Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#21: Concurrency Control
(R&G ch. 17)

g CMU SCS
Last Class

* Introduction to Transactions
« ACID

« Concurrency Control (2PL)
* Crash Recovery (WAL)

Faloutsos/Pavio CMU SCS 15-415/615 2

% CMU SCS
Last Class

« For Isolation property, serial execution of
transactions is safe but slow

— We want to find schedules equivalent to serial
execution but allow interleaving.

» The way the DBMS does this is with its
concurrency control protocol.

Faloutsos/Pavio CMU SCS 15-415/615 3

Faloutsos/Pavlo

% CMU SCS
Today’s Class

« Serializability: concepts and algorithms
« Locking-based Concurrency Control:

- 2PL

— Strict 2PL

» Deadlocks

Faloutsos/Pavio CMU SCS 15-415/615

CMU - 15-415/615

g CMU SCS
Formal Properties of Schedules

- Serial Schedule: A schedule that does not
interleave the actions of different
transactions.

- Equivalent Schedules: For any database
state, the effect of executing the first
schedule is identical to the effect of
executing the second schedule.*

(*) no matter what the arithmetic operations are!

Faloutsos/Pavio CMU SCS 15-415/615

CMU SCS

Formal Properties of Schedules

« Serializable Schedule: A schedule that is
equivalent to some serial execution of the
transactions.

« Note: If each transaction preserves
consistency, every serializable schedule
preserves consistency.

Faloutsos/Pavio CMU SCS 15-415/615

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Example
T1 12
BEGIN BEGIN
A=A+100 A=A*1.06
B=B-100 B=B*1.06
COMMIT COMMIT

 Consider two txns:
— T1 transfers $100 from B’s account to A’s
- T2 credits both accounts with 6% interest.

Faloutsos/Pavio CMU SCS 15-415/615 7

g CMU SCS
Example
T1 T2
BEGIN BEGIN
A=A+100 A=A*1.06
B=B-100 B=B*1.06
COMMIT COMMIT

« Assume at first A and B each have $1000.

* Q: What are the possible outcomes of
running T1 and T2?

Faloutsos/Pavio CMU SCS 15-415/615 8

% CMU SCS
Example

* Q: What are the possible outcomes of
running T1 and T2 together?

« A: Many! But A+B should be:
$2000*1.06=$2120

* There is no guarantee that T1 will execute
before T2 or vice-versa, if both are
submitted together. But, the net effect must
be equivalent to these two transactions
running serially in some order.

Faloutsos/Pavio CMU SCS 15-415/615 9

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Example

* Legal outcomes:
— A=1166, B=954 —$2120
— A=1160, B=960 —$2120

 The outcome depends on whether T1
executes before T2 or vice versa.

Faloutsos/Pavio CMU SCS 15-415/615 10

Serial Execution Example
Schedule Schedule
T1 T2 T1 T2
BEGIN BEGIN
A=A+100 A=A*1.06
B=B-100 B=B*1.06
COMMIT COMMIT
BEGIN — BEGIN
A=A*1.06 I A=A+100
B=B*1.06 B=B-100
COMMIT COMMIT
=1166, B=954 =1160, B=960
Faloutsos/Pavio CMU SCS 15-415/615 1

CMU SCS

Interleaving Example (Good)

Schedule Schedule
T1 T2 T1 T2
BEGIN BEGIN
A=A+100 A=A+100
BEGIN B=B-100

A=A*1.06 COMMIT

B=B-100 = BEGIN
—_ A=A*1.06
<%=B*1 . op B=B*1.06

Faloutsos/Pavio CMU SCS 15-415/615 12

Faloutsos/Pavlo CMU - 15-415/615

Interleaving Example (Bad)
Schedule

T1 T2
BEGIN
A=A+100

BEGTN A=1166, B=954
_ Comrr or
B-5- 100 A=1160, B=960
A=1166, B=960
ﬁ The bank lost $6! |

CMU SCS

Formal Properties of Schedules

 There are different levels of serializability:

— Conflict Serlallzabllltyﬁ All DBMSs Support this.]
— View Serializability

This is harder but allows for
more concurrency.

