
Faloutsos/Pavlo CMU - 15-415/615

1

CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#20: Overview of Transaction

Management

CMU SCS

Administrivia

• HW7 (Phase 1) is due Tues April 1st

• Recitations (always in SH 219):

– Wed April 2nd 2:30-3:20

– Wed April 9th 2:30-3:20

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Last Class

• Database Design

• Database Tuning

Faloutsos/Pavlo CMU SCS 15-415/615 3

Faloutsos/Pavlo CMU - 15-415/615

2

CMU SCS

Today‟s Class

• Transactions Overview

• Concurrency Control

• Recovery

Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

Motivation

• We both change the same

record (“Smith”); how to

avoid race condition?

• You transfer $100 from

savings→checking; power

failure – what happens?

Faloutsos/Pavlo CMU SCS 15-415/615 5

Lost Updates
Concurrency Control

Durability
Recovery

CMU SCS

Motivation

• We both change the same

record (“Smith”); how to

avoid race condition?

• You transfer $100 from

savings→checking; power

failure – what happens?

Faloutsos/Pavlo CMU SCS 15-415/615 6

Lost Updates
Concurrency Control

Durability
Recovery

Faloutsos/Pavlo CMU - 15-415/615

3

CMU SCS

Concurrency Control & Recovery

• Valuable properties of DBMSs.

• Based on concept of transactions with

ACID properties.

• Next lectures discuss these issues.

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Transactions

• A transaction is the execution of a

sequence of one or more operations (e.g.,

SQL queries) on a shared database to

perform some higher-level function.

• It is the basic unit of change in a DBMS:

– Partial transactions are not allowed!

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

Transaction Example

• Move $100 from Christos’ bank account to

his bookie’s account.

• Transaction:

– Check whether Christos has $100.

– Deduct $100 from his account.

– Add $100 to his bookie‟s account.

Faloutsos/Pavlo CMU SCS 15-415/615 9

Faloutsos/Pavlo CMU - 15-415/615

4

CMU SCS

Strawman System

• Execute each txn one-by-one (i.e., serial

order) as they arrive at the DBMS.

• One and only one txn can be running at the

same time in the DBMS.

Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

Problem Statement

• Better approach is to allow concurrent

execution of independent transactions.

• Q: Why do we want that?

– Utilization/throughput (“hide” waiting for I/Os)

– Increased response times to users.

• But we also would like:

– Correctness

– Fairness

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

Transactions

• Hard to ensure correctness…

– What happens if Christos only has $100 and

tries to pay off two bookies at the same time?

• Hard to execute quickly…

– What happens if Christos needs to pay off his

gambling debts very quickly all at once?

Faloutsos/Pavlo CMU SCS 15-415/615 12

Faloutsos/Pavlo CMU - 15-415/615

5

CMU SCS

Problem Statement

• Arbitrary interleaving can lead to

– Temporary inconsistency (ok, unavoidable)

– “Permanent” inconsistency (bad!)

• Need formal correctness criteria.

Faloutsos/Pavlo CMU SCS 15-415/615 13

CMU SCS

Definitions

• A txn may carry out many operations on the

data retrieved from the database

• However, the DBMS is only concerned

about what data is read/written from/to the

database.

– Changes to the “outside world” are beyond the

scope of the DBMS.

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Formal Definitions

• Database: A fixed set of named data

objects (A, B, C, …)

• Transaction: A sequence of read and write

operations (R(A), W(B), …)

– DBMS‟s abstract view of a user program

Faloutsos/Pavlo CMU SCS 15-415/615 15

Faloutsos/Pavlo CMU - 15-415/615

6

CMU SCS

Transactions in SQL

• A new txn starts with the begin command.

• The txn stops with either commit or abort:

– If commit, all changes are saved.

– If abort, all changes are undone so that it‟s

like as if the txn never executed at all.

Faloutsos/Pavlo CMU SCS 15-415/615 16

A txn can abort itself or
the DBMS can abort it.

CMU SCS

Correctness Criteria: ACID

• Atomicity: All actions in the txn happen, or
none happen.

• Consistency: If each txn is consistent and
the DB starts consistent, then it ends up

consistent.

