
Faloutsos/Pavlo CMU - 15-415/615 

1 

CMU SCS 

Carnegie Mellon Univ. 

Dept. of Computer Science 

15-415/615 - DB Applications 

C. Faloutsos – A. Pavlo 

Lecture#20: Overview of Transaction 

Management 

CMU SCS 

Administrivia 

• HW7 (Phase 1) is due Tues April 1st 

• Recitations (always in SH 219): 

– Wed April 2nd 2:30-3:20 

– Wed April 9th 2:30-3:20 

 

Faloutsos/Pavlo CMU SCS 15-415/615 2 

CMU SCS 

Last Class 

• Database Design  

• Database Tuning 
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Today‟s Class 

• Transactions Overview 

• Concurrency Control 

• Recovery 
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Motivation 

• We both change the same 

record (“Smith”); how to 

avoid race condition? 

• You transfer $100 from 

savings→checking; power 

failure – what happens? 
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Concurrency Control & Recovery 

• Valuable properties of DBMSs. 

• Based on concept of transactions with 

ACID properties. 

• Next lectures discuss these issues. 
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Transactions 

• A transaction is the execution of a 

sequence of one or more operations (e.g., 

SQL queries) on a shared database to 

perform some higher-level function. 

• It is the basic unit of change in a DBMS: 

– Partial transactions are not allowed! 
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Transaction Example 

• Move $100 from Christos’ bank account to 

his bookie’s account. 

• Transaction: 

– Check whether Christos has $100. 

– Deduct $100 from his account. 

– Add $100 to his bookie‟s account. 
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Strawman System 

• Execute each txn one-by-one (i.e., serial 

order) as they arrive at the DBMS. 

• One and only one txn can be running at the 

same time in the DBMS. 
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Problem Statement 

• Better approach is to allow concurrent 

execution of independent transactions. 

• Q: Why do we want that? 

– Utilization/throughput (“hide” waiting for I/Os) 

– Increased response times to users. 

• But we also would like: 

– Correctness 

– Fairness 
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Transactions 

• Hard to ensure correctness… 

– What happens if Christos only has $100 and 

tries to pay off two bookies at the same time? 

 

• Hard to execute quickly… 

– What happens if Christos needs to pay off his 

gambling debts very quickly all at once? 
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Problem Statement 

• Arbitrary interleaving can lead to  

– Temporary inconsistency (ok, unavoidable) 

– “Permanent” inconsistency (bad!) 

 

• Need formal correctness criteria. 
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Definitions 

• A txn may carry out many operations on the 

data retrieved from the database 

• However, the DBMS is only concerned 

about what data is read/written from/to the 

database. 

– Changes to the “outside world” are beyond the 

scope of the DBMS. 
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Formal Definitions 

• Database: A fixed set of named data 

objects (A, B, C, …) 

• Transaction: A sequence of read and write 

operations (R(A), W(B), …) 

– DBMS‟s abstract view of a user program 
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Transactions in SQL 

• A new txn starts with the begin command. 

• The txn stops with either commit or abort: 

– If commit, all changes are saved. 

– If abort, all changes are undone so that it‟s 

like as if the txn never executed at all. 
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A txn can abort itself or 
the DBMS can abort it. 

CMU SCS 

Correctness Criteria: ACID 

• Atomicity: All actions in the txn happen, or 
none happen. 

• Consistency: If each txn is consistent and 
the DB starts consistent, then it ends up 

consistent. 

• Isolation: Execution of one txn is isolated 

from that of other txns. 

• Durability: If a txn commits, its effects 
persist. 
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Correctness Criteria: ACID 

• Atomicity: “all or nothing” 

• Consistency: “it looks correct to me” 

• Isolation: “as if alone” 

• Durability: “survive failures” 
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Transaction Demo 
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Overview 

• Problem definition & „ACID‟ 

• Atomicity 

• Consistency 

• Isolation 

• Durability 
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Atomicity of Transactions 

• Two possible outcomes of executing a txn: 

– Txn might commit after completing all its 

actions. 

– or it could abort (or be aborted by the DBMS) 

after executing some actions. 

