
Faloutsos/Pavlo CMU - 15-415/615

1

CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#22: Concurrency Control – Part 2

 (R&G ch. 17)

CMU SCS

Last Class

• A concurrency control scheme uses locks

and aborts to ensure correctness.

• Conflict vs. View Serializability

• (Strict) 2PL is popular.

• We need to handle deadlocks in 2PL:

– Detection: Waits-for graph

– Prevention: Abort some txns, defensively

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Last Class Assumption

• We assumed that the database was fixed

collection of independent objects.

– No objects are added or deleted.

– No relationship between objects.

– No indexes.

Faloutsos/Pavlo CMU SCS 15-415/615 3

Faloutsos/Pavlo CMU - 15-415/615

2

CMU SCS

Today‟s Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Transaction Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

Lock Granularities

• When we say that a txn acquires a “lock”,

what does that actually mean?

– On a field? Record? Page? Table?

• Ideally, each txn should obtain fewest

number of locks that is needed…

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Database Lock Hierarchy

Faloutsos/Pavlo CMU SCS 15-415/615 6

Database

Table 1 Table 2

Tuple 1

Attr 1

Tuple 2

Attr 2

Tuple n …

Attr n …

T1

Faloutsos/Pavlo CMU - 15-415/615

3

CMU SCS

Example

• T1: Get the balance of Christos‟ shady off-

shore bank account.

• T2: Increase all account balances by 1%.

• Q: What locks should they obtain?

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Example

• Q: What locks should they obtain?

• A: Multiple

– Exclusive + Shared for leafs of lock tree.

– Special Intention locks for higher levels

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

Intention Locks

• Intention locks allow a higher level node to

be locked in S or X mode without having to

check all descendent nodes.

• If a node is in an intention mode, then

explicit locking is being done at a lower

level in the tree.

Faloutsos/Pavlo CMU SCS 15-415/615 9

Faloutsos/Pavlo CMU - 15-415/615

4

CMU SCS

Intention Locks

• Intention-Shared (IS): Indicates explicit

locking at a lower level with shared locks.

• Intention-Exclusive (IX): Indicates locking

at lower level with exclusive or shared locks

• Shared+Intention-Exclusive (SIX): The

subtree rooted by that node is locked

explicitly in shared mode and explicit

locking is being done at a lower level with

exclusive-mode locks.
Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

Compatibility Matrix

Faloutsos/Pavlo CMU SCS 15-415/615 11

IS IX S SIX X

IS ✔ ✔ ✔ ✔ X

IX ✔ X X X

S ✔ X X

SIX X X

X X

T
1

 H
o
ld

s

T2 Wants

CMU SCS

Multiple Granularity Protocol

Faloutsos/Pavlo CMU SCS 15-415/615 12

IS

S IX

SIX

X

P
r

iv
il

e
g

e
s

Stronger

Weaker

Faloutsos/Pavlo CMU - 15-415/615

5

CMU SCS

Locking Protocol

• Each txn obtains appropriate lock at highest

level of the database hierarchy.

• To get S or IS lock on a node, the txn must

hold at least IS on parent node.

– What if txn holds SIX on parent? S on parent?

• To get X, IX, or SIX on a node, must hold

at least IX on parent node.

Faloutsos/Pavlo CMU SCS 15-415/615 13

CMU SCS

Example – Two-level Hierarchy

Faloutsos/Pavlo CMU SCS 15-415/615 14

Table R

Tuple 2 Tuple 1 Tuple n …

T1

S
T1

IS
T1

T2

X
T2 IX

T2

Read Write

CMU SCS

Example – Threesome

• Assume three txns execute at same time:

– T1: Scan R and update a few tuples.

– T2: Scan a portion of tuples in R.

– T3: Scan all tuples in R.

Faloutsos/Pavlo CMU SCS 15-415/615 15

Table R

Tuple 2 Tuple 1 Tuple n …

Faloutsos/Pavlo CMU - 15-415/615

6

CMU SCS

Example – Threesome

Faloutsos/Pavlo CMU SCS 15-415/615 16

Table R

Tuple 1 Tuple n …

T1

S
T1

SIX
T1

T3

X
T1 IS

T2

Read Write

T2

Write

S
T3

Tuple 2

X
T3

S
T3

CMU SCS

Example – Threesome

• T1: Get an SIX lock on R, then get X lock

on tuples that are updated.

• T2: Get an IS lock on R, and repeatedly get

an S lock on tuples of R.

• T3: Two choices:

– T3 gets an S lock on R.

– OR, T3 could behave like T2; can use lock

escalation to decide which.

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Lock Escalation

• Lock escalation dynamically asks for

coarser-grained locks when too many low

level locks acquired.

Faloutsos/Pavlo CMU SCS 15-415/615 18

Faloutsos/Pavlo CMU - 15-415/615

7

CMU SCS

Multiple Lock Granularities

• Useful in practice as each txn only needs a

few locks.

• Intention locks help improve concurrency:

– Intention-Shared (IS): Intent to get S lock(s)

at finer granularity.

– Intention-Exclusive (IX): Intent to get X

lock(s) at finer granularity.

