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Abstract—Many developers relying on open-source digital
infrastructure expect continuous maintenance, but even the most
critical packages can become unmaintained. Despite this, there
is little understanding of the prevalence of abandonment of
widely-used packages, of subsequent exposure, and of reactions
to abandonment in practice, or the factors that influence them.
We perform a large-scale quantitative analysis of all widely-used
npm packages and find that abandonment is common among
them, that abandonment exposes many projects which often do
not respond, that responses correlate with other dependency
management practices, and that removal is significantly faster
when a package’s end-of-life status is explicitly stated. We end
with recommendations to both researchers and practitioners who
are facing dependency abandonment or are sunsetting packages,
such as opportunities for low-effort transparency mechanisms to
help exposed projects make better, more informed decisions.

I. INTRODUCTION

Many widely-used open source packages serve as digital
infrastructure for countless applications downstream [1]. Yet,
much of this infrastructure is maintained by a small number
of overburdened and underappreciated, often volunteer, devel-
opers who may disengage at any point [1]–[3]. Maintainers
often disengage for commonly-occurring reasons [4], such
as losing interest or switching jobs. More often than not,
when that happens, nobody else steps up and the package
becomes fully abandoned [5]. This suggests that dependency
abandonment will always be a risk that users of open-source
infrastructure will be exposed to. And indeed developers
worry about abandonment – e.g., because of the increasing
incompatibility with other changes and fear of not receiving
security patches [6], [7] – to the point that some organizations
have explicit policies to restrict the use of end-of-life software
components. The tension between this widespread reliance on
open source and the lack of certainty surrounding ongoing
maintenance efforts is at the heart of the question of open
source sustainability [1], [7].

Despite the widespread concerns surrounding dependency
abandonment, we know very little about its prevalence or how
developers react in practice. Research has primarily focused
on preventing or predicting abandonment by reducing disen-
gagement [4], [5], [8] or improving onboarding [9]–[11], rather
than studying what happens when abandonment occurs. A key
exception is our recent interview study with developers where
we studied their perceptions of abandonment, but without
quantifying the prevalence or reactions in practice [7].
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Fig. 1. Survival probability for event “dependency event is not resolved”
w.r.t. the date of event occurrence within dependent project’s lifetime.

In this paper, we report on a large-scale, quantitative study
exploring the prevalence of, impact of, and response to the
abandonment of widely-used packages in the JavaScript npm
ecosystem. Specifically, we design an approach to detect aban-
donment at scale, collect a large sample of dependent projects
that were exposed to abandonment across all of GitHub,
and observe their responses to abandonment. We compare
reactions to abandonment with other dependency management
practices of updating dependencies with and without known
vulnerabilities. Finally, we use statistical modeling to investi-
gate what factors impact likelihood and speed of abandoned
dependency removal.

Even with a conservative operationalization, we find that the
abandonment of widely-used packages is prevalent, with 15%
of widely-used packages becoming abandoned within our six-
year observation window. Those abandoned packages expose
many dependents, but average direct exposure even for widely-
used packages is lower than might be expected, suggesting
that collaborative responsible sunsetting strategies might be
feasible. Developers seem to care about abandonment – 18%
of exposed projects remove the abandoned dependency, which
is roughly comparable with other dependency management
practices such as installing updates (cf. Fig. 1), but reactions
to abandonment tend to be delayed – in fact, removal of
abandoned dependencies strongly correlates with other good
development practices, including regular dependency updates.
Finally, making the abandonment status of a package clear can
help exposed projects react faster (1.58 times higher chance of
reaction on average, at any point in time), suggesting opportu-
nities for low-effort transparency mechanisms to help exposed
projects make better, more informed decisions. Overall, our
results suggest many opportunities to foster responsible use



of open source for developers and responsible sunsetting for
maintainers.

