
Faloutsos/Pavlo CMU - 15-415/615 

1 

CMU SCS 

Carnegie Mellon Univ. 

Dept. of Computer Science 

15-415/615 - DB Applications 

C. Faloutsos – A. Pavlo 

Lecture#21: Concurrency Control 

 (R&G ch. 17) 

CMU SCS 

Last Class 

• Introduction to Transactions 

• ACID 

• Concurrency Control (2PL) 

• Crash Recovery (WAL) 

Faloutsos/Pavlo CMU SCS 15-415/615 2 

CMU SCS 

Last Class 

• For Isolation property, serial execution of 

transactions is safe but slow 

– We want to find schedules equivalent to serial 

execution but allow interleaving. 

• The way the DBMS does this is with its 

concurrency control protocol. 

Faloutsos/Pavlo CMU SCS 15-415/615 3 



Faloutsos/Pavlo CMU - 15-415/615 

2 

CMU SCS 

Today’s Class 

• Serializability: concepts and algorithms 

• Locking-based Concurrency Control: 

– 2PL 

– Strict 2PL 

• Deadlocks 

Faloutsos/Pavlo CMU SCS 15-415/615 4 

CMU SCS 

Formal Properties of Schedules 

• Serial Schedule: A schedule that does not 

interleave the actions of different 

transactions. 

• Equivalent Schedules: For any database 

state, the effect of executing the first 

schedule is identical to the effect of 

executing the second schedule.* 

Faloutsos/Pavlo CMU SCS 15-415/615 5 

(*) no matter what the arithmetic operations are! 

CMU SCS 

Formal Properties of Schedules 

• Serializable Schedule: A schedule that is 

equivalent to some serial execution of the 

transactions. 

• Note: If each transaction preserves 

consistency, every serializable schedule 

preserves consistency. 

 

Faloutsos/Pavlo CMU SCS 15-415/615 6 



Faloutsos/Pavlo CMU - 15-415/615 

3 

CMU SCS 

Example 

 

 

 

• Consider two txns: 

– T1 transfers $100 from B’s account to A’s 

– T2 credits both accounts with 6% interest. 

 

 

Faloutsos/Pavlo CMU SCS 15-415/615 7 

BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 
BEGIN 
A=A*1.06   
B=B*1.06 
COMMIT 

T2 

CMU SCS 

Example 

 

 

 

• Assume at first A and B each have $1000.  

• Q: What are the possible outcomes of 

running T1 and T2? 

 

Faloutsos/Pavlo CMU SCS 15-415/615 8 

BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 
BEGIN 
A=A*1.06   
B=B*1.06 
COMMIT 

T2 

CMU SCS 

Example 

• Q: What are the possible outcomes of 

running T1 and T2 together? 

• A: Many! But A+B should be: 

     $2000*1.06=$2120 

• There is no guarantee that T1 will execute 

before T2 or vice-versa, if both are 

submitted together. But, the net effect must 

be equivalent to these two transactions 

running serially in some order. 

 

 

Faloutsos/Pavlo CMU SCS 15-415/615 9 



Faloutsos/Pavlo CMU - 15-415/615 

4 

CMU SCS 

Example 

• Legal outcomes: 

– A=1166, B=954 

– A=1160, B=960 

• The outcome depends on whether T1 

executes before T2 or vice versa. 

Faloutsos/Pavlo CMU SCS 15-415/615 10 

→$2120 

→$2120 

CMU SCS 

Serial Execution Example 

Faloutsos/Pavlo CMU SCS 15-415/615 11 

≡ 

A=1166, B=954 A=1160, B=960 

T
I

M
E

 

BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

 
 
 
 
BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 T2 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

Schedule Schedule 

CMU SCS 

Interleaving Example (Good) 

Faloutsos/Pavlo CMU SCS 15-415/615 12 

≡ 

A=1166, B=954 A=1166, B=954 

T
I

M
E

 

BEGIN 
A=A+100 
 
 
B=B–100 
COMMIT 

T1 T2 
 
 
BEGIN 
A=A*1.06 
 
 
B=B*1.06 
COMMIT 

BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

Schedule Schedule 



Faloutsos/Pavlo CMU - 15-415/615 

5 

CMU SCS 

Interleaving Example (Bad) 

Faloutsos/Pavlo CMU SCS 15-415/615 13 

≢ 

A=1166, B=960 

T
I

M
E

 A=1166, B=954 

or 

A=1160, B=960 

BEGIN 
A=A+100 
 
 
 
 
B=B–100 
COMMIT 

T1 T2 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

Schedule 

The bank lost $6! 