• DBMS guarantees that txns are atomic.   

– From user‟s point of view: txn always either 

executes all its actions, or executes no actions 

at all. 
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Mechanisms for Ensuring 

Atomicity 

• We take $100 out of Christos‟ account but 

then there is a power failure before we 

transfer it to his bookie. 

• When the database comes back on-line, 

what should be the correct state of Christos‟ 

account? 
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Mechanisms for Ensuring 

Atomicity 

• One approach: LOGGING 

– DBMS logs all actions so that it can undo the 

actions of aborted transactions. 

• Think of this like the black box in 

airplanes… 
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Mechanisms for Ensuring 

Atomicity 

• Logging used by all modern systems.  

• Q: Why? 
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Mechanisms for Ensuring 

Atomicity 

• Logging used by all modern systems.  

• Q: Why? 

• A: Audit Trail & Efficiency Reasons 

 

• What other mechanism can you think of? 

 

Faloutsos/Pavlo CMU SCS 15-415/615 25 

A 

CMU SCS 

Mechanisms for Ensuring 

Atomicity 

• Another approach: SHADOW PAGING 

– DBMS makes copies of pages and txns make 

changes to those copies. Only when the txn 

commits is the page made visible to others. 

– Originally from System R. 

• Nobody actually does this… 
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Overview 

• Problem definition & „ACID‟ 

• Atomicity 

• Consistency 

• Isolation 

• Durability 

 

Faloutsos/Pavlo CMU SCS 15-415/615 27 



Faloutsos/Pavlo CMU - 15-415/615 

10 

CMU SCS 

Database Consistency 

• Database Consistency: Data in the DBMS 

is accurate in modeling the real world and 

follows integrity constraints 
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Transaction Consistency 

• Transaction Consistency: if the database is 

consistent before the txn starts (running 

alone), it will be after also. 

• Transaction consistency is the application‟s 

responsibility. 

– We won’t discuss this further… 
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Strong vs. Weak Consistency 

• In a distributed DBMS, the consistency 

level determines when other nodes see new 

data in the database: 

– Strong: Guaranteed to see all writes 

immediately, but txns are slower. 

– Weak/Eventual: Will see writes at some later 

point in time, but txns are faster. 
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Overview 

• Problem definition & „ACID‟ 

• Atomicity 

• Consistency 

• Isolation 

• Durability 
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Isolation of Transactions 

• Users submit txns, and each txn executes as 

if it was running by itself. 

• Concurrency is achieved by DBMS, which 

interleaves actions (reads/writes of DB 

objects) of various transactions. 

• Q: How do we achieve this? 
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Isolation of Transactions 

• A: Many methods - two main categories: 

– Pessimistic – Don‟t let problems arise in the 

first place. 

– Optimistic – Assume conflicts are rare, deal 

with them after they happen. 
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Example 

 

 

 

• Consider two txns: 

– T1 transfers $100 from B‟s account to A‟s 

– T2 credits both accounts with 6% interest. 
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A=A+100 
B=B–100 
COMMIT 

T1 
BEGIN 
A=A*1.06   
B=B*1.06 
COMMIT 

T2 

I 
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Example 

 

 

 

• Assume at first A and B each have $1000.  

• Q: What are the legal outcomes of running 

T1 and T2? 
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Example 

• Q: What are the possible outcomes of 

running T1 and T2 together? 

• A: Many! But A+B should be: 

     $2000*1.06=$2120 

• There is no guarantee that T1 will execute 

before T2 or vice-versa, if both are 

submitted together. But, the net effect must 

be equivalent to these two transactions 

running serially in some order. 
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Example 

• Legal outcomes: 

– A=1166, B=954 

– A=1160, B=960 

• The outcome depends on whether T1 

executes before T2 or vice versa. 
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Serial Execution Example 
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A=1166, B=954 A=1160, B=960 
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BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

 
 
 
 
BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 T2 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

Schedule Schedule 
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Interleaving Transactions 

• We can also interleave the txns in order to 

maximize concurrency. 

– Slow disk/network I/O. 