In summary, we contribute (1) a detailed methodology for
detecting abandoned packages at scale; (2) a quantification of
the prevalence of widely-used package abandonment in the
npm ecosystem; (3) a large-scale analysis of the response
to abandonment of exposed projects across GitHub and a
comparison to other dependency management practices; (4) a
logistic regression model illustrating which dependent project
characteristics impact the likelihood of removing abandoned
dependencies; and (5) a survival model demonstrating the im-
pact of providing explicit notice of abandonment on dependent
project removal rates.

II. RESEARCH QUESTIONS AND RELATED WORK

Reusing open source frameworks, packages, and other ab-
stractions forms software supply chains [12], where packages
rely on “upstream” dependencies created and maintained by
others, that often have their own dependencies, creating the
chain. Such reuse speeds up development, but also brings risks
“downstream.” Dependencies may introduce breaking changes
in an update [13], become incompatible with other dependen-
cies [14], [15], contain security vulnerabilities [16]–[19], or
even get attacked through supply chain attacks [20]–[24].

A. How Big is the Abandonment Problem?

What We Know. Package abandonment is an understudied
risk of open source dependencies. Developers worry about
abandonment (e.g., online [25]) particularly from a security
perspective, since an abandoned package may no longer re-
ceive security patches [6], [7], [21]. Our recent interview
study also revealed developers’ frustration that they will not
receive the new features or support they had hoped for, that the
package will become increasingly less useful as requirements
and the environment change, and that the package will become
incompatible with other evolving infrastructure [7].
What We Don’t Know. We have very little data about how
prevalent abandonment is among widely-used packages or how
many downstream projects are exposed. Sonatype’s 2023 State
of the Software Supply Chain report finds that 18.6% (24,104)
of open-source packages that were maintained the prior year
no longer qualify as maintained that year [26], but it is not
clear how this data was collected and whether such results
generalize to widely-used packages that might be considered
critical digital infrastructure. Quantifying the frequency of
abandonment and the resulting exposure downstream is needed
to understand the scope of the problem, leading us to ask:
RQ1a How prevalent is abandonment among widely-used

npm packages?
RQ1b How many open source projects are exposed to aban-

doned dependencies?

B. What are Downstream Developers Doing About Abandoned
Dependencies? (“Responsible Use”)

What We Know. Dealing with abandoned dependencies is a
facet of dependency management. Dependency management

practices, especially around versioning and breaking changes
[13], [27]–[31] and security patches [16], [17], [32]–[34],
have been extensively studied, and are considered highly
important [26], [35]. Research suggests that generally keeping
dependencies up to date correlates with better security out-
comes [36]. Recently, the US White House even mandated the
tracking and documenting of dependencies (using software bill
of materials, SBOM) for software sold to the government [37].

A central theme in much of the empirical research on
dependency management is that the vast majority of open
source projects rarely or never update dependencies, even
those with known security vulnerabilities [16], [27], [32]–[34],
[38]–[44]. For example, Kula et al. [34] studied dependency
updates across 4,600 GitHub projects and found that the
majority tend to not update dependencies even when security
vulnerabilities are involved, with 81.5% of projects having
outdated dependencies. Similarly, Decan et al. [16] estimated
that it takes almost 14 months for 50% of projects to install a
patch for a vulnerable dependency.

There have been many attempts to improve dependency
management practices. Software composition analysis (SCA)
tools, such as dependabot, Sonatype, and Snyk, track depen-
dencies and their updates and alert developers of known vul-
nerabilities. Studies show that using such SCA tools can im-
prove dependency management outcomes [38], [45], [46]. The
adoption of SCA tools is widely seen as a best practice [35],
but these tools suffer from many problems, especially high
false positive rates and resulting notification fatigue [45]–[48].
Furthermore, semantic versioning with floating dependency
versions enables automatic installation of patches, but this
practice is controversial since it can also introduce risks of
breaking changes and deliberate supply chain attacks [27],
[32].
What We Don’t Know. Little is known about how develop-
ers respond to dependency abandonment, and how dealing
with abandoned dependencies compares to other dependency
management practices. Tools to help with dependency aban-
donment are rare,1 to the frustration of practitioners [7].
Generally, developers can choose to continue using abandoned
dependencies if they do not (yet) pose actual problems, or
they can take various actions that all involve removing the
dependency and replacing it with something else. In this
paper, we quantitatively study at scale how often and how fast
developers respond to abandonment and how (or whether) this
differs from other dependency management practices:
RQ2a How often and how fast do dependent projects remove