CMU SCS 

Formal Properties of Schedules 

• There are different levels of serializability: 

– Conflict Serializability 

– View Serializability 

 

 

Faloutsos/Pavlo CMU SCS 15-415/615 14 

All DBMSs support this. 

This is harder but allows for 
more concurrency. 

CMU SCS 

Conflicting Operations 

• We need a formal notion of equivalence that 

can be implemented efficiently… 

– Base it on the notion of “conflicting” operations 

 

• Definition: Two operations conflict if: 

– They are by different transactions,  

– They are on the same object and at least one of 

them is a write. 

 
Faloutsos/Pavlo CMU SCS 15-415/615 15 



Faloutsos/Pavlo CMU - 15-415/615 

6 

CMU SCS 

Conflict Serializable Schedules 

• Two schedules are conflict equivalent iff: 

– They involve the same actions of the same 

transactions, and 

– Every pair of conflicting actions is ordered the 

same way. 

• Schedule S is conflict serializable if: 

– S is conflict equivalent to some serial schedule. 

– Note that some serializable schedules are NOT 

conflict serializable. 

 Faloutsos/Pavlo CMU SCS 15-415/615 16 

CMU SCS 

Conflict Serializability Intuition 

• A schedule S is conflict serializable if: 

– You are able to transform S into a serial 

schedule by swapping consecutive non-

conflicting operations of different transactions. 

Faloutsos/Pavlo CMU SCS 15-415/615 17 

CMU SCS 

Conflict Serializability Intuition 

Faloutsos/Pavlo CMU SCS 15-415/615 18 

≡ 

T
I

M
E

 

BEGIN 
R(A) 
W(A) 
 
 
 
 
COMMIT 

T1 T2 
BEGIN 
 
 
 
 
 
 
 
R(B) 
W(B) 
COMMIT 

BEGIN 
R(A) 
W(A) 
R(B) 
W(B) 
COMMIT 

T1 T2 
 
 
 
 
 
BEGIN 
R(A) 
W(A) 
R(B) 
W(B) 
COMMIT 

Schedule Serial Schedule 

R(B) W(A) 

R(A) 
R(B) W(A) R(A) 
R(B) 

W(B) 
W(B) 

W(A) 
R(A) 

W(B) 



Faloutsos/Pavlo CMU - 15-415/615 

7 

CMU SCS 

Conflict Serializability Intuition 

Faloutsos/Pavlo CMU SCS 15-415/615 19 

T
I

M
E

 

BEGIN 
R(A) 
 
 
W(A) 
COMMIT 

T1 T2 
BEGIN 
 
R(A) 
W(A) 
 
COMMIT 

BEGIN 
R(A) 
W(A) 
COMMIT 

T1 T2 
 
 
 
BEGIN 
R(A) 
W(A) 
COMMIT 

Schedule Serial Schedule 

≢ 

CMU SCS 

Serializability 

• Q: Are there any faster algorithms to figure 

this out other than transposing operations? 

 

Faloutsos/Pavlo CMU SCS 15-415/615 20 

CMU SCS 

Dependency Graphs 

• One node per txn. 

• Edge from Ti to Tj if: 

– An operation Oi of Ti conflicts with an 

operation Oj of Tj and 

– Oi appears earlier in the schedule than Oj. 

• Also known as a “precedence graph” 

Faloutsos/Pavlo CMU SCS 15-415/615 21 

Ti Tj 



Faloutsos/Pavlo CMU - 15-415/615 

8 

CMU SCS 

Dependency Graphs 

• Theorem: A schedule is conflict 

serializable if and only if its dependency 

graph is acyclic. 

