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CMU SCS 

Last Class 

• A concurrency control scheme uses locks 

and aborts to ensure correctness. 

• Conflict vs. View Serializability 

• (Strict) 2PL is popular. 

• We need to handle deadlocks in 2PL: 

– Detection: Waits-for graph 

– Prevention: Abort some txns, defensively 
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Last Class Assumption 

• We assumed that the database was fixed 

collection of independent objects. 

– No objects are added or deleted. 

– No relationship between objects. 

– No indexes. 
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Today‟s Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Transaction Isolation Levels 
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Lock Granularities 

• When we say that a txn acquires a “lock”, 

what does that actually mean? 

– On a field? Record? Page? Table? 

• Ideally, each txn should obtain fewest 

number of  locks that is needed… 
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Database Lock Hierarchy 
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Example 

• T1: Get the balance of Christos‟ shady off-

shore bank account. 

• T2: Increase all account balances by 1%. 

 

• Q: What locks should they obtain? 
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Example 

• Q: What locks should they obtain? 

• A: Multiple 

– Exclusive + Shared for leafs of lock tree. 

– Special Intention locks for higher levels 
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Intention Locks 

• Intention locks allow a higher level node to 

be locked in S or X mode without having to 

check all descendent nodes. 

• If a node is in an intention mode, then 

explicit locking is being done at a lower 

level in the tree. 
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Intention Locks 

• Intention-Shared (IS): Indicates explicit 

locking at a lower level with shared locks. 

• Intention-Exclusive (IX): Indicates locking 

at lower level with exclusive or shared locks 

• Shared+Intention-Exclusive (SIX): The 

subtree rooted by that node is locked 

explicitly in shared mode and explicit 

locking is being done at a lower level with 

exclusive-mode locks. 
Faloutsos/Pavlo CMU SCS 15-415/615 10 

CMU SCS 

Compatibility Matrix 
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Multiple Granularity Protocol 
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Locking Protocol 

• Each txn obtains appropriate lock at highest 

level of the database hierarchy. 

• To get S or IS lock on a node, the txn must 

hold at least IS on parent node. 

– What if txn holds SIX on parent? S on parent? 

• To get X, IX, or SIX on a node, must hold 

at least IX on parent node. 
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Example – Two-level Hierarchy 
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Table R 

Tuple 2 Tuple 1 Tuple n … 

T1 

S 
T1 

IS 
T1 

T2 

X 
T2 IX 

T2 

Read Write 

CMU SCS 

Example – Threesome 

• Assume three txns execute at same time: 

– T1: Scan R and update a few tuples. 

– T2: Scan a portion of tuples in R. 

– T3: Scan all tuples in R. 
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Table R 

Tuple 2 Tuple 1 Tuple n … 
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Example – Threesome 
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Table R 

Tuple 1 Tuple n … 
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Example – Threesome 

• T1: Get an SIX lock on R, then get X lock 

on tuples that are updated. 

• T2: Get an IS lock on R, and repeatedly get 

an S lock on tuples of R. 

• T3: Two choices: 

– T3 gets an S lock on R.  

– OR, T3 could behave like T2; can use lock 

escalation to decide which. 
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Lock Escalation 

• Lock escalation dynamically asks for 

coarser-grained locks when too many low 

level locks acquired. 
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Multiple Lock Granularities 

• Useful in practice as each txn only needs a 

few locks. 

• Intention locks help improve concurrency: 

– Intention-Shared (IS): Intent to get S lock(s) 

at finer granularity. 

– Intention-Exclusive (IX): Intent to get X 

lock(s) at finer granularity. 

– Shared+Intention-Exclusive (SIX): Like S 

and IX at the same time. 
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Today‟s Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Transaction Isolation Levels 
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Locking in B+Trees 

• Q: What about locking indexes? 

• A: They are not quite like other database 

elements so we can treat them differently: 

– It‟s okay to have non-serializable concurrent 

access to an index as long as the accuracy of the 

index is maintained. 
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Example 

• T1 wants to insert in H 

• T2 wants to insert in I 

• Q: Why not plain 2PL? 

• A: Because txns have 

to hold on to their 

locks for too long! 
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Lock Crabbing 

• Improves concurrency for B+Trees. 

• Get lock for parent; get lock for child; 

release lock for parent if “safe”. 

• Safe Nodes: Any node that won‟t split or 

merge when updated. 

– Not full (on insertion) 

– More than half-full (on deletion) 
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Lock Crabbing 

• Search: Start at root and go down; 

repeatedly, 

– S lock child 

– then unlock parent 

• Insert/Delete: Start at root and go down, 

obtaining X locks as needed. Once child is 

locked, check if it is safe: 

– If child is safe, release all locks on ancestors. 
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Example #1 – Search 38 
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38 41 

Example #2 – Delete 38 
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We know that C will not 
need to merge with F, so 
it‟s safe to release A+B. 
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38 41 

Example #3 – Insert 45 
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E has room so it won‟t 
split, so we can 
release B+C. 

We know that if C needs 
to split, B has room so 
it‟s safe to release A. 
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38 41 

Example #4 – Insert 25 
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We need to split H so we 
need to keep the lock on 

its parent node. 

CMU SCS 

Problems 

• Q: What was the first step that all of the 

update examples did on the B+Tree? 
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Problems 

• Q: What was the first step that all of the 

update examples did on the B+Tree? 

• A: Locking the root every time becomes a 

bottleneck with higher concurrency. 

 

• Can we do better? 
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Better Tree Locking Algorithm 

• Main Idea: 

– Assume that the leaf is „safe‟, and use S-locks 

& crabbing to reach it, and verify. 