– Multi-core CPUs. 
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Interleaving Example (Good) 
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BEGIN 
A=A+100 
 
 
B=B–100 
COMMIT 

T1 T2 
 
 
BEGIN 
A=A*1.06 
 
 
B=B*1.06 
COMMIT 

BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

Schedule Schedule 



Faloutsos/Pavlo CMU - 15-415/615 

15 

CMU SCS 

Interleaving Example (Bad) 
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A=1166, B=960 
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 A=1166, B=954 

or 

A=1160, B=960 

BEGIN 
A=A+100 
 
 
 
 
B=B–100 
COMMIT 

T1 T2 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

Schedule 

The bank lost $6! 

CMU SCS 

Interleaving Example (Bad) 
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DBMS‟s View 

BEGIN 
R(A) 
W(A) 
 
 
 
 
 
 
R(B) 
W(B) 
COMMIT 

T1 T2 
 
 
 
BEGIN 
R(A) 
W(A) 
R(B) 
W(B) 
COMMIT 

BEGIN 
A=A+100 
 
 
 
 
B=B–100 
COMMIT 

T1 T2 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

CMU SCS 

Correctness 

• Q: How do we judge that a schedule is 

correct? 

• A: If it is equivalent to some serial 

execution 
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Formal Properties of Schedules 

• Serial Schedule: A schedule that does not 

interleave the actions of different 

transactions. 

• Equivalent Schedules: For any database 

state, the effect of executing the first 

schedule is identical to the effect of 

executing the second schedule.* 
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Formal Properties of Schedules 

• Serializable Schedule: A schedule that is 

equivalent to some serial execution of the 

transactions. 

• Note: If each transaction preserves 

consistency, every serializable schedule 

preserves consistency. 
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Formal Properties of Schedules 

• Serializability is a less intuitive notion of 

correctness compared to txn initiation time 

or commit order, but it provides the DBMS 

with significant additional flexibility in 

scheduling operations. 
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Interleaved Execution Anomalies 

• Read-Write conflicts (R-W) 

• Write-Read conflicts (W-R) 

• Write-Write conflicts (W-W) 

 

• Q: Why not R-R conflicts? 
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• Reading Uncommitted Data, “Dirty Reads”: 

 

BEGIN 
R(A) 
W(A) 
 
 
 
R(B) 
W(B) 
ABORT 

T1 T2 
 
 
BEGIN 
R(A) 
W(A) 
COMMIT 

Write-Read Conflicts 
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$12 
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Read-Write Conflicts 

• Unrepeatable Reads 
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BEGIN 
R(A) 
 
 
 
 
R(A) 
COMMIT 

T1 T2 
 
 
BEGIN 
R(A) 
W(A) 
COMMIT 

$10 

$10 
$19 

$19 
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• Overwriting Uncommitted Data 

BEGIN 
W(A) 
 
 
 
 
W(B) 
COMMIT 

T1 T2 
 
 
BEGIN 
W(A) 
W(B) 
COMMIT 

Write-Write Conflicts 
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Christos 
$19 

Bieber 
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Solution 

• Q: How could you guarantee that all 

resulting schedules are correct (i.e., 

serializable)? 

• A: Use locks! 
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Executing without Locks 
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BEGIN 
R(A) 
 
 
 
W(A) 
COMMIT 

T1 T2 
 
 
BEGIN 
R(A) 
 
 
 
W(A) 
COMMIT 
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BEGIN 
LOCK(A) 
R(A) 
 
W(A) 
UNLOCK(A) 
COMMIT 

T1 T2 
 
 
BEGIN 
LOCK(A) 
 
 
 
R(A) 
W(A) 
UNLOCK(A) 
COMMIT 

Executing with Locks 
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Lock Manager 

Granted (T1→A) 

Denied! 

Granted (T2→A) 

Released (T1→A) 

Released (T2→A) 

CMU SCS 

Executing with Locks 

• Q: If a txn only needs to read „A‟, should it 

still get a lock? 