 

Faloutsos/Pavlo CMU SCS 15-415/615 22 

CMU SCS 

Example #1 

Faloutsos/Pavlo CMU SCS 15-415/615 23 

T
I

M
E

 

BEGIN 
R(A) 
W(A) 
 
 
 
 
 
R(B) 
W(B) 
COMMIT 

T1 T2 
BEGIN 
 
 
R(A) 
W(A) 
R(B) 
W(B) 
COMMIT 

Schedule 

T1 T2 

A 

B 

Dependency Graph 

The cycle in the graph 
reveals the problem. The 
output of T1 depends on 

T2, and vice-versa. 

CMU SCS 

Example #2 – Lost Update 

Faloutsos/Pavlo CMU SCS 15-415/615 24 

T
I

M
E

 

BEGIN 
R(A) 
A = A-1 
 
 
 
 
W(A) 
COMMIT 

T1 T2 
BEGIN 
 
 
R(A) 
A = A-1 
W(A) 
COMMIT 

Schedule 

T1 T2 

A 

A 

Dependency Graph 



Faloutsos/Pavlo CMU - 15-415/615 

9 

CMU SCS 

Example #3 – Threesome 

Faloutsos/Pavlo CMU SCS 15-415/615 25 

T
I

M
E

 

BEGIN 
R(A) 
W(A) 
 
 
 
 
 
R(B) 
W(B) 
COMMIT 

T1 T2 
 
 
 
 
 
BEGIN 
R(B) 
W(B) 
COMMIT 

Schedule 

T1 T2 

Dependency Graph 

T3 
 
 
BEGIN 
R(A) 
W(A) 
COMMIT 

T3 

B 

A 

CMU SCS 

Example #3 – Threesome 

• Q: Is this equivalent to a serial execution? 

• A:  Yes (T2, T1, T3) 

– Notice that T3 should go after T2, although it 

starts before it! 

 

• Need an algorithm for generating serial 

schedule from an acyclic dependency graph. 

– Topological Sorting 

Faloutsos/Pavlo CMU SCS 15-415/615 26 

CMU SCS 

Example #4 – Inconsistent Analysis 

Faloutsos/Pavlo CMU SCS 15-415/615 27 

T
I

M
E

 

BEGIN 
R(A) 
A = A-10 
W(A) 
 
 
 
 
 
R(B) 
B = B+10 
W(B) 
COMMIT 

T1 T2 
BEGIN 
 
 
 
R(A) 
sum = A 
R(B) 
sum += B 
ECHO(sum) 
COMMIT 

Schedule 

T1 T2 

A 

B 

Dependency Graph 

Is it possible to create a 
schedule similar to this 
that is “correct” but still 
not conflict serializable? 



Faloutsos/Pavlo CMU - 15-415/615 

10 

CMU SCS 

Example #4 – Inconsistent Analysis 

Faloutsos/Pavlo CMU SCS 15-415/615 28 

T
I

M
E

 

BEGIN 
R(A) 
A = A-10 
W(A) 
 
 
 
 
 
R(B) 
B = B+10 
W(B) 
COMMIT 

T1 T2 
BEGIN 
 
 
 
R(A) 
sum = A 
R(B) 
sum += B 
ECHO(cnt) 
COMMIT 

Schedule 

T1 T2 

A 

B 

Dependency Graph 

T2 counts the number of 
active accounts. 

if(A>0): cnt++ 

if(B>0): cnt++ 

CMU SCS 

View Serializability 

• Alternative (weaker) notion of 

serializability. 

• Schedules S1 and S2 are view equivalent if: 

– If T1 reads initial value of A in S1, then T1 also 

reads initial value of A in S2. 

– If T1 reads value of A written by T2 in S1, then 

T1 also reads value of A written by T2 in S2. 

– If T1 writes final value of A in S1, then T1 also 

writes final value of A in S2. 

 Faloutsos/Pavlo CMU SCS 15-415/615 29 

CMU SCS 

View Serializability 

Faloutsos/Pavlo CMU SCS 15-415/615 30 

T
I

M
E

 

BEGIN 
R(A) 
 
 
W(A) 
 
COMMIT 

T1 T2 
 
BEGIN 
W(A) 
 
 
 
COMMIT 

Schedule 

T3 
 
 
 
BEGIN 
 
W(A) 
COMMIT 

BEGIN 
R(A) 
W(A) 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
W(A) 
COMMIT 

Schedule 

T3 
 
 
 
 
 
 
 
BEGIN 
W(A) 
COMMIT 

Allows all conflict 
serializable schedules + 

“blind writes” 

≡ 
VIEW 



Faloutsos/Pavlo CMU - 15-415/615 

11 

CMU SCS 

Serializability 

• View Serializability allows (slightly) more 

schedules than Conflict Serializability does. 