– Shared+Intention-Exclusive (SIX): Like S

and IX at the same time.

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

Today‟s Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Transaction Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

Locking in B+Trees

• Q: What about locking indexes?

• A: They are not quite like other database

elements so we can treat them differently:

– It‟s okay to have non-serializable concurrent

access to an index as long as the accuracy of the

index is maintained.

Faloutsos/Pavlo CMU SCS 15-415/615 21

Faloutsos/Pavlo CMU - 15-415/615

8

CMU SCS

Example

• T1 wants to insert in H

• T2 wants to insert in I

• Q: Why not plain 2PL?

• A: Because txns have

to hold on to their

locks for too long!

Faloutsos/Pavlo CMU SCS 15-415/615 22

G I H

F E D

C B

A

...

...

X
T1

X
T1

X
T1

X
T1

root

CMU SCS

Lock Crabbing

• Improves concurrency for B+Trees.

• Get lock for parent; get lock for child;

release lock for parent if “safe”.

• Safe Nodes: Any node that won‟t split or

merge when updated.

– Not full (on insertion)

– More than half-full (on deletion)

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Lock Crabbing

• Search: Start at root and go down;

repeatedly,

– S lock child

– then unlock parent

• Insert/Delete: Start at root and go down,

obtaining X locks as needed. Once child is

locked, check if it is safe:

– If child is safe, release all locks on ancestors.

Faloutsos/Pavlo CMU SCS 15-415/615 24

Faloutsos/Pavlo CMU - 15-415/615

9

CMU SCS

Example #1 – Search 38

Faloutsos/Pavlo CMU SCS 15-415/615 25

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

S

S

S

S

CMU SCS

38 41

Example #2 – Delete 38

Faloutsos/Pavlo CMU SCS 15-415/615 26

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

X

X

X

X
We know that C will not
need to merge with F, so
it‟s safe to release A+B.

CMU SCS

38 41

Example #3 – Insert 45

Faloutsos/Pavlo CMU SCS 15-415/615 27

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

X

X

X

X

E has room so it won‟t
split, so we can
release B+C.

We know that if C needs
to split, B has room so
it‟s safe to release A.

Faloutsos/Pavlo CMU - 15-415/615

10

CMU SCS

38 41

Example #4 – Insert 25

Faloutsos/Pavlo CMU SCS 15-415/615 28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

F C

G H I D E

35 10

X

X

X

X
25

31

We need to split H so we
need to keep the lock on

its parent node.

CMU SCS

Problems

• Q: What was the first step that all of the

update examples did on the B+Tree?

Faloutsos/Pavlo CMU SCS 15-415/615 29

20 A
X

Delete 38

20 A
X

Insert 45

20 A
X

Insert 25

CMU SCS

Problems

• Q: What was the first step that all of the

update examples did on the B+Tree?

• A: Locking the root every time becomes a

bottleneck with higher concurrency.

• Can we do better?

Faloutsos/Pavlo CMU SCS 15-415/615 30

Faloutsos/Pavlo CMU - 15-415/615

11

CMU SCS

Better Tree Locking Algorithm

• Main Idea:

– Assume that the leaf is „safe‟, and use S-locks

& crabbing to reach it, and verify.

– If leaf is not safe, then do previous algorithm.

• Rudolf Bayer, Mario Schkolnick:

Concurrency of Operations on B-Trees.

Acta Inf. 9: 1-21 (1977)

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Better Tree Locking Algorithm

• Search: Same as before.

• Insert/Delete:

– Set locks as if for search, get to leaf, and set X

lock on leaf.

– If leaf is not safe, release all locks, and restart

txn using previous Insert/Delete protocol.

• Gambles that only leaf node will be

modified; if not, S locks set on the first pass

to leaf are wasteful.
Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

38 41

Example #2 – Delete 38

Faloutsos/Pavlo CMU SCS 15-415/615 33

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

S

S

S

X

D will not need to
coalesce, so we‟re safe!

Faloutsos/Pavlo CMU - 15-415/615

12

CMU SCS

38 41

Example #4 – Insert 25

Faloutsos/Pavlo CMU SCS 15-415/615 34

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

F C

G H I D E

35 10

S

S

S

X
25

We need to split H so we
have to restart and re-
execute like before.

CMU SCS

Another Alternative

• Textbook has a third variation, that uses

lock-upgrades instead of restarting.

• This approach may lead to deadlocks.

Faloutsos/Pavlo CMU SCS 15-415/615 35

CMU SCS

Additional Points

• Q: Which order to release locks in multiple-

granularity locking?

• A: From the bottom up

• Q: Which order to release locks in tree-

locking?

• A: As early as possible to maximize

concurrency.

 Faloutsos/Pavlo CMU SCS 15-415/615 36

Faloutsos/Pavlo CMU - 15-415/615

13

CMU SCS

Today‟s Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Transaction Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 37

CMU SCS

Dynamic Databases

• Recall that so far we have only dealing with

transactions that read and update data.