• A: Yes, but you can get a shared lock. 
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Lock Types 

• Basic Types: 

– S-LOCK – Shared Locks (reads) 

– X-LOCK – Exclusive Locks (writes) 
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Shared Exclusive 

Shared ✔ X 

Exclusive X X 

Compatibility Matrix 
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Executing with Locks 

• Transactions request locks (or upgrades) 

• Lock manager grants or blocks requests 

• Transactions release locks 

• Lock manager updates lock-table 

 

• But this is not enough… 
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BEGIN 
X-LOCK(A) 
R(A) 
W(A) 
UNLOCK(A) 
 
 
 
 
S-LOCK(A) 
R(A) 
UNLOCK(A) 
COMMIT 

T1 T2 
 
 
 
 
 
BEGIN 
X-LOCK(A) 
W(A) 
UNLOCK(A) 
 
 
 
COMMIT 

Executing with Locks 
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Lock Manager 

Granted (T1→A) 

Granted (T2→A) 

Released (T1→A) 

Released (T2→A) 
Granted (T1→A) 

Released (T1→A) 

CMU SCS 

Concurrency Control 

• We need to use a well-defined protocol that 

ensures that txns execute correctly. 

• Two categories: 

– Two-Phase Locking (2PL) 

– Timestamp Ordering (T/O) 
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We will discuss T/O 
methods in future classes. 
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Two-Phase Locking 

• Phase 1: Growing 

– Each txn requests the locks that it needs from 

the DBMS‟s lock manager. 

– The lock manager grants/denies lock requests. 

• Phase 2: Shrinking 

– The txn is allowed to only release locks that it 

previously acquired. It cannot acquire new 

locks. 
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Two-Phase Locking 

• The txn is not allowed to acquire/upgrade 

locks after the growing phase finishes. 
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Growing Phase Shrinking Phase 

TIME 

Transaction Lifetime 
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Two-Phase Locking 

• The txn is not allowed to acquire/upgrade 

locks after the growing phase finishes. 
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Growing Phase Shrinking Phase 

TIME 

Transaction Lifetime 

2PL Violation! 
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BEGIN 
X-LOCK(A) 
R(A) 
W(A) 
 
 
R(A) 
UNLOCK(A) 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
X-LOCK(A) 
 
 
 
W(A) 
UNLOCK(A) 
COMMIT 

Executing with 2PL 
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Lock Manager 

Granted (T1→A) 

Denied! 

Released (T2→A) 

Released (T1→A) 

Granted (T2→A) 

CMU SCS 

2PL Observations 

• There are schedules that are serializable but 

would not be allowed by 2PL. 

• Locking limits concurrency. 

• May lead to deadlocks. 

• May still have “dirty reads”  

– Solution: Strict 2PL 
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Strict Two-Phase Locking 

• A schedule is strict if a value written by a 

txn is not read or overwritten by other txns 

until that txn finishes. 

• Advantages: 

– Recoverable. 

– Do not require cascading aborts. 

– Aborted txns can be undone by just restoring 

original values of modified tuples. 
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Strict Two-Phase Locking 

• Txns hold all of their locks until commit. 

• Good: 

– Avoids “dirty reads” etc 

• Bad: 

– Limits concurrency even more 

– And still may lead to deadlocks 
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Strict Two-Phase Locking 

• The txn is not allowed to acquire/upgrade 

locks after the growing phase finishes. 
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Growing Phase Shrinking Phase 

TIME 

Transaction Lifetime 

CMU SCS 

• Q: Why is avoiding “dirty reads” important? 

Strict Two-Phase Locking 
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BEGIN 
R(A) 
W(A) 
 
 
 
R(B) 
W(B) 
ABORT 

T1 T2 
 
 
BEGIN 
R(A) 
W(A) 
COMMIT 

$10 
$12 

$12 



Faloutsos/Pavlo CMU - 15-415/615 

24 

CMU SCS 

Strict Two-Phase Locking 

• Q: Why is avoiding “dirty reads” important? 

• A: If a txn aborts, all actions must be 

undone.  Any txn that read modified data 

must also be aborted. 
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Locking in Practice 

• You typically don‟t set locks manually. 

• Sometimes you will need to provide the 

DBMS with hints to help it to improve 

concurrency. 