– But is difficult to enforce efficiently. 

• Neither definition allows all schedules that 

you would consider “serializable”. 

– This is because they don’t understand the 

meanings of the operations or the data (recall 

example #4) 

Faloutsos/Pavlo CMU SCS 15-415/615 31 

CMU SCS 

Serializability 

• In practice, Conflict Serializability is what 

gets used, because it can be enforced 

efficiently. 

– To allow more concurrency, some special cases 

get handled separately, such as for travel 

reservations, etc. 

 

Faloutsos/Pavlo CMU SCS 15-415/615 32 

CMU SCS 

All Schedules 

Schedules 

Faloutsos/Pavlo 15-415/615 33 

View Serializable 

Conflict Serializable 

Serial 



Faloutsos/Pavlo CMU - 15-415/615 

12 

CMU SCS 

Today’s Class 

• Serializability: concepts and algorithms 

• Locking-based Concurrency Control: 

– 2PL 

– Strict 2PL 

• Deadlocks 

Faloutsos/Pavlo CMU SCS 15-415/615 34 

CMU SCS 

Two-Phase Locking 

• Phase 1: Growing 

– Each txn requests the locks that it needs from 

the DBMS’s lock manager. 

– The lock manager grants/denies lock requests. 

• Phase 2: Shrinking 

– The txn is allowed to only release locks that it 

previously acquired. It cannot acquire new 

locks. 

 

Faloutsos/Pavlo CMU SCS 15-415/615 35 

CMU SCS 

BEGIN 
X-LOCK(A) 
R(A) 
W(A) 
 
 
R(A) 
UNLOCK(A) 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
X-LOCK(A) 
 
 
 
W(A) 
UNLOCK(A) 
COMMIT 

Executing with 2PL 

Faloutsos/Pavlo CMU SCS 15-415/615 36 

T
I

M
E

 

Lock Manager 

Granted (T1→A) 

Denied! 

Released (T2→A) 

Released (T1→A) 

Granted (T2→A) 



Faloutsos/Pavlo CMU - 15-415/615 

13 

CMU SCS 

Lock Types 

• Basic Types: 

– S-LOCK – Shared Locks (reads) 

– X-LOCK – Exclusive Locks (writes) 

 

Faloutsos/Pavlo CMU SCS 15-415/615 37 

Shared Exclusive 

Shared ✔ X 

Exclusive X X 

Compatibility Matrix 

CMU SCS 

Lock Management 

• Lock and unlock requests handled by the 

DBMS’s lock manager (LM). 

• LM contains an entry for each currently 

held lock: 

– Pointer to a list of txns holding the lock. 

– The type of lock held (shared or exclusive). 

– Pointer to queue of lock requests. 

 

Faloutsos/Pavlo CMU SCS 15-415/615 38 

CMU SCS 

Lock Management 

• When lock request arrives see if any other 

txn holds a conflicting lock. 

– If not, create an entry and grant the lock 

– Else, put the requestor on the wait queue 

• All lock operations must be atomic. 

• Lock upgrade: The txn that holds a shared 

lock upgrade to hold an exclusive lock. 

 

 
Faloutsos/Pavlo CMU SCS 15-415/615 39 



Faloutsos/Pavlo CMU - 15-415/615 

14 

CMU SCS 

BEGIN 
S-LOCK(A) 
R(A) 
 
 
X-LOCK(A) 
W(A) 
 
UNLOCK(A) 
COMMIT 

T1 T2 
BEGIN 
 
 
S-LOCK(A) 
R(A) 
 
 
X-LOCK(A) 
 
 
W(A) 
UNLOCK(A) 
COMMIT 

2PL – Lock Upgrade Example 

Faloutsos/Pavlo CMU SCS 15-415/615 40 

T
I

M
E

 

Lock Manager 

Granted (T1→A) 

Denied! 