• But now if we have insertions deletions, we

have new problems…

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

T
I

M
E

The Phantom Problem

Faloutsos/Pavlo CMU SCS 15-415/615 39

BEGIN

COMMIT

T1 T2

Schedule

SELECT MAX(age)
 FROM sailors
 WHERE rating=1

BEGIN

COMMIT

INSERT INTO sailors
(age=96, rating=1)

SELECT MAX(age)
 FROM sailors
 WHERE rating=1

72

96

Faloutsos/Pavlo CMU - 15-415/615

14

CMU SCS

How did this happen?

• Because T1 locked only existing records

and not ones under way!

• Conflict serializability on reads and writes

of individual items guarantees serializability

only if the set of objects is fixed.

• Solution?

Faloutsos/Pavlo CMU SCS 15-415/615 40

CMU SCS

Predicate Locking

• Lock records that satisfy a logical predicate:

– Example: rating=1.

• In general, predicate locking has a lot of

locking overhead.

• Index locking is a special case of predicate

locking that is potentially more efficient.

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

Index Locking

• If there is a dense index on the rating field

then the txn can lock index page containing

the data with rating=1.

• If there are no records with rating=1, the

txn must lock the index page where such a

data entry would be, if it existed.

Faloutsos/Pavlo CMU SCS 15-415/615 42

Faloutsos/Pavlo CMU - 15-415/615

15

CMU SCS

Locking without an Index

• If there is no suitable index, then the txn

must obtain:

– A lock on every page in the table to prevent a

record‟s rating from being changed to 1.

– The lock for the table itself to prevent records

with rating=1 from being added or deleted.

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Phantom Problem

Faloutsos/Pavlo CMU SCS 15-415/615 44

CMU SCS

Today‟s Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Weaker Levels of Consistency

Faloutsos/Pavlo CMU SCS 15-415/615 45

Faloutsos/Pavlo CMU - 15-415/615

16

CMU SCS

Weaker Levels of Consistency

• Serializability is useful because it allows

programmers to ignore concurrency issues.

• But enforcing it may allow too little

concurrency and limit performance.

• We may want to use a weaker level of

consistency to improve scalability.

Faloutsos/Pavlo CMU SCS 15-415/615 46

CMU SCS

Isolation Levels

• Controls the extent that a txn is exposed to

the actions of other concurrent txns.

• Provides for greater concurrency at the cost

of exposing txns to uncommitted changes:

– Dirty Reads

– Unrepeatable Reads

– Phantom Reads

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

Isolation Levels

• SERIALIZABLE: No phantoms, all reads

repeatable, no dirty reads.

• REPEATABLE READS: Phantoms may

happen.

• READ COMMITTED: Phantoms and

unrepeatable reads may happen.

• READ UNCOMMITTED: All of them

may happen.

Faloutsos/Pavlo CMU SCS 15-415/615 48

Is
o
la

ti
o
n

 (
H

ig
h
→

L
o
w

)

Faloutsos/Pavlo CMU - 15-415/615

17

CMU SCS

Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 49

Dirty Read
Unrepeatable

Read Phantom

READ
UNCOMMITTED Maybe Maybe Maybe

READ
COMMITTED No Maybe Maybe

REPEATABLE
READ No No Maybe

SERIALIZABLE No No No

CMU SCS

Isolation Levels

• SERIALIZABLE: Obtain all locks first;

plus index locks, plus strict 2PL.

• REPEATABLE READS: Same as above,

but no index locks.

• READ COMMITTED: Same as above,

but S locks are released immediately.

• READ UNCOMMITTED: Same as above,

but allows dirty reads (no S locks).

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

SQL-92 Isolation Levels

• Default: SERIALIZABLE

• Not all DBMS support all isolation levels in

all execution scenarios (e.g., replication).

Faloutsos/Pavlo CMU SCS 15-415/615 51

SET TRANSACTION ISOLATION LEVEL
 <isolation-level>;

Faloutsos/Pavlo CMU - 15-415/615

18

CMU SCS

Access Modes

• You can also provide hints to the DBMS

about whether a txn will modify the

database.

• Only two possible modes:

– READ WRITE

– READ ONLY

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU SCS

SQL-92 Access Modes

• Default: READ WRITE

• Not all DBMSs will optimize execution if

you set a txn to in READ ONLY mode.

Faloutsos/Pavlo CMU SCS 15-415/615 53

SET TRANSACTION <access-mode>;

START TRANSACTION <access-mode>;

SQL-92

Postgres + MySQL 5.6

CMU SCS

Transaction Demo

Faloutsos/Pavlo CMU SCS 15-415/615 54

Faloutsos/Pavlo CMU - 15-415/615

19

CMU SCS

Summary

• Multiple granularity locking: leads to few

locks, at appropriate levels

• Tree-structured indexes:

– Lock crabbing and safe nodes

• Important distinction:

– Multiple granularity locking releases locks

bottom-up.

– Tree-locking releases top-down to maximize

concurrency.

Faloutsos/Pavlo CMU SCS 15-415/615 55

CMU SCS

Summary

• The Phantom Problem occurs if

insertions/deletions

• Use Predicate locking to prevent this:

– Index Locking

– Table Locking

Faloutsos/Pavlo CMU SCS 15-415/615 56

