
Faloutsos & Pavlo CMU SCS 15-415/615

1

CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

Lecture #17: Schema Refinement &
Normalization - Normal Forms

(R&G, ch. 19)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 2

Overview - detailed

•  DB design and normalization
–  pitfalls of bad design
–  decomposition
–  normal forms

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 3

•  Design ‘good’ tables
–  sub-goal#1: define what ‘good’ means
–  sub-goal#2: fix ‘bad’ tables

•  in short: “we want tables where the
attributes depend on the primary key, on the
whole key, and nothing but the key”

•  Let’s see why, and how:

Goal

Faloutsos & Pavlo CMU SCS 15-415/615

2

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 4

Pitfalls

takes1 (ssn, c-id, grade, name, address)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 5

Pitfalls

‘Bad’ - why? because: ssn->address, name

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 6

Pitfalls?

•  Redundancy
–  ??
–  ??

Faloutsos & Pavlo CMU SCS 15-415/615

3

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 7

Pitfalls

•  Redundancy
–  space
–  (inconsistencies)
–  insertion/deletion anomalies:

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 8

Pitfalls

•  insertion anomaly:
–  “jones” registers, but takes no class - no place

to store his address!

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 9

Pitfalls

•  deletion anomaly:
–  delete the last record of ‘smith’ (we lose his

address!)

Faloutsos & Pavlo CMU SCS 15-415/615

4

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 10

Solution: decomposition

•  split offending table in two (or more), eg.:

? ?

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 11

Overview - detailed

•  DB design and normalization
–  pitfalls of bad design
–  decomposition

•  lossless join decomp.
•  dependency preserving

–  normal forms

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 12

Decompositions

There are ‘bad’ decompositions. Good ones are:
•  lossless and
•  dependency preserving

Faloutsos & Pavlo CMU SCS 15-415/615

5

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 13

Decompositions - lossy:
R1(ssn, grade, name, address) R2(c-id, grade)

ssn->name, address

ssn, c-id -> grade

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 14

Decompositions - lossy:
can not recover original table with a join!

ssn->name, address

ssn, c-id -> grade

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 15

Decompositions - overview

There are ‘bad’ decompositions. Good ones are:
•  lossless and
•  dependency preserving

MUST HAVE

Nice to have

Faloutsos & Pavlo CMU SCS 15-415/615

6

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 16

Decompositions

example of non-dependency preserving

S# -> address, status

address -> status

S# -> address S# -> status

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 18

Decompositions - overview

There are ‘bad’ decompositions. Good ones are:
•  #1) lossless and
•  #2) dependency preserving

MUST HAVE

Nice to have

How to automatically determine #1 and #2?

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 19

Decompositions - lossless

Definition:
consider schema R, with FD ‘F’. R1, R2 is a

lossless join decomposition of R if we
always have:

An easier criterion?

Faloutsos & Pavlo CMU SCS 15-415/615

7

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 20

Decomposition - lossless

Theorem: lossless join decomposition if the
joining attribute is a superkey in at least one
of the new tables

Formally:

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 21

Decomposition - lossless
example:

ssn->name, address

ssn, c-id -> grade

ssn->name, address ssn, c-id -> grade

R1 R2

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 22

Overview - detailed

•  DB design and normalization
–  pitfalls of bad design
–  decomposition

•  lossless join decomp.
•  dependency preserving

–  normal forms

Faloutsos & Pavlo CMU SCS 15-415/615

8

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 23

Decomposition - depend. pres.
informally: we don’t want the original FDs to

span two tables - counter-example:

S# -> address, status

address -> status

S# -> address S# -> status

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 24

Decomposition - depend. pres.
informally: we don’t want the original FDs to

span two tables - counter-example:

S# -> address, status

address -> status

S# -> address S# -> status

(Q: Why is it an issue?)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 25

Decomposition - depend. pres.
informally: we don’t want the original FDs to

span two tables - counter-example:

S# -> address, status

address -> status

S# -> address S# -> status

(Q: Why is it an issue?)
(A: insert [999, Pitts., E])

Faloutsos & Pavlo CMU SCS 15-415/615

9

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 26

Decomposition - depend. pres.
informally: we don’t want the original FDs to

span two tables - counter-example:

S# -> address, status

address -> status

S# -> address S# -> status

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 27

Decomposition - depend. pres.
informally: we don’t want the original FDs to

span two tables - counter-example:

S# -> address, status

address -> status

S# -> address S# -> status

of the COVER

CMU SCS

Decomposition - depend. pres.

•  A subtle point
•  To avoid it, use the ‘canonical cover’ of the

FDs

Faloutsos & Pavlo CMU SCS 15-415/615 28

Faloutsos & Pavlo CMU SCS 15-415/615

10

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 29

Decomposition - depend. pres.
dependency preserving decomposition:

S# -> address, status

address -> status

S# -> address address -> status

(but: S#->status ?)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 30

Decomposition - depend. pres.

informally: we don’t want the original FDs to
span two tables.

More specifically: … the FDs of the
canonical cover.

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 31

Decomposition - depend. pres.
Q: why is dependency preservation good?