Released (T2→A) 

Released (T1→A) 

Granted (T2→A) 

Granted (T1→A) 

Granted (T2→A) 

CMU SCS 

Two-Phase Locking 

• 2PL on its own is sufficient to guarantee 

conflict serializability (i.e., schedules whose 

precedence graph is acyclic), but, it is 

subject to cascading aborts. 

Faloutsos/Pavlo CMU SCS 15-415/615 41 

Growing Phase Shrinking Phase 

TIM E  

CMU SCS 

2PL – Cascading Aborts 

Faloutsos/Pavlo CMU SCS 15-415/615 42 

T
I

M
E

 

BEGIN 
X-LOCK(A) 
X-LOCK(B) 
R(A) 
W(A) 
UNLOCK(A) 
 
 
 
R(B) 
W(B) 
ABORT 

T1 T2 
BEGIN 
 
 
 
 
 
X-LOCK(A) 
R(A) 
W(A) 
  ⋮ 
 
 
 
 
 
 

Schedule 

This is a permissible 
schedule in 2PL, but we 

have to abort T2 too. 

This is all wasted work! 



Faloutsos/Pavlo CMU - 15-415/615 

15 

CMU SCS 

Strict Two-Phase Locking 

• The txn is not allowed to acquire/upgrade 

locks after the growing phase finishes. 

• Allows only conflict serializable schedules, 

but it is actually stronger than needed. 

Faloutsos/Pavlo CMU SCS 15-415/615 43 

Growing Phase Shrinking Phase 

TIM E  

Release all locks 
at end of txn. 

CMU SCS 

Examples 

• T1: Move $50 from Christos’ account to his 

bookie’s account. 

• T2: Compute the total amount in all 

accounts and return it to the application. 

• Legend: 

– A → Christos’ account. 

– B → The bookie’s account. 

Faloutsos/Pavlo CMU SCS 15-415/615 44 

CMU SCS 

Non-2PL Example 

45 

T
I

M
E

 

A=100, B=100 

Initial State 

150 

T2 Output 

BEGIN 
X-LOCK(A) 
R(A) 
A=A-50 
W(A) 
UNLOCK(A) 
 
 
 
X-LOCK(B) 
 
 
R(B) 
B=B+50 
W(B) 
UNLOCK(B) 
COMMIT 

T1 T2 
BEGIN 
 
S-LOCK(A) 
 
 
 
R(A) 
UNLOCK(A) 
S-LOCK(B) 
 
R(B) 
UNLOCK(B) 
ECHO(A+B) 
COMMIT 



Faloutsos/Pavlo CMU - 15-415/615 

16 

CMU SCS 

2PL Example 

46 

T
I

M
E

 

BEGIN 
X-LOCK(A) 
R(A) 
A=A-50 
W(A) 
X-LOCK(B) 
UNLOCK(A) 
 
 
R(B) 
B=B+50 
W(B) 
UNLOCK(B) 
COMMIT 

T1 T2 
BEGIN 
 
S-LOCK(A) 
 
 
 
 
R(A) 
S-LOCK(B) 
 
 
 
 
R(B) 
UNLOCK(A) 
UNLOCK(B) 
ECHO(A+B) 
COMMIT 

A=100, B=100 

Initial State 

200 

T2 Output 

CMU SCS 

Strict 2PL Example 

47 

T
I

M
E

 

BEGIN 
X-LOCK(A) 
R(A) 
A=A-50 
W(A) 
X-LOCK(B) 
R(B) 
B=B+50 
W(B) 
UNLOCK(A) 
UNLOCK(B) 
COMMIT 

T1 T2 
BEGIN 
 
S-LOCK(A) 
 
 
 
 
 
 
 
R(A) 
S-LOCK(B) 
R(B) 
ECHO(A+B) 
UNLOCK(A) 
UNLOCK(B) 
COMMIT 

A=100, B=100 

Initial State 

200 

T2 Output 

CMU SCS 

All Schedules 

Avoid 
Cascading 
Abort 

Schedules 

Faloutsos/Pavlo 15-415/615 48 

View Serializable 

Conflict Serializable 

Strict 2PL 

Serial 



Faloutsos/Pavlo CMU - 15-415/615 

17 

CMU SCS 

Two-Phase Locking 

• 2PL seems to work well. 