Faloutsos/Pavio CMU SCS 15-415/615 14

CMU SCS

Conflicting Operations

» We need a formal notion of equivalence that
can be implemented efficiently...
— Base it on the notion of “conflicting” operations

« Definition: Two operations conflict if;
— They are by different transactions,

— They are on the same object and at least one of
them is a write.

Faloutsos/Pavio CMU SCS 15-415/615 15

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Conflict Serializable Schedules

» Two schedules are conflict equivalent iff:

— They involve the same actions of the same
transactions, and

— Every pair of conflicting actions is ordered the
same way.
« Schedule S is conflict serializable if:
— Sis conflict equivalent to some serial schedule.

— Note that some serializable schedules are NOT
conflict serializable.

Faloutsos/Pavio CMU SCS 15-415/615 16

CMU SCS

Conflict Serializability Intuition

« A schedule S is conflict serializable if:

— You are able to transform S into a serial
schedule by swapping consecutive non-
conflicting operations of different transactions.

Faloutsos/Pavio CMU SCS 15-415/615 17

CMU sCs
Conflict Serializability Intuition
Schedule Serial Schedule
T1 T2 T1 T2
BEGIN BEGIN BEGIN
R(A) R(A)
W(A) W(A)
R(B) R(A) R(B)
n(B)g R(A) = |w(B)
H(B)/ R(A) - COMMIT BEGIN
W(B) W(A) R(A)
COMMIT W(A)
R(B) R(B)
W(B) W(B)
COMMIT COMMIT
Faloutsos/Pavio CMU SCS 15-415/615 18

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Conflict Serializability Intuition

Schedule Serial Schedule
T1 T2 T1 T2
BEGIN BEGIN BEGIN
R(A) R(A)
R(A) W(A)

W(A) COMMIT |BEGIN
W(A)A,/‘, E R(A)

COMMIT @ COMMIT W(A)
o, COMMIT

Faloutsos/Pavio CMU SCS 15-415/615 19

g CMU SCS)] -
Serializability

* Q: Are there any faster algorithms to figure
this out other than transposing operations?

Faloutsos/Pavio CMU SCS 15-415/615 20

% CMU SCS
Dependency Graphs

+ One node per txn.

+ Edge from Ti to Tj if:
— An operation Oi of Ti conflicts with an
operation Oj of Tj and
— Oi appears earlier in the schedule than O;j.

» Also known as a “precedence graph”

Faloutsos/Pavio CMU SCS 15-415/615 21

Faloutsos/Pavlo

% CMU SCS
Dependency Graphs

» Theorem: A schedule is conflict
serializable if and only if its dependency
graph is acyclic.

Faloutsos/Pavio CMU SCS 15-415/615 22

CMU - 15-415/615

g CMU SCS
Example #1

Schedule Dependency Graph
T1 T2 A

BEGIN BEGIN
R(A)
O

* ot

R(A)
@ W(A)
S, R(B)

/ COMMIT The cycle in the graph

R(B) reveals the problem. The
W(B) output of T1 depends on
comnzT T2, and vice-versa.

Faloutsos/Pavio CMU SCS 15-415/615 23

Example #2 — Lost Update
Schedule Dependency Graph

T1 T2 A

BEGIN BEGIN

R(A)

A=
N, | @@
'?%/"\gt()ﬁr)m A

W(A)

COMMIT

Faloutsos/Pavio CMU SCS 15-415/615 24

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Example #3 — Threesome

Schedule Dependency Graph
T1 T2 T3

BEGIN
@—®
W(A) e~ BEGIN

[R(A)

W(A) A

BEGIN | COMMIT

)

W(B)
R(B)4"T commrT
W(B)
COMMIT
Faloutsos/Pavio CMU SCS 15-415/615 25

g CMU SCS
Example #3 — Threesome

+ Q: Is this equivalent to a serial execution?
* A: Yes(T2,T1,T3)

— Notice that T3 should go after T2, although it
starts before it!