S# -> address address -> status S# -> address
S# -> status

(address->status: ‘lost’)

Faloutsos & Pavlo CMU SCS 15-415/615

11

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 32

Decomposition - depend. pres.
A1: insert [999, Pitts., E] -> REJECT

S# -> address address -> status S# -> address
S# -> status

(address->status: ‘lost’)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 33

Decomposition - depend. pres.
A2: eg., record that ‘Philly’ has status ‘A’

S# -> address address -> status S# -> address
S# -> status

(address->status: ‘lost’)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 34

Decomposition - conclusions

•  decompositions should always be lossless
–  joining attribute -> superkey

•  whenever possible, we want them to be
dependency preserving (occasionally,
impossible - see ‘STJ’ example later…)

MUST HAVE

Nice to have

Faloutsos & Pavlo CMU SCS 15-415/615

12

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 35

Overview - detailed

•  DB design and normalization
–  pitfalls of bad design
–  decomposition (-> how to fix the problem)
– normal forms (-> how to detect the problem)

•  BCNF,
•  3NF
•  (1NF, 2NF)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 36

Normal forms - BCNF

We saw how to fix ‘bad’ schemas -
but what is a ‘good’ schema?

Answer: ‘good’, if it obeys a ‘normal form’,
ie., a set of rules.

Typically: Boyce-Codd Normal form

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 37

Normal forms - BCNF

Defn.: Rel. R is in BCNF wrt F, if
•  informally: everything depends on the full

key, and nothing but the key
•  semi-formally: every determinant (of the

cover) is a candidate key

Faloutsos & Pavlo CMU SCS 15-415/615

13

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 38

Normal forms - BCNF

Example and counter-example:

ssn->name, address ssn->name, address

ssn, c-id -> grade

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 39

Normal forms - BCNF

Formally: for every FD a->b in F
–  a->b is trivial (a superset of b) or
–  a is a superkey

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 40

Normal forms - BCNF

Example and counter-example:

ssn->name, address ssn->name, address

ssn, c-id -> grade

Drill: Check formal dfn:

•  a->b trivial, or

•  a is superkey

Faloutsos & Pavlo CMU SCS 15-415/615

14

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 41

Normal forms - BCNF

Example and counter-example:

ssn->name, address

ssn,name -> address
ssn->name, address

ssn, c-id -> grade

ssn, name -> address

ssn, c-id, name -> grade

Drill: Check formal dfn:

•  a->b trivial, or

•  a is superkey

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 42

Normal forms - BCNF

Theorem: given a schema R and a set of FD
‘F’, we can always decompose it to
schemas R1, … Rn, so that
– R1, … Rn are in BCNF and
–  the decompositions are lossless.

(but, some decomp. might lose dependencies)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 43

Normal forms - BCNF

How? algorithm in book: for a relation R
- for every FD X->A that violates BCNF,

decompose to tables (X,A) and (R-A)
- repeat recursively
eg. TAKES1(ssn, c-id, grade, name, address)

ssn -> name, address
ssn, c-id -> grade

Faloutsos & Pavlo CMU SCS 15-415/615

15

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 44

Normal forms - BCNF

eg. TAKES1(ssn, c-id, grade, name, address)
ssn -> name, address ssn, c-id -> grade

name

address grade
c-id

ssn

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 45

Normal forms - BCNF

ssn->name, address

ssn, c-id -> grade

ssn->name, address ssn, c-id -> grade

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 46

Normal forms - BCNF

pictorially: we want a ‘star’ shape

name

address grade
c-id

ssn
:not in BCNF

Faloutsos & Pavlo CMU SCS 15-415/615

16

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 47

Normal forms - BCNF

pictorially: we want a ‘star’ shape

B

C

A G

E

D
or

F

H

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 48

Normal forms - BCNF

or a star-like: (eg., 2 cand. keys):
STUDENT(ssn, st#, name, address)

name

address

ssn

st#

=

name

address

ssn

st#

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 49

Normal forms - BCNF

but not:

or

B

C

A

D

G

E

D

F

H

Faloutsos & Pavlo CMU SCS 15-415/615

17

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 50

Overview - detailed

•  DB design and normalization
–  pitfalls of bad design
–  decomposition (-> how to fix the problem)
– normal forms (-> how to detect the problem)

•  BCNF,
•  3NF
•  (1NF, 2NF)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 51

Normal forms - BCNF

Theorem: given a schema R and a set of FD
‘F’, we can always decompose it to
schemas R1, … Rn, so that
– R1, … Rn are in BCNF and
–  the decompositions are lossless.

(but, some decomp. might lose dependencies)

Reminder

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 52

Normal forms - BCNF

Theorem: given a schema R and a set of FD
‘F’, we can always decompose it to
schemas R1, … Rn, so that
– R1, … Rn are in BCNF and
–  the decompositions are lossless.

(but, some decomp. might lose dependencies)

How is this possible?