• Is that enough? Can we just go home now? 

Faloutsos/Pavlo CMU SCS 15-415/615 49 

CMU SCS 

BEGIN 
X-LOCK(A) 
 
 
 
R(A) 
X-LOCK(B) 
 
 

T1 T2 
BEGIN 
 
S-LOCK(B) 
R(B) 
S-LOCK(A) 
 

Shit Just Got Real 

Faloutsos/Pavlo CMU SCS 15-415/615 50 

T
I

M
E

 

Lock Manager 

Granted (T1→A) 

Denied! 

Granted (T2→B) 

Denied! 

CMU SCS 

Deadlocks 

• Deadlock: Cycle of transactions waiting for 

locks to be released by each other. 

• Two ways of dealing with deadlocks: 

– Deadlock prevention 

– Deadlock detection 

• Many systems just punt and use timeouts 

– What are the dangers with this approach? 

 

Faloutsos/Pavlo CMU SCS 15-415/615 51 



Faloutsos/Pavlo CMU - 15-415/615 

18 

CMU SCS 

Today’s Class 

• Serializability: concepts and algorithms 

• One solution: Locking 

– 2PL 

– variations 

• Deadlocks: 

– Detection 

– Prevention 

Faloutsos/Pavlo CMU SCS 15-415/615 52 

CMU SCS 

Deadlock Detection 

• The DBMS creates a waits-for graph: 

– Nodes are transactions 

– Edge from Ti to Tj if Ti is waiting for Tj to 

release a lock 

• The system periodically check for cycles in 

waits-for graph. 

 

Faloutsos/Pavlo CMU SCS 15-415/615 53 

CMU SCS 

Deadlock Detection 

Faloutsos/Pavlo CMU SCS 15-415/615 54 

T1 T2 

Waits-for Graph 

T3 

T
I

M
E

 

BEGIN 
S-LOCK(A) 
S-LOCK(D) 
 
 
S-LOCK(B) 

T1 T2 
BEGIN 
 
 
X-LOCK(B) 
 
 
 
X-LOCK(C) 

Schedule 

T3 
BEGIN 
 
 
 
S-LOCK(C) 
 
 
 
X-LOCK(A) 



Faloutsos/Pavlo CMU - 15-415/615 

19 

CMU SCS 

Deadlock Detection 

• How often should we run the algorithm? 

• How many txns are typically involved? 

• What do we do when we find a deadlock? 

 

Faloutsos/Pavlo CMU SCS 15-415/615 55 

CMU SCS 

Deadlock Handling 

• Q: What do we do? 

• A: Select a “victim” and 

rollback it back to break the 

deadlock.  

Faloutsos/Pavlo CMU SCS 15-415/615 56 

CMU SCS 

Deadlock Handling 

• Q: Which one do we choose? 

• A: It depends… 

– By age (lowest timestamp) 

– By progress (least/most queries executed) 

– By the # of items already locked 

– By the # of txns that we have to rollback with it 

• We also should consider the # of times a txn 

has been restarted in the past. 

 

 

 

Faloutsos/Pavlo CMU SCS 15-415/615 57 



Faloutsos/Pavlo CMU - 15-415/615 

20 

CMU SCS 

Deadlock Handling 

• Q: How far do we rollback? 

• A: It depends… 

– Completely 

– Minimally (i.e., just enough to release locks) 

 

Faloutsos/Pavlo CMU SCS 15-415/615 58 

CMU SCS 

Today’s Class 

• Serializability: concepts and algorithms 

• One solution: Locking 

– 2PL 

– variations 

• Deadlocks: 

– Detection 

– Prevention 

Faloutsos/Pavlo CMU SCS 15-415/615 59 

CMU SCS 

Deadlock Prevention 

• When a txn tries to acquire a lock that is held 

by another txn, kill one of them to prevent a 

deadlock. 

• No waits-for graph or detection algorithm. 