abandoned open source dependencies?
RQ2b How does this compare to how projects update depen-

dencies in general?
RQ2c How does this compare to how projects update depen-

dencies with security vulnerability patches?
We know little also about how individual developers make

decisions about removing abandoned dependencies. Our in-

1Exceptions are FOSSA’s Risk Intelligence service, currently in beta, and
a recent research prototype by Mujahid et al. [49].



terviews suggest that some developers are very regimented
about removing abandoned dependencies (sometimes driven
by policies requiring it or a feeling of responsibility) while
others prefer to wait for something to break [7]. It is unclear
whether the developers that attend to abandoned dependencies
are the same ones that follow good dependency management
practices and possibly good development practices in general.
Thus, we explore whether how developers deal with abandon-
ment associates with other development practices and project
characteristics:

RQ3 What dependent project characteristics are associated
with removing abandoned dependencies?

C. What Can Maintainers Do? (“Responsible Sunsetting”)

What We Know. In open source, developers make many deci-
sions based on publicly available information, without explicit
coordination [50]–[56]. This includes complex inferences like
choosing which developers to follow [57], [58] or hire [59],
[60] and which projects to depend on [13], [61]. A lack of
action is often attributed to a lack of awareness – e.g., 69% of
surveyed developers reported not having updated dependencies
with known security vulnerabilities because they were unaware
of the vulnerability [34]. Maintainers can shape how they
present their packages to influence the actions of their users
and contributors – such mechanisms are often studied in the
context of signaling theory [50]–[52] and nudging theory [45],
[46], [56]. For example, developers may include badges in
their README to signal practices and expectations, such as
signaling that a project finds rigorous automated testing and
frequent dependency updates important, which may then shape
the behavior of contributors [52], [62]. Such nudges can be
incorporated in the design of tools, e.g., to accelerate the com-
pletion of overdue pull requests [56]. In the CRAN ecosystem,
volunteers explicitly coordinate to inform their dependents
(within the ecosystem) about breaking changes [13], but this
practice is rare otherwise.

What We Don’t Know. Little is known about what maintainers
can do as their final actions to help the community when
they decide to stop maintaining a package. Developers make
inferences about the abandonment status of projects with all
kinds of information (e.g., the date of the last commit, recent
issue discussions, forum discussions), yet they often struggle
to determine conclusively whether a project is abandoned [7].
We conjecture that even simple actions like publicly announc-
ing that a project will no longer receive maintenance can shape
how affected developers respond to abandonment. As a starting
point to explore responsible sunsetting strategies, we ask:

RQ4 How does announcing the abandonment status of a
package impact how fast dependent projects remove the
abandoned dependency?

III. DETECTING OPEN-SOURCE PACKAGE ABANDONMENT

To study abandonment at scale, we first design two con-
servative heuristics and a manual validation process for the
heuristics. Specifically, we look for cases of abandonment with

a clear abandonment event, with the evidence coming from
either (1) documentation or metadata explicitly indicating a
package will not receive further maintenance (explicit-notice
abandonment); or (2) shifts in activity patterns from regular
maintenance to not receiving any development activity for two
years (activity-based abandonment). We intentionally pursue
a high-precision detection strategy (detecting real and clear
abandonment events), while accepting lower recall (missing
some cases of abandonment, e.g., projects that slowly became
inactive over an extended period of time). This will result in
an undercount in RQ1 (scope of abandonment) but increases
confidence in analyses based on our data (RQ2-RQ4).