• Isolation: Execution of one txn is isolated

from that of other txns.

• Durability: If a txn commits, its effects
persist.

 Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Correctness Criteria: ACID

• Atomicity: “all or nothing”

• Consistency: “it looks correct to me”

• Isolation: “as if alone”

• Durability: “survive failures”

Faloutsos/Pavlo CMU SCS 15-415/615 18

Faloutsos/Pavlo CMU - 15-415/615

7

CMU SCS

Transaction Demo

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

Overview

• Problem definition & „ACID‟

• Atomicity

• Consistency

• Isolation

• Durability

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

Atomicity of Transactions

• Two possible outcomes of executing a txn:

– Txn might commit after completing all its

actions.

– or it could abort (or be aborted by the DBMS)

after executing some actions.

• DBMS guarantees that txns are atomic.

– From user‟s point of view: txn always either

executes all its actions, or executes no actions

at all.

 Faloutsos/Pavlo CMU SCS 15-415/615 21

A

Faloutsos/Pavlo CMU - 15-415/615

8

CMU SCS

Mechanisms for Ensuring

Atomicity

• We take $100 out of Christos‟ account but

then there is a power failure before we

transfer it to his bookie.

• When the database comes back on-line,

what should be the correct state of Christos‟

account?

Faloutsos/Pavlo CMU SCS 15-415/615 22

A

CMU SCS

Mechanisms for Ensuring

Atomicity

• One approach: LOGGING

– DBMS logs all actions so that it can undo the

actions of aborted transactions.

• Think of this like the black box in

airplanes…

Faloutsos/Pavlo CMU SCS 15-415/615 23

A

CMU SCS

Mechanisms for Ensuring

Atomicity

• Logging used by all modern systems.

• Q: Why?

Faloutsos/Pavlo CMU SCS 15-415/615 24

A

Faloutsos/Pavlo CMU - 15-415/615

9

CMU SCS

Mechanisms for Ensuring

Atomicity

• Logging used by all modern systems.

• Q: Why?

• A: Audit Trail & Efficiency Reasons

• What other mechanism can you think of?

Faloutsos/Pavlo CMU SCS 15-415/615 25

A

CMU SCS

Mechanisms for Ensuring

Atomicity

• Another approach: SHADOW PAGING

– DBMS makes copies of pages and txns make

changes to those copies. Only when the txn

commits is the page made visible to others.

– Originally from System R.

• Nobody actually does this…

Faloutsos/Pavlo CMU SCS 15-415/615 26

A

CMU SCS

Overview

• Problem definition & „ACID‟

• Atomicity

• Consistency

• Isolation

• Durability

Faloutsos/Pavlo CMU SCS 15-415/615 27

Faloutsos/Pavlo CMU - 15-415/615

10

CMU SCS

Database Consistency

• Database Consistency: Data in the DBMS

is accurate in modeling the real world and

follows integrity constraints

Faloutsos/Pavlo CMU SCS 15-415/615 28

C

CMU SCS

Transaction Consistency

• Transaction Consistency: if the database is

consistent before the txn starts (running

alone), it will be after also.

• Transaction consistency is the application‟s

responsibility.

– We won’t discuss this further…

Faloutsos/Pavlo CMU SCS 15-415/615 29

C

CMU SCS

Strong vs. Weak Consistency

• In a distributed DBMS, the consistency

level determines when other nodes see new

data in the database:

– Strong: Guaranteed to see all writes

immediately, but txns are slower.

– Weak/Eventual: Will see writes at some later

point in time, but txns are faster.

Faloutsos/Pavlo CMU SCS 15-415/615 30

C

Faloutsos/Pavlo CMU - 15-415/615

11

CMU SCS

A
p

p
li

ca
ti

o
n
 S

er
v
er

s

D
B

M
S

 S
erv

ers

Strong Consistency

Faloutsos/Pavlo CMU SCS 15-415/615 31

Master

Replicas

Update Profile

Get Profile

C

CMU SCS

A
p

p
li

ca
ti

o
n
 S

er
v
er

s

D
B

M
S

 S
erv

ers

Eventual Consistency

Faloutsos/Pavlo CMU SCS 15-415/615 32

Master

Replicas

Update Profile

Get Profile

C

?