Reminder

Faloutsos & Pavlo CMU SCS 15-415/615

18

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 53

Subtle answer

In some rare cases, like the
 (Student, Teacher, subJect)
setting:

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 54

Normal forms - 3NF

consider the ‘classic’ case:
STJ(Student, Teacher, subJect)

T-> J
S,J -> T

is it BCNF?
S

T
J

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 55

Normal forms - 3NF

STJ(Student, Teacher, subJect)
T-> J S,J -> T

How to decompose it to BCNF?

S

T
J

Faloutsos & Pavlo CMU SCS 15-415/615

19

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 56

Normal forms - 3NF

STJ(Student, Teacher, subJect)
T-> J S,J -> T

1) R1(T,J) R2(S,J)
(BCNF? - lossless? - dep. pres.?)

2) R1(T,J) R2(S,T)
(BCNF? - lossless? - dep. pres.?)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 57

Normal forms - 3NF

STJ(Student, Teacher, subJect)
T-> J S,J -> T

1) R1(T,J) R2(S,J)
(BCNF? Y+Y - lossless? N - dep. pres.? N)

2) R1(T,J) R2(S,T)
(BCNF? Y+Y - lossless? Y - dep. pres.? N)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 58

Normal forms - 3NF

STJ(Student, Teacher, subJect)
T-> J S,J -> T

in this case: impossible to have both
•  BCNF and
•  dependency preservation
Welcome 3NF!

Faloutsos & Pavlo CMU SCS 15-415/615

20

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 59

Normal forms - 3NF

STJ(Student, Teacher, subJect)
T-> J S,J -> T

S

J
T

informally, 3NF
‘forgives’ the red arrow
in the canonical cover

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 60

Normal forms - 3NF

STJ(Student, Teacher,
subJect)
T-> J S,J -> T

S

J
T

Formally, a rel. R with
FDs ‘F’ is in 3NF if:
for every a->b in F:

•  it is trivial or

•  a is a superkey or

•  b: part of a candidate
key

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 61

Normal forms - 3NF

how to bring a schema to 3NF?
two algo’s in book: First one:
•  start from ER diagram and turn to tables
•  then we have a set of tables R1, ... Rn which

are in 3NF
•  for each FD (X->A) in the cover that is not

preserved, create a table (X,A)

Faloutsos & Pavlo CMU SCS 15-415/615

21

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 62

Normal forms - 3NF

how to bring a schema to 3NF?
two algo’s in book: Second one (‘synthesis’)
•  take all attributes of R
•  for each FD (X->A) in the cover, add a table

(X,A)
•  if not lossless, add a table with appropriate

key

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 63

Normal forms - 3NF

Example:
 R: ABC
 F: A->B, C->B

Q1: what is the cover? What is the cand. key?

Q2: what is the decomposition to 3NF?

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 64

Normal forms - 3NF

Example:
 R: ABC
 F: A->B, C->B

Q1: what is the cover? What is the cand. key?
A1: ‘F’ is the cover; ‘AB’ is the cand. key
Q2: what is the decomposition to 3NF?

Faloutsos & Pavlo CMU SCS 15-415/615

22

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 65

Normal forms - 3NF

Example:
 R: ABC
 F: A->B, C->B

Q1: what is the cover? What is the cand. key?
A1: ‘F’ is the cover; ‘AB’ is the cand. key
Q2: what is the decomposition to 3NF?
A2: R1(A,B), R2(C,B), ... [is it lossless??]

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 66

Normal forms - 3NF

Example:
 R: ABC
 F: A->B, C->B

Q1: what is the cover? What is the cand. key?
A1: ‘F’ is the cover; ‘AB’ is the cand. key
Q2: what is the decomposition to 3NF?
A2: R1(A,B), R2(C,B), R3(A,C)

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 67

Normal forms - 3NF vs BCNF

•  If ‘R’ is in BCNF, it is always in 3NF (but
not the reverse)

•  In practice, aim for
– BCNF; lossless join; and dep. preservation

•  if impossible, we accept
–  3NF; but insist on lossless join and dep.

preservation

Faloutsos & Pavlo CMU SCS 15-415/615

23

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 68

Normal forms - more details

•  why ‘3’NF? what is 2NF? 1NF?
•  1NF: attributes are atomic (ie., no set-

valued attr., a.k.a. ‘repeating groups’)

not 1NF

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 69

Normal forms - more details
2NF: 1NF and non-key attr. fully depend on the

key
counter-example: TAKES1(ssn, c-id, grade, name, address)
ssn -> name, address ssn, c-id -> grade

name

address grade
c-id

ssn

not 2NF

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 70

Normal forms - more details

•  3NF: 2NF and no transitive dependencies
•  counter-example:

B

C

A

D
in 2NF, but not in 3NF

Faloutsos & Pavlo CMU SCS 15-415/615

24

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 71

Normal forms - more details

•  4NF, multivalued dependencies etc:
IGNORE

•  in practice, E-R diagrams usually lead to
tables in BCNF

CMU SCS

Faloutsos & Pavlo CMU SCS 15-415/615 72

Overview - conclusions

DB design and normalization
–  pitfalls of bad design
–  decompositions (lossless, dep. preserving)
–  normal forms (BCNF or 3NF)

“everything should depend on the key, the whole
key, and nothing but the key”