* Need an algorithm for generating serial
schedule from an acyclic dependency graph.
— Topological Sorting

Faloutsos/Pavio CMU SCS 15-415/615 26

CMU sCs
Example #4 — Inconsistent Analysis
Schedule Dependency Graph
T1 T2 A
BEGIN BEGIN
G I®
A = A-10
W(A)
A R(A)
sum = A B
R(B)
sum += B R B
ECHO (sum) Is it possible to create a
RE) Lo |7 schedule similar to this
W(B) that is “correct” but still
COMMIT not conflict serializable?
Faloutsos/Pavio CMU SCS 15-415/615 27

Faloutsos/Pavlo

CMU SCS

Example #4 — Inconsistent Analysis

CMU - 15-415/615

Schedule Dependency Graph
T1 T2 A
BEGIN BEGIN
R(A)
A = A-10
W(A)
'\. R(A) B
if(A>0): cnt++
R(B)
if(B>0): cnt++
ECHO(cnt)
RE Lo | ™7 T2 counts the number of
W(B) active accounts.
COMMIT
Faloutsos/Pavio CMU SCS 15-415/615 28
g CMU SCS
View Serializability

« Alternative (weaker) notion of
serializability.
 Schedules S1 and S2 are view equivalent if:

— If T1 reads initial value of A in S1, then T1 also
reads initial value of A in S2.

— If T1 reads value of A written by T2 in S1, then
T1 also reads value of A written by T2 in S2.

— If T1 writes final value of A in S1, then T1 also
writes final value of A in S2.

Faloutsos/Pavio CMU SCS 15-415/615 29

e
View Serializability

Schedule Schedule
T1 T2 T3 T1 T2 T3
BEGIN BEGIN
R(A) BEGIN R(A)
W(A) W(A)
BEGIN view | | COMMIT
W(A) —_ BEGIN
gW(A)) = W(A)
COMMIT | COMMI 'EOHH!(COMMIT
Allows all conflict Qv
ows all conflic
serializable schedules + sl
L “blind writes”
Faloutsos/Pavio CMU SCS 15-415/615 30

10

Faloutsos/Pavlo CMU - 15-415/615

EAi N
Serializability

« View Serializability allows (slightly) more
schedules than Conflict Serializability does.
— But is difficult to enforce efficiently.
« Neither definition allows all schedules that
you would consider “serializable”.

— This is because they don’t understand the
meanings of the operations or the data (recall
example #4)

Faloutsos/Pavio CMU SCS 15-415/615 31

g CMU SCS)] -
Serializability

« In practice, Conflict Serializability is what
gets used, because it can be enforced
efficiently.

— To allow more concurrency, some special cases

get handled separately, such as for travel
reservations, etc.

Faloutsos/Pavio CMU SCS 15-415/615 32
% CMU SCS
Schedules
(\
All Schedules - —
View Serializable
Conflict Serializable
Serial
N\ J
. J
Faloutsos/Pavio 15-415/615 33

11

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Today’s Class

« Serializability: concepts and algorithms
« Locking-based Concurrency Control:

m) - 2PL

— Strict 2PL
» Deadlocks

Faloutsos/Pavio CMU SCS 15-415/615 34

g CMU SCS]
Two-Phase Locking

» Phase 1: Growing
— Each txn requests the locks that it needs from
the DBMS’s lock manager.
— The lock manager grants/denies lock requests.
 Phase 2: Shrinking

— The txn is allowed to only release locks that it

previously acquired. It cannot acquire new
locks.