?

CMU SCS

Overview

• Problem definition & „ACID‟

• Atomicity

• Consistency

• Isolation

• Durability

Faloutsos/Pavlo CMU SCS 15-415/615 33

Faloutsos/Pavlo CMU - 15-415/615

12

CMU SCS

Isolation of Transactions

• Users submit txns, and each txn executes as

if it was running by itself.

• Concurrency is achieved by DBMS, which

interleaves actions (reads/writes of DB

objects) of various transactions.

• Q: How do we achieve this?

Faloutsos/Pavlo CMU SCS 15-415/615 34

I

CMU SCS

Isolation of Transactions

• A: Many methods - two main categories:

– Pessimistic – Don‟t let problems arise in the

first place.

– Optimistic – Assume conflicts are rare, deal

with them after they happen.

Faloutsos/Pavlo CMU SCS 15-415/615 35

I

CMU SCS

Example

• Consider two txns:

– T1 transfers $100 from B‟s account to A‟s

– T2 credits both accounts with 6% interest.

Faloutsos/Pavlo CMU SCS 15-415/615 36

BEGIN
A=A+100
B=B–100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

I

Faloutsos/Pavlo CMU - 15-415/615

13

CMU SCS

Example

• Assume at first A and B each have $1000.

• Q: What are the legal outcomes of running

T1 and T2?

Faloutsos/Pavlo CMU SCS 15-415/615 37

BEGIN
A=A+100
B=B–100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

I

CMU SCS

Example

• Q: What are the possible outcomes of

running T1 and T2 together?

• A: Many! But A+B should be:

 $2000*1.06=$2120

• There is no guarantee that T1 will execute

before T2 or vice-versa, if both are

submitted together. But, the net effect must

be equivalent to these two transactions

running serially in some order.

Faloutsos/Pavlo CMU SCS 15-415/615 38

I

CMU SCS

Example

• Legal outcomes:

– A=1166, B=954

– A=1160, B=960

• The outcome depends on whether T1

executes before T2 or vice versa.

Faloutsos/Pavlo CMU SCS 15-415/615 39

I

→$2120

→$2120

Faloutsos/Pavlo CMU - 15-415/615

14

CMU SCS

Serial Execution Example

Faloutsos/Pavlo CMU SCS 15-415/615 40

I

≡

A=1166, B=954 A=1160, B=960

T
I

M
E

BEGIN
A=A+100
B=B–100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A+100
B=B–100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule Schedule

CMU SCS

Interleaving Transactions

• We can also interleave the txns in order to

maximize concurrency.

– Slow disk/network I/O.

– Multi-core CPUs.

Faloutsos/Pavlo CMU SCS 15-415/615 41

I

CMU SCS

Interleaving Example (Good)

Faloutsos/Pavlo CMU SCS 15-415/615 42

I

≡

A=1166, B=954 A=1166, B=954

T
I

M
E

BEGIN
A=A+100

B=B–100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

BEGIN
A=A+100
B=B–100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule Schedule

Faloutsos/Pavlo CMU - 15-415/615

15

CMU SCS

Interleaving Example (Bad)

Faloutsos/Pavlo CMU SCS 15-415/615 43

I

≢

A=1166, B=960

T
I

M
E

 A=1166, B=954

or

A=1160, B=960

BEGIN
A=A+100

B=B–100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

The bank lost $6!

CMU SCS

Interleaving Example (Bad)

Faloutsos/Pavlo CMU SCS 15-415/615 44

I

Schedule

A=1166, B=960

T
I

M
E

DBMS‟s View

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

BEGIN
A=A+100

B=B–100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

CMU SCS

Correctness

• Q: How do we judge that a schedule is

correct?

• A: If it is equivalent to some serial

execution

Faloutsos/Pavlo CMU SCS 15-415/615 45

I

Faloutsos/Pavlo CMU - 15-415/615

16

CMU SCS

Formal Properties of Schedules

• Serial Schedule: A schedule that does not

interleave the actions of different

transactions.

• Equivalent Schedules: For any database

state, the effect of executing the first

schedule is identical to the effect of

executing the second schedule.*

Faloutsos/Pavlo CMU SCS 15-415/615 46

I

(*) no matter what the arithmetic operations are!