Faloutsos/Pavlo CMU SCS 15-415/615 60 



Faloutsos/Pavlo CMU - 15-415/615 

21 

CMU SCS 

Deadlock Prevention 

• Assign priorities based on timestamps: 

– Older → higher priority (e.g., T1 > T2) 

• Two different prevention policies: 

– Wait-Die: If T1 has higher priority, T1 waits for 

T2; otherwise T1 aborts (“old wait for young”) 

– Wound-Wait: If T1 has higher priority, T2 

aborts; otherwise T1 waits (“young wait for old”) 

 

Faloutsos/Pavlo CMU SCS 15-415/615 61 

CMU SCS 

Deadlock Prevention 

Faloutsos/Pavlo CMU SCS 15-415/615 62 

BEGIN 
 
 
X-LOCK(A) 
   ⋮ 
 

T1 T2 
 
BEGIN 
X-LOCK(A) 
   ⋮ 

BEGIN 
X-LOCK(A) 
   ⋮ 
 

T1 T2 
 
 
BEGIN 
X-LOCK(A) 
   ⋮ 

Wait-Die 

T1 waits 

Wound-Wait 

T2 aborted 

Wait-Die 

T2 aborted 

Wound-Wait 

T2 waits 

CMU SCS 

Deadlock Prevention 

• Q: Why do these schemes guarantee no 

deadlocks? 

• A: Only one “type” of direction allowed. 

 

• Q: When a transaction restarts, what is its 

(new) priority? 

• A: Its original timestamp. Why? 

 

Faloutsos/Pavlo CMU SCS 15-415/615 63 



Faloutsos/Pavlo CMU - 15-415/615 

22 

CMU SCS 

Performance Problems 

• Executing more txns can increase the 

throughput. 

• But there is a tipping point where adding 

more txns actually makes performance 

worse. 

Faloutsos/Pavlo CMU SCS 15-415/615 64 

CMU SCS 

Lock Thrashing 

• When a txn holds a lock, other txns have to 

wait for it to finish. 

• If you have a lot of txns with a lot of locks, 

then you will have a lot of waiting. 

• A lot of waiting means txns take longer and 

hold their locks longer… 

Faloutsos/Pavlo CMU SCS 15-415/615 65 

CMU SCS 

Lock Thrashing 

Faloutsos/Pavlo CMU SCS 15-415/615 66 

No Locks With Locks 

# of Concurrent Txns # of Concurrent Txns 



Faloutsos/Pavlo CMU - 15-415/615 

23 

CMU SCS 

Locking in Practice 

• You typically don’t set locks manually. 

• Sometimes you will need to provide the 

DBMS with hints to help it to improve 

concurrency. 

• Also useful for doing major changes. 

 

 

Faloutsos/Pavlo CMU SCS 15-415/615 67 

CMU SCS 

LOCK TABLE 

 

 

 

• Explicitly locks a table. 

• Not part of the SQL standard. 

– Postgres Modes: SHARED, EXCLUSIVE 

– MySQL Modes: READ, WRITE 

Faloutsos/Pavlo CMU SCS 15-415/615 68 

LOCK TABLE <table> IN <mode> MODE; 

Postgres 

LOCK TABLE <table> <mode>; 

MySQL 

CMU SCS 

SELECT...FOR UPDATE 

 

 

• Perform a select and then sets an exclusive 

lock on the matching tuples. 

• Can also set shared locks: 

– Postgres: FOR SHARE 

– MySQL: LOCK IN SHARE MODE 

Faloutsos/Pavlo CMU SCS 15-415/615 69 

SELECT * FROM <table> 
 WHERE <qualification> FOR UPDATE; 



Faloutsos/Pavlo CMU - 15-415/615 

24 

CMU SCS 

Locking Demo 

Faloutsos/Pavlo CMU SCS 15-415/615 70 

CMU SCS 

Concurrency Control Summary 

• Conflict Serializability ↔ Correctness 

• Automatically correct interleavings: 

– Locks + protocol (2PL, S2PL ...) 

– Deadlock detection + handling 

– Deadlock prevention 

 

• Big Assumption: The database is fixed. 

– That is, objects are not inserted or deleted. 

 
Faloutsos/Pavlo CMU SCS 15-415/615 71 