Faloutsos/Pavio CMU SCS 15-415/615 35

% CMU SCS
Executing with 2PL
o\
T1 T2 1 “\Lock Manager
BEGIN R
X-LOCK(A) 2| Granted (T1—A)
R(A)
W(A)
BEGIN
X-LOCK(A) Denied!
R(A) "
UNLOCK (A) = »| Released (T1—A)
COMMIT v
W(A) Granted (T2—A)
UNLOCK (A) Released (T2—A)
COMMIT
-
Faloutsos/Pavio CMU SCS 15-415/615 36

12

Faloutsos/Pavlo

% CMU SCS
Lock Types

- Basic Types:
—S-LOCK - Shared Locks (reads)
— X=-LOCK - Exclusive Locks (writes)

Compatibility Matrix

‘ Shared Exclusive

Shared 4 X
Exclusive X X
Faloutsos/Pavio CMU SCS 15-415/615

CMU - 15-415/615

CMU SCS

Lock Management

 Lock and unlock requests handled by the
DBMS’s lock manager (LM).

» LM contains an entry for each currently
held lock:
— Pointer to a list of txns holding the lock.
— The type of lock held (shared or exclusive).
— Pointer to queue of lock requests.

Faloutsos/Pavio CMU SCS 15-415/615

CMU SCS

Lock Management

« When lock request arrives see if any other
txn holds a conflicting lock.

— If not, create an entry and grant the lock
— Else, put the requestor on the wait queue
« All lock operations must be atomic.

 Lock upgrade: The txn that holds a shared
lock upgrade to hold an exclusive lock.

Faloutsos/Pavio CMU SCS 15-415/615

13

Faloutsos/Pavlo

CMU SCS

2PL — Lock Upgrade Example

i
T1 T2 | ILock Manager
BEGIN BEGIN
S-LOCK(A) > Granted (T1—A)
R(A)
S-LOCK(A) ¥==2| Granted (T2—A)
R(A)
X-LOCK(A) Granted (T1—A)
W(A)
X-LOCK(A) Denied!
UNLOCK (A) st Released (T1—A)
COMMIT v
W(A) Granted (T2—A)
UNLOCK (A) Released (T2—A)
\Jeeasec(P2>a))
COMMIT
Faloutsos/Pavio CMU SCS 15-415/615 40

CMU - 15-415/615

g CMU SCS]
Two-Phase Locking

« 2PL on its own is sufficient to guarantee
conflict serializability (i.e., schedules whose
precedence graph is acyclic), but, it is
subject to cascading aborts.

of Locks

Growing Phase Shrinking Phase

Faloutsos/Pavio 41

CMU SCS

2PL — Cascading Aborts

Schedule
T1 T2
§FE£ﬁK(A) BEGIN —— This is a permissible
X-LOCK(B) schedule in 2PL, but we
‘m; have to abort T2 too.
UNLOCK(A)
X-LOCK(A)
R(A) — —
W(A) [This is all wasted work!]
R(B) :
<ABORT ,
Faloutsos/Pavio CMU SCS 15-415/615 42

14

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Strict Two-Phase Locking

 The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

« Allows only conflict serializable schedules,
but it is actually stronger than needed.

Release all locks
at end of txn.

of Locks

Growing Phase Shrinking Phase

Faloutsos/Pavio

g CMU SCS
Examples

* T1: Move $50 from Christos’ account to his
bookie’s account.

» T2: Compute the total amount in all
accounts and return it to the application.
 Legend:

— A — Christos’ account.

— B — The bookie’s account.

Faloutsos/Pavio CMU SCS 15-415/615 44
% CMU SCS
Non-2PL Example
T1 T2 i
BEGIN BEGIN Initial State
X-LOCK(A) - -
R 5-LoCK(A) A=100, B=100
A=A-50 .
W(A) ;@
UNLOCK(A
A R(A) T2 Output
UNLOCK(A)
S-LOCK(B) 150
X-LOCK(B)
0 |RGB)
v m
R(B) (ECHO (A+B
B=B+50
W(B)
UNLOCK(B)
COMMIT "