CMU SCS

Formal Properties of Schedules

• Serializable Schedule: A schedule that is

equivalent to some serial execution of the

transactions.

• Note: If each transaction preserves

consistency, every serializable schedule

preserves consistency.

Faloutsos/Pavlo CMU SCS 15-415/615 47

I

CMU SCS

Formal Properties of Schedules

• Serializability is a less intuitive notion of

correctness compared to txn initiation time

or commit order, but it provides the DBMS

with significant additional flexibility in

scheduling operations.

Faloutsos/Pavlo CMU SCS 15-415/615 48

I

Faloutsos/Pavlo CMU - 15-415/615

17

CMU SCS

Interleaved Execution Anomalies

• Read-Write conflicts (R-W)

• Write-Read conflicts (W-R)

• Write-Write conflicts (W-W)

• Q: Why not R-R conflicts?

Faloutsos/Pavlo CMU SCS 15-415/615 49

I

CMU SCS

• Reading Uncommitted Data, “Dirty Reads”:

BEGIN
R(A)
W(A)

R(B)
W(B)
ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

Write-Read Conflicts

Faloutsos/Pavlo CMU SCS 15-415/615 50

I

$10
$12

$12

CMU SCS

Read-Write Conflicts

• Unrepeatable Reads

Faloutsos/Pavlo CMU SCS 15-415/615 51

I

BEGIN
R(A)

R(A)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

Faloutsos/Pavlo CMU - 15-415/615

18

CMU SCS

• Overwriting Uncommitted Data

BEGIN
W(A)

W(B)
COMMIT

T1 T2

BEGIN
W(A)
W(B)
COMMIT

Write-Write Conflicts

Faloutsos/Pavlo CMU SCS 15-415/615 52

I

$10

Christos
$19

Bieber

CMU SCS

Solution

• Q: How could you guarantee that all

resulting schedules are correct (i.e.,

serializable)?

• A: Use locks!

Faloutsos/Pavlo CMU SCS 15-415/615 53

I

CMU SCS

Executing without Locks

Faloutsos/Pavlo CMU SCS 15-415/615 54

I

T
I

M
E

BEGIN
R(A)

W(A)
COMMIT

T1 T2

BEGIN
R(A)

W(A)
COMMIT

Faloutsos/Pavlo CMU - 15-415/615

19

CMU SCS

BEGIN
LOCK(A)
R(A)

W(A)
UNLOCK(A)
COMMIT

T1 T2

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Executing with Locks

Faloutsos/Pavlo CMU SCS 15-415/615 55

I

T
I

M
E

Lock Manager

Granted (T1→A)

Denied!

Granted (T2→A)

Released (T1→A)

Released (T2→A)

CMU SCS

Executing with Locks

• Q: If a txn only needs to read „A‟, should it

still get a lock?

• A: Yes, but you can get a shared lock.

Faloutsos/Pavlo CMU SCS 15-415/615 56

I

CMU SCS

Lock Types

• Basic Types:

– S-LOCK – Shared Locks (reads)

– X-LOCK – Exclusive Locks (writes)

Faloutsos/Pavlo CMU SCS 15-415/615 57

I

Shared Exclusive

Shared ✔ X

Exclusive X X

Compatibility Matrix

Faloutsos/Pavlo CMU - 15-415/615

20

CMU SCS

Executing with Locks

• Transactions request locks (or upgrades)

• Lock manager grants or blocks requests

• Transactions release locks

• Lock manager updates lock-table

• But this is not enough…

Faloutsos/Pavlo CMU SCS 15-415/615 58

I

CMU SCS

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

T1 T2

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

Executing with Locks

Faloutsos/Pavlo CMU SCS 15-415/615 59

I

T
I

M
E

Lock Manager

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)
Granted (T1→A)

Released (T1→A)

CMU SCS

Concurrency Control

• We need to use a well-defined protocol that

ensures that txns execute correctly.

• Two categories:

– Two-Phase Locking (2PL)

– Timestamp Ordering (T/O)

Faloutsos/Pavlo CMU SCS 15-415/615 60

I

We will discuss T/O
methods in future classes.

