘canonical cover’ Fc

B->C (1’)

B->C (3)
A->B (4)

AB->C (1)

B->C (3)
A->B (4)

in (1), ‘A’ is extraneous:
(1),(3),(4) imply
(1’),(3),(4), and vice versa

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 47

FDs - ‘canonical cover’ Fc

B->C (3)
A->B (4)

B->C (1’)

B->C (3)
A->B (4)

•  nothing is extraneous

•  all RHS are single attributes

•  final and original set of FDs
are equivalent (same closure)

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 48

FDs - ‘canonical cover’ Fc
AFTER

B->C (3)
A->B (4)

 BEFORE
AB->C (1)
A->BC (2)
B->C (3)
A->B (4)

R(A,B,C)

Faloutsos & Pavlo SCS 15-415/615

17

CMU SCS

Faloutsos & Pavlo SCS 15-415/615 49

Overview - conclusions

•  Functional dependencies
– why
–  definition
– Armstrong’s “axioms”
–  closure and cover