15

Faloutsos/Pavlo

CMU - 15-415/615

% CMU SCS
2PL Example
T1 T2 .
BEGIN BEGIN Initial State
X-LOCK (A) - -
RA) S-LOCK(A) A=100, B=100
A=A-50 .
W(A) n @
X-LOCK(B) | =
UNLOCK(A) | W T2 Output
R(A)
S-LOCK(B) 200
R(B) .
B=B+50 HS)
W(B) :
UNLOCK(B) v
COMMIT R(B)
UNLOCK(A)
UNLOCK(B)
ECHO (A+B)
COMMIT 46
CMU sCs
Strict 2PL Example
T1 T2 .
BEGIN BEGIN Initial State
X-LOCK(A) - -
R(A) S-LOCK(A) A=100, B=100
A=A-50 :
W(A) HS)
X-LOCK(B -
R(B) ® . T2 Output
B=B+50 -
W(B) - 200
UNLOCK(A) v
UNLOCK(B) |R(A)
COMMIT S-LOCK(B)
R(B)
ECHO (A+B)
UNLOCK(A)
UNLOCK(B)
COMMIT p

% CMU SCS

Schedules

(\
All Schedules - —
View Serializable
Conflict Serializable
Avoid
Cascading
Abort
N\ J
. J
Faloutsos/Pavio 15-415/615 48

16

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS]
Two-Phase Locking

» 2PL seems to work well.
« Is that enough? Can we just go home now?

Faloutsos/Pavio CMU SCS 15-415/615 49
g CMU SCS
Shit Just Got Real
——————————
T1 T2 \‘] \Lock Manager
BEGIN BEGIN
X-LOCK(A) Granted (T1—A)
— /S-LOCK(B) —=| Granted (T2—B)
R(B)
.@‘ S-LOCK(A) === | Denied!
R(A) .
X-LOCK(B) TR »| Denied!
L 4 v -
Faloutsos/Pavio CMU SCS 15-415/615 50
% CMU SCS
Deadlocks

« Deadlock: Cycle of transactions waiting for
locks to be released by each other.
« Two ways of dealing with deadlocks:
— Deadlock prevention
— Deadlock detection
« Many systems just punt and use timeouts
— What are the dangers with this approach?

Faloutsos/Pavio CMU SCS 15-415/615 51

17

Faloutsos/Pavlo

CMU - 15-415/615

% CMU SCS
Today’s Class

« Serializability: concepts and algorithms
« One solution: Locking

- 2PL

— variations
« Deadlocks:

mm) — Detection

— Prevention

Faloutsos/Pavio

CMU SCS 15-415/615

CMU SCS

Deadlock Detection

» The DBMS creates a waits-for graph:
— Nodes are transactions

— Edge from Ti to Tj if Ti is waiting for Tj to
release a lock

« The system periodically check for cycles in
waits-for graph.

Faloutsos/Pavio CMU SCS 15-415/615

CMU SCS

Deadlock Detection

Schedule Waits-for Graph
T1 T2 T3
BEGIN BEGIN BEGIN
S-LOCK(A),
s-Lock(D)"
)
S-LOCK(C) @
S-LOCK(B) fl
X-LOCK(A)
Faloutsos/Pavio CMU SCS 15-415/615 54

18

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Deadlock Detection

 How often should we run the algorithm?
« How many txns are typically involved?
» What do we do when we find a deadlock?

Faloutsos/Pavio CMU SCS 15-415/615 55

g CMU SCS]
Deadlock Handling

Waits-for Graph

* Q: What do we do? @)
* A: Select a “victim” and Q
rollback it back to break the
deadlock.

Faloutsos/Pavio CMU SCS 15-415/615 56

% CMU SCS]
Deadlock Handling

Waits-for Graph
« Q: Which one do we choose? @)
* A: It depends... '
— By age (lowest timestamp) @
— By progress (least/most queries executed)
— By the # of items already locked
— By the # of txns that we have to rollback with it

» We also should consider the # of times a txn
has been restarted in the past.

Faloutsos/Pavio CMU SCS 15-415/615 57

19

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Deadlock Handling

Waits-for Graph

* Q: How far do we rollback?
: @ @®
* A: It depends... @
— Completely
— Minimally (i.e., just enough to release locks)

Faloutsos/Pavio CMU SCS 15-415/615

g CMU SCS
Today’s Class

Serializability: concepts and algorithms
* One solution: Locking
- 2PL
— variations
« Deadlocks:
— Detection
=) - Prevention

Faloutsos/Pavio CMU SCS 15-415/615

CMU SCS

Deadlock Prevention

« When a txn tries to acquire a lock that is held

by another txn, kill one of them to prevent a
deadlock.