Faloutsos/Pavlo CMU - 15-415/615

21

CMU SCS

Two-Phase Locking

• Phase 1: Growing

– Each txn requests the locks that it needs from

the DBMS‟s lock manager.

– The lock manager grants/denies lock requests.

• Phase 2: Shrinking

– The txn is allowed to only release locks that it

previously acquired. It cannot acquire new

locks.

Faloutsos/Pavlo CMU SCS 15-415/615 61

CMU SCS

Two-Phase Locking

• The txn is not allowed to acquire/upgrade

locks after the growing phase finishes.

Faloutsos/Pavlo CMU SCS 15-415/615 62

I

Growing Phase Shrinking Phase

TIME

Transaction Lifetime

CMU SCS

Two-Phase Locking

• The txn is not allowed to acquire/upgrade

locks after the growing phase finishes.

Faloutsos/Pavlo CMU SCS 15-415/615 63

I

Growing Phase Shrinking Phase

TIME

Transaction Lifetime

2PL Violation!

Faloutsos/Pavlo CMU - 15-415/615

22

CMU SCS

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

T1 T2

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

Executing with 2PL

Faloutsos/Pavlo CMU SCS 15-415/615 64

I

T
I

M
E

Lock Manager

Granted (T1→A)

Denied!

Released (T2→A)

Released (T1→A)

Granted (T2→A)

CMU SCS

2PL Observations

• There are schedules that are serializable but

would not be allowed by 2PL.

• Locking limits concurrency.

• May lead to deadlocks.

• May still have “dirty reads”

– Solution: Strict 2PL

Faloutsos/Pavlo CMU SCS 15-415/615 65

I

CMU SCS

Strict Two-Phase Locking

• A schedule is strict if a value written by a

txn is not read or overwritten by other txns

until that txn finishes.

• Advantages:

– Recoverable.

– Do not require cascading aborts.

– Aborted txns can be undone by just restoring

original values of modified tuples.

Faloutsos/Pavlo CMU SCS 15-415/615 66

I

Faloutsos/Pavlo CMU - 15-415/615

23

CMU SCS

Strict Two-Phase Locking

• Txns hold all of their locks until commit.

• Good:

– Avoids “dirty reads” etc

• Bad:

– Limits concurrency even more

– And still may lead to deadlocks

Faloutsos/Pavlo CMU SCS 15-415/615 67

I

CMU SCS

Strict Two-Phase Locking

• The txn is not allowed to acquire/upgrade

locks after the growing phase finishes.

Faloutsos/Pavlo CMU SCS 15-415/615 68

I

Growing Phase Shrinking Phase

TIME

Transaction Lifetime

CMU SCS

• Q: Why is avoiding “dirty reads” important?

Strict Two-Phase Locking

Faloutsos/Pavlo CMU SCS 15-415/615 69

I

BEGIN
R(A)
W(A)

R(B)
W(B)
ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12

Faloutsos/Pavlo CMU - 15-415/615

24

CMU SCS

Strict Two-Phase Locking

• Q: Why is avoiding “dirty reads” important?

• A: If a txn aborts, all actions must be

undone. Any txn that read modified data

must also be aborted.

Faloutsos/Pavlo CMU SCS 15-415/615 70

I

CMU SCS

Locking in Practice

• You typically don‟t set locks manually.

• Sometimes you will need to provide the

DBMS with hints to help it to improve

concurrency.

• Also useful for doing major changes.

Faloutsos/Pavlo CMU SCS 15-415/615 71

I

CMU SCS

Overview

• Problem definition & „ACID‟

• Atomicity

• Consistency

• Isolation

• Durability

Faloutsos/Pavlo CMU SCS 15-415/615 72

Faloutsos/Pavlo CMU - 15-415/615

25

CMU SCS

Transaction Durability

• Records are stored on disk.

• For updates, they are copied into memory

and flushed back to disk at the discretion of

the O.S.

– Unless forced-output: W(B)→fsync()

Faloutsos/Pavlo CMU SCS 15-415/615 73

D

This is slow!
Nobody does this!