A. Explicit-Notice Abandonment

We identify packages as abandoned when developers explic-
itly express their intention to no longer maintain them. First,
we manually searched for explicit signals of abandonment
(e.g., GitHub “archive” flag) through the repositories of pack-
ages that had been likely abandoned based on long periods of
observed inactivity. Once we identified some explicit signals,
we then searched for additional packages with those signals,
verified the precision of the signal, and used the same process
to search for additional signals of abandonment. We repeated
this process until we found no additional reliable signals. In
the end, we used the following three signals:
• Github archive flag: In 2017, GitHub introduced the ability

to archive a repository [63]. Archived repositories are read-
only and display an ‘archived’ banner on GitHub. We
consider a package as abandoned when its GitHub repository
is archived and use the date of archival (shown on GitHub)
as the date of abandonment.

• No-maintenance-intended badge: Some developers declare
their intention not to provide maintenance with a ‘no main-
tenance intended’ badge in their README file [64]. We
consider a package as abandoned if its GitHub repository has
a README file containing the badge and use the date of the
commit introducing the badge as the date of abandonment.

• Other abandonment description in README: Finally, devel-
opers can textually describe that their package has reached
the end of its life in many ways in their README file, such
as ‘‘[project] is no longer maintained” [65]. We consider a
package as potentially abandoned if the first 10 lines of
the README (excluding URLs and code) contains one
of the following text fragments: ‘abandoned’, ‘deprecated’,
‘no longer maintained’, ‘no longer supported’, or ‘unmain-
tained’ (fragments identified iteratively as described above).
We manually checked all matching packages that did not
also have one of the other explicit-notice signals. We con-
sider a package as abandoned if its repository’s README
states so and use the date of the README change that
introduced this description as the date of abandonment.

If a package contained multiple of the above signals, we used
the earliest date as the date of abandonment.2

2Now, npm also has a deprecation flag. We did not include it in our
analysis because it was introduced near the end of our observation window
and does not record the date when the flag was added.



B. Activity-Based Abandonment

Detecting abandonment from a package’s activities is non-
trivial – some packages may be considered feature com-
plete [66] requiring very little maintenance or changes to the
code. Therefore, we seek cases where there is a clear shift
from regular repository activity levels to a sharp drop indi-
cating abandonment. Conservatively, we look for 2+ years of
regular maintenance (operationalized as 10+ total events from
contributors per year, including commits, issue comments,
and issue close events) representing the pre-abandonment
phase followed by 2 years with no activity from contributors
representing the abandonment phase. This provides a relatively
clear abandonment point, enabling us to observe reactions
downstream. We consider the date of abandonment to be the
time of the last commit i.e., the beginning of the abandonment
phase since that was when the activity dropped off.

We experimented with different heuristics and thresholds
(for time and permissible residual activity) and arrived at
the design above after reviewing how related work has op-
erationalized abandonment [5], [7], [67]–[70] and exploring
activity patterns before and after explicit notices were added to
a sample of packages meeting our explicit-notice heuristic. We
repeatedly tested the robustness of our heuristic with different
thresholds, manually validated the accuracy on a sample of
packages, and determined that allowing even a small amount
of residual activity (e.g., 3 commits per year) introduced too
many false positives of feature-complete but still sporadically-
maintained packages; we found similar problems with a
smaller observation window. We found that a strict threshold of
no residual activity for 2 years had an almost perfect precision
while still finding many abandoned packages.

IV. RQ1: ABANDONMENT PREVALENCE AND EXPOSURE

We begin by quantifying the frequency of abandonment
among widely-used packages in npm. We focus on widely-
used packages, rather than including the many more that never
gained traction, as a way to focus on digital infrastructure.