» No waits-for graph or detection algorithm.

Faloutsos/Pavio CMU SCS 15-415/615 60

20

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Deadlock Prevention

« Assign priorities based on timestamps:
— Older — higher priority (e.g., T1 > T2)
» Two different prevention policies:
— Wait-Die: If T1 has higher priority, T1 waits for
T2; otherwise T1 aborts (‘“old wait for young”)
— Wound-Wait: If T1 has higher priority, T2
aborts; otherwise T1 waits (“young wait for old”)

Faloutsos/Pavio CMU SCS 15-415/615 61

CMU SCS

Deadlock Prevention

T1 T2 A .
BEGIN Wait-Die Wound-Wait

RoLotK(A) » T1 waits T2 aborted
X-LOCK(A)¥ :

T1 T2
BEGIN oo Wai
X-LOCK(A) Wait-Die Wound-Wait
: BEGIN » .
\“X-LOCK(A) T2 aborted T2 waits
Faloutsos/Pavio CMU SCS 15-415/615 62

CMU SCS

Deadlock Prevention

* Q: Why do these schemes guarantee no
deadlocks?

» A: Only one “type” of direction allowed.

* Q: When a transaction restarts, what is its
(new) priority?
« A: Its original timestamp. Why?

Faloutsos/Pavio CMU SCS 15-415/615 63

21

Faloutsos/Pavlo

CMU SCS

Performance Problems

« Executing more txns can increase the
throughput.

« But there is a tipping point where adding
more txns actually makes performance
worse.

Faloutsos/Pavio CMU SCS 15-415/615 64

CMU - 15-415/615

g CMU SCS]
Lock Thrashing

+ When a txn holds a lock, other txns have to
wait for it to finish.

« If you have a lot of txns with a lot of locks,
then you will have a lot of waiting.

« A lot of waiting means txns take longer and
hold their locks longer...

Faloutsos/Pavio CMU SCS 15-415/615 65

% CMU SCS]
Lock Thrashing

No Locks \ With Locks

Throughput {Million txnfs)
P S R
Throughput (Million ten/s)

ce oo e m e e
N B O ® O N

OO R H NN W W

0 200 400 600 BOO 1000 1200 ’ 200 400 600 800 1000 12
of Concurrent Txns # of Concurrent Txns

Faloutsos/Pavio CMU SCS 15-415/615 66

00

22

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Locking in Practice

* You typically don’t set locks manually.

« Sometimes you will need to provide the
DBMS with hints to help it to improve
concurrency.

« Also useful for doing major changes.

Faloutsos/Pavio CMU SCS 15-415/615 67

CMU SCS

LOCK TABLE

'Postgres

{LOCK TABLE <table> IN <mode> MODE;
MysQL

{LOCK TABLE <table> <mode>;

Explicitly locks a table.

Not part of the SQL standard.

— Postgres Modes: SHARED, EXCLUSIVE
— MySQL Modes: READ, WRITE

Faloutsos/Pavio CMU SCS 15-415/615 68

CMU SCS

SELECT...FOR UPDATE

SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

« Perform a select and then sets an exclusive
lock on the matching tuples.

« Can also set shared locks:
— Postgres: FOR SHARE
— MySQL: LOCK IN SHARE MODE

Faloutsos/Pavio CMU SCS 15-415/615 69

23

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Locking Demo
Faloutsos/Pavio CMU SCS 15-415/615 70
g CMU SCS

Concurrency Control Summary

« Conflict Serializability « Correctness
« Automatically correct interleavings:

— Locks + protocol (2PL, S2PL ...)

— Deadlock detection + handling

— Deadlock prevention

 Big Assumption: The database is fixed.
— That is, objects are not inserted or deleted.

Faloutsos/Pavio CMU SCS 15-415/615 71

24