– If leaf is not safe, then do previous algorithm. 

• Rudolf Bayer, Mario Schkolnick: 

Concurrency of Operations on B-Trees. 

Acta Inf. 9: 1-21 (1977) 
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Better Tree Locking Algorithm 

• Search: Same as before. 

• Insert/Delete:  

– Set locks as if for search, get to leaf, and set X 

lock on leaf. 

– If leaf is not safe, release all locks, and restart 

txn using previous Insert/Delete protocol. 

• Gambles that only leaf node will be 

modified; if not, S locks set on the first pass 

to leaf are wasteful. 
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38 41 

Example #2 – Delete 38 
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38 41 

Example #4 – Insert 25 
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We need to split H so we 
have to restart and re-
execute like before. 

CMU SCS 

Another Alternative 

• Textbook has a third variation, that uses 

lock-upgrades instead of restarting. 

• This approach may lead to deadlocks. 
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Additional Points 

• Q: Which order to release locks in multiple-

granularity locking? 

• A: From the bottom up 

 

• Q: Which order to release locks in tree-

locking? 

• A: As early as possible to maximize 

concurrency. 
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Today‟s Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Transaction Isolation Levels 
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Dynamic Databases 

• Recall that so far we have only dealing with 

transactions that read and update data. 

• But now if we have insertions deletions, we 

have new problems… 
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The Phantom Problem 

Faloutsos/Pavlo CMU SCS 15-415/615 39 

BEGIN 
 
 
 
 
 
 
 
 
COMMIT 

T1 T2 

Schedule 

SELECT MAX(age) 
  FROM sailors 
 WHERE rating=1 

BEGIN 
 
 
 
 
 
 
 
 
COMMIT 

INSERT INTO sailors 
(age=96, rating=1) 

SELECT MAX(age) 
  FROM sailors 
 WHERE rating=1 

72 

96 
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How did this happen? 

• Because T1 locked only existing records 

and not ones under way! 

• Conflict serializability on reads and writes 

of individual items guarantees serializability 

only if the set of objects is fixed. 

• Solution? 
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Predicate Locking 

• Lock records that satisfy a logical predicate: 

– Example: rating=1. 

• In general, predicate locking has a lot of 

locking overhead.  

• Index locking is a special case of predicate 

locking that is potentially more efficient. 
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Index Locking 

• If there is a dense index on the rating field 

then the txn can lock index page containing 

the data with rating=1. 

• If there are no records with rating=1, the 

txn must lock the index page where such a 

data entry would be, if it existed. 
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Locking without an Index 

• If there is no suitable index, then the txn 

must obtain: 

– A lock on every page in the table to prevent a 

record‟s rating from being changed to 1. 

– The lock for the table itself to prevent records 

with rating=1 from being added or deleted. 
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Phantom Problem 
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Today‟s Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Weaker Levels of Consistency 
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Weaker Levels of Consistency 

• Serializability is useful because it allows 

programmers to ignore concurrency issues. 

• But enforcing it may allow too little 

concurrency and limit performance. 

• We may want to use a weaker level of 

consistency to improve scalability. 
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Isolation Levels 

• Controls the extent that a txn is exposed to 

the actions of other concurrent txns. 

• Provides for greater concurrency at the cost 

of exposing txns to uncommitted changes: 

– Dirty Reads 

– Unrepeatable Reads 

– Phantom Reads 
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Isolation Levels 

• SERIALIZABLE: No phantoms, all reads 

repeatable, no dirty reads. 

• REPEATABLE READS: Phantoms may 

happen. 

• READ COMMITTED: Phantoms and 

unrepeatable reads may happen. 

• READ UNCOMMITTED: All of them 

may happen. 
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Isolation Levels 

Faloutsos/Pavlo CMU SCS 15-415/615 49 

Dirty Read 
Unrepeatable 

Read Phantom 

READ 
UNCOMMITTED Maybe Maybe Maybe 

READ 
COMMITTED No Maybe Maybe 

REPEATABLE 
READ No No Maybe 

SERIALIZABLE No No No 

CMU SCS 

Isolation Levels 

• SERIALIZABLE: Obtain all locks first; 

plus index locks, plus strict 2PL. 

• REPEATABLE READS: Same as above, 

but no index locks. 

• READ COMMITTED: Same as above, 

but S locks are released immediately. 

• READ UNCOMMITTED: Same as above, 

but allows dirty reads (no S locks). 
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SQL-92 Isolation Levels 

 

 

 

• Default: SERIALIZABLE 

• Not all DBMS support all isolation levels in 

all execution scenarios (e.g., replication). 
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SET TRANSACTION ISOLATION LEVEL 
  <isolation-level>; 
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Access Modes 

• You can also provide hints to the DBMS 

about whether a txn will modify the 

database. 

• Only two possible modes: 

– READ WRITE 

– READ ONLY 
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SQL-92 Access Modes 

 

 

 

• Default: READ WRITE 

• Not all DBMSs will optimize execution if 

you set a txn to in READ ONLY mode. 
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SET TRANSACTION <access-mode>; 

START TRANSACTION <access-mode>; 

SQL-92 

Postgres + MySQL 5.6 

CMU SCS 

Transaction Demo 
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Summary 

• Multiple granularity locking: leads to few 

locks, at appropriate levels 

• Tree-structured indexes: 

– Lock crabbing and safe nodes 

• Important distinction: 

– Multiple granularity locking releases locks 

bottom-up. 

– Tree-locking releases top-down to maximize 

concurrency. 
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Summary 

• The Phantom Problem occurs if 

insertions/deletions 

• Use Predicate locking to prevent this: 

– Index Locking 

– Table Locking 
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