We then estimate exposure of abandonment on projects
in GitHub that were active and depended directly on an
abandoned package at the time of its abandonment (cf. Fig 2).
We estimate exposure for all of GitHub without restricting
the analysis to popular or widely-used projects, because aban-
donment affects all kinds of users of open source, whether
they build popular libraries or applications, or just maintain
personal projects. Different users may have different views
and perceive different pressures (and may even have policies
requiring them to avoid end-of-life dependencies), as we will
explore later, but abandonment and sustainability are important
for all users of open source who plan to maintain their own
project. Users of open source dependencies who write closed-
source applications are obviously not captured by our analysis;
exposure rates should be considered as a lower-bound estimate.

A. Research Methods

We identify abandoned packages and exposed projects with
data from npm, GitHub, and World of Code [71]. We restrict

our analysis to abandonment in a six-year observation window
from January 2015 to December 2020, for which we can
collect all relevant data at scale and which starts after npm
has been established and widely used.

Identifying Abandoned Widely-Used npm Packages. To scope
our analysis to widely-used packages that can have a sub-
stantial impact on the ecosystem if abandoned, we consider
only the 36,164 of 1,063,835 npm packages (in 2020) that
had at least 10,000 downloads in any month of our observation
window (per npm download statistics [72]). We use downloads
(rather than reverse dependencies) since they capture both
public and private use of packages. Next, we excluded 940
packages because they shared a GitHub repository with other
packages, and we cannot clearly attribute the repository-level
activity data (e.g., issues) to a single package – this is common
when a repository contains the source code for multiple
related packages (sometimes called a project foundry or mono-
repository). We also filtered out 7,124 packages that never had
more than 10 total activities by contributors (cf. Sec. III-B)
in any year of our observation window – they may have been
abandoned before our observation window or have low activity
levels indistinguishable from abandonment. After filtering, the
dataset contains 28,100 widley-used npm packages.

We then identify which of these packages were abandoned
and when, as described in Sec. III, using both the explicit-
notice and activity-based detection approaches over the entire
observation window. Because the activity-based abandonment
definition requires two years of activity observation before
abandonment and after, it can only occur in the two mid-
dle years of our observation window, whereas explicit-notice
abandonment can occur in all six years.

Identifying Exposed Dependents. Next, we identify dependent
projects across all of GitHub (not just npm packages) that
were directly exposed to abandonment. In contrast to prior
work on dependency management [16], [27], [38], [42], we
explicitly consider all projects rather than just reverse depen-
dencies within npm to capture the impact on open source
developers broadly, not just on other package maintainers.
Searching across all of GitHub imposes substantial challenges
due to its scale and limitations of its search APIs. Instead,
we use World of Code (WoC) to find all dependents of the
detected abandoned packages. WoC is a large scale analysis
infrastructure that indexes and curates nearly all public open
source code, intended for research studying software supply
chains [71], [73]; we use version V, the latest at the time
of this analysis.3 Specifically, in addition to content of the
files, commits and trees extracted from all repositories, WoC
also parses each version of every file (or blob using git
terminology). Projects that rely on npm packages use specific
file named packages.json to specify all direct dependencies. As
a result, for each commit modifying packages.json file WoC
provides a list of upstream dependencies as b2Pkg (blob-to-

3GitHub itself has a Dependency Insights feature. However, the function-
ality is closed-source and poorly documented, and our initial experiments
showed too many incorrect dependency entries for it to be trustworthy.
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Fig. 2. Overview of our data collection and analysis

package) map. We queried WoC using indexes b2c (blog-to-
commit), c2p (commit-to-project), and b2Pkg to retrieve all
GitHub projects, excluding forks, that ever depended on any
of the abandoned packages in a package.json file in their root
directory.