CMU SCS

Transaction Durability

Faloutsos/Pavlo CMU SCS 15-415/615 74

BEGIN
R(A)
W(A)
 ⋮
COMMIT

T1

D

Buffer Pool

Disk

A=1

P
a

g
e

A=1

Memory

CMU SCS

Transaction Durability

Faloutsos/Pavlo CMU SCS 15-415/615 75

BEGIN
R(A)
W(A)
 ⋮
COMMIT

T1

D

Buffer Pool

Disk

A=1

P
a

g
e

A=2

Memory

Buffer is added to output
queue but is not flushed

immediately

Faloutsos/Pavlo CMU - 15-415/615

26

CMU SCS

Write-Ahead Log

• Record the changes made to the database in a

log before the change is made.

• Assume that the log is on stable storage.

• Q: What to replicate?

– The complete page?

– Single tuple?

Faloutsos/Pavlo CMU SCS 15-415/615 76

D

CMU SCS

Write-Ahead Log

• Log record format:
– <txnId, objectId, beforeValue, afterValue>

– Each transaction writes a log record first, before

doing the change

• When a txn finishes, the DBMS will:

– Write a <commit> record on the log

– Make sure that all log records are flushed before

it returns an acknowledgement to application.

Faloutsos/Pavlo CMU SCS 15-415/615 77

D

CMU SCS

Write-Ahead Log

• After a failure, DBMS “replays” the log:

– Undo uncommited transactions

– Redo the committed ones

Faloutsos/Pavlo CMU SCS 15-415/615 78

D

Faloutsos/Pavlo CMU - 15-415/615

27

CMU SCS

BEGIN
W(A)
W(B)
 ⋮
COMMIT

T1

Write-Ahead Log

Faloutsos/Pavlo CMU SCS 15-415/615 79

D

<T1 begin>
<T1, A, 100, 200>
<T1, B, 5, 10>
<T1 commit>

 ⋮
 CRASH!

Before Value

After Value

TxnId ObjectId

The DBMS hasn‟t
flushed memory to
disk at this point.

We have to
redo T1!

Safe to return result
to application.

CMU SCS

Write-Ahead Log

Faloutsos/Pavlo CMU SCS 15-415/615 80

D

<T1 begin>
<T1, A, 100, 200>
<T1, B, 5, 10>

 ⋮
 CRASH!

BEGIN
W(A)
W(B)
 ⋮
COMMIT

T1

We have to
undo T1

CMU SCS

Recovering After a Crash

• At the end – all committed updates and only

those updates are reflected in the database.

• Some care must be taken to handle the case

of a crash occurring during the recovery

process!

Faloutsos/Pavlo CMU SCS 15-415/615 81

D

Faloutsos/Pavlo CMU - 15-415/615

28

CMU SCS

WAL Problems

• The log grows infinitely…

• We have to take checkpoints to reduce the

amount of processing that we need to do.

• We will discuss this in further detail in

upcoming classes.

Faloutsos/Pavlo CMU SCS 15-415/615 82

CMU SCS

ACID Properties

• Atomicity: All actions in the txn happen, or
none happen.

• Consistency: If each txn is consistent, and
the DB starts consistent, it ends up

consistent.

• Isolation: Execution of one txn is isolated

from that of other txns.

• Durability: If a txn commits, its effects
persist.

 Faloutsos/Pavlo CMU SCS 15-415/615 83

CMU SCS

Summary

• Concurrency control and recovery are

among the most important functions

provided by a DBMS.

• Concurrency control is automatic

– System automatically inserts lock/unlock

requests and schedules actions of different txns.

– Ensures that resulting execution is equivalent to

executing the txns one after the other in some

order.

 Faloutsos/Pavlo CMU SCS 15-415/615 84

Faloutsos/Pavlo CMU - 15-415/615

29

CMU SCS

Summary

• Write-ahead logging (WAL) and the

recovery protocol are used to:

– Undo the actions of aborted transactions.

– Restore the system to a consistent state after a

crash.

Faloutsos/Pavlo CMU SCS 15-415/615 85

CMU SCS

Overview

• Atomicity

• Consistency

• Isolation

• Durability

Faloutsos/Pavlo CMU SCS 15-415/615 86

Recovery

Concurrency
Control