• Also useful for doing major changes. 
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Overview 

• Problem definition & „ACID‟ 

• Atomicity 

• Consistency 

• Isolation 

• Durability 

 

Faloutsos/Pavlo CMU SCS 15-415/615 72 



Faloutsos/Pavlo CMU - 15-415/615 

25 

CMU SCS 

Transaction Durability 

• Records are stored on disk. 

• For updates, they are copied into memory 

and flushed back to disk at the discretion of 

the O.S. 

– Unless forced-output:  W(B)→fsync() 
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This is slow! 
Nobody does this! 

CMU SCS 

Transaction Durability 
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BEGIN 
R(A) 
W(A) 
 ⋮ 
COMMIT 

T1 

D 

Buffer Pool 

Disk 

A=1 

P
a

g
e
 

A=1 

Memory 

CMU SCS 

Transaction Durability 
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BEGIN 
R(A) 
W(A) 
 ⋮ 
COMMIT 

T1 

D 

Buffer Pool 

Disk 

A=1 

P
a

g
e
 

A=2 

Memory 

Buffer is added to output 
queue but is not flushed 

immediately 
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Write-Ahead Log 

• Record the changes made to the database in a 

log before the change is made. 

• Assume that the log is on stable storage. 

 

• Q: What to replicate? 

– The complete page? 

– Single tuple? 
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CMU SCS 

Write-Ahead Log 

• Log record format: 
– <txnId, objectId, beforeValue, afterValue> 

– Each transaction writes a log record first, before 

doing the change 

• When a txn finishes, the DBMS will: 

– Write a <commit> record on the log 

– Make sure that all log records are flushed before 

it returns an acknowledgement to application. 
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CMU SCS 

Write-Ahead Log 

• After a failure, DBMS  “replays” the log: 

– Undo uncommited transactions 

– Redo the committed ones 
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CMU SCS 

BEGIN 
W(A) 
W(B) 
 ⋮ 
COMMIT 

T1 

Write-Ahead Log 
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<T1 begin> 
<T1, A, 100, 200> 
<T1, B, 5, 10> 
<T1 commit> 

    ⋮ 
 CRASH! 

Before Value 

After Value 

TxnId ObjectId 

The DBMS hasn‟t 
flushed memory to 
disk at this point. 

We have to 
redo T1! 

Safe to return result 
to application. 

CMU SCS 

Write-Ahead Log 
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<T1 begin> 
<T1, A, 100, 200> 
<T1, B, 5, 10> 

    ⋮ 
 CRASH! 

BEGIN 
W(A) 
W(B) 
 ⋮ 
COMMIT 

T1 

We have to 
undo T1 

CMU SCS 

Recovering After a Crash 

• At the end – all committed updates and only 

those updates are reflected in the database. 

• Some care must be taken to handle the case 

of a crash occurring during the recovery 

process! 
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CMU SCS 

WAL Problems 

• The log grows infinitely… 

• We have to take checkpoints to reduce the 

amount of processing that we need to do. 

 

• We will discuss this in further detail in 

upcoming classes. 
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CMU SCS 

ACID Properties 

• Atomicity: All actions in the txn happen, or 
none happen. 

• Consistency: If each txn is consistent, and 
the DB starts consistent, it ends up 

consistent. 

• Isolation: Execution of one txn is isolated 

from that of other txns. 

• Durability: If a txn commits, its effects 
persist. 
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CMU SCS 

Summary 

• Concurrency control and recovery are 

among the most important functions 

provided by a DBMS. 

• Concurrency control is automatic 

– System automatically inserts lock/unlock 

requests and schedules actions of different txns. 

– Ensures that resulting execution is equivalent to 

executing the txns one after the other in some 

order. 
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CMU SCS 

Summary 

• Write-ahead logging (WAL) and the 

recovery protocol are used to: 

– Undo the actions of aborted transactions. 

– Restore the system to a consistent state after a 

crash. 
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CMU SCS 

Overview 

• Atomicity 

• Consistency 

• Isolation 

• Durability 
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Recovery 

Concurrency 
Control 