Due to the vast number of candidate dependent projects
returned by WoC (usually millions) and the nontrivial analysis
costs, we perform the analysis on a large sample of 60,000 ran-
domly selected candidate dependents and extrapolate exposure
rates to the entire population statistically. We further checked
each candidate dependent project in our sample by cloning
the project’s repository and analyzing the dependencies at
the time of abandonment. We use the same step to also
detect whether the repository had any commit activity after
the time of abandonment. This allowed us to identify the
subset of dependent projects that were actively depending on
an abandoned project at the time of abandonment who also
had at least one commit after abandonment occurred (to ensure
they were not entirely inactive themselves).

Limitations. As discussed in Sec. III, construct validity for
abandonment is difficult to establish. Despite best efforts to
design and validate meaningful but conservative heuristics
for detection, we may not capture all notions of package
abandonment, e.g., adding notices in an external blog or
entirely stopping maintenance after years of minimal main-
tenance activity. For the purpose of this study (actions taken
as a result of abandonment) we designed our heuristics to
be conservative, hence our abandonment numbers should
generally be seen as a lower bound. Additionally, because
there are many ways to define abandonment and because we
consider multiple definitions of abandonment, there could be
packages that meet one definition of abandonment while not
meeting another. For example, the maintainers of a package
that qualifies as explicit-notice abandoned because they posted
a note in the README stating the package will no longer be
maintained, could post minor patches down the line potentially
making the package not qualify as activity-based abandoned.
More broadly, it’s possible that projects resume their activity
even after long periods of apparent abandonment [5]. While
the scenarios in which such revivals happen remain unclear
(we recommend that future research investigates this), as a

robustness test given that we have the benefit of hindsight,
we also estimate our models on subsets of our data after
excluding all packages in which we detect any subsequent
repository activity after the two-year dormant period (and,
correspondingly, their downstream dependents). The results
(magnitude and direction of coefficient estimates), part of our
replication package, are entirely consistent with what we report
below (though we lose some statistical power as the dataset
size shrinks).

We may also miss exposed dependent projects that have
since been deleted (and have not been not archived in WoC). In
addition, our analysis relies on timestamps of commits, which
are usually but not necessarily reliable. In addition to the direct
exposure we measure here, there may be instances of indirect
exposure where none of the immediate upstream packages are
abandoned, but at least one of these packages depends directly
or transitively on an abandoned package. We chose not to
include these transitive dependencies since developers tend not
look beyond direct dependencies (see, e.g., Dey et al. [74]) nor
do they have much power to change projects further upstream
on such complicated issues as replacing functionality.

Finally, our results are specific to heavily downloaded pack-
ages in npm within our observation window. Abandonment
may be more common among less downloaded packages and
dynamics may be different in other ecosystems. Our study
cannot capture the behavior of developers using open source
dependencies in closed sourced projects.

B. Results

Of the 28,100 widely-used npm packages in our dataset,
we identified 4,108 (15%) as becoming abandoned during
our six-year observation window. Abandonment events were
distributed fairly uniformly across the observation window,
without clear patterns or peaks. In addition, abandoned pack-
ages were similar to non-abandoned packages, e.g., in terms
of peak downloads and stars (Fig. 3).

Our relatively large sample size for downstream dependent
projects affords high generalizability – approximately 0.4%
margin of error at 95% confidence level. Assuming the same
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Fig. 3. The distribution of peak download counts during our observation
window and current star counts (March 2024) for both non-abandoned and
abandoned widely-used npm packages are similar.

abandonment rate of 15%, we estimate4 that the 4,108 aban-
doned packages exposed 283, 207 ± 2, 096 GitHub projects
(not including forks) who had an abandoned package as a
direct dependency at the time of its abandonment (average 69
projects exposed per abandoned package). Of those projects,
we estimate that 78, 023± 624 GitHub projects had any com-
mits after exposure, i.e., they were not abandoned themselves
at the time and might need to respond.

The directly exposed and subsequently active projects vary
widely in their characteristics. They include many small
projects, including hobby projects and personal websites, but
also popular libraries and end-user products. About half have
no stars on GitHub, but 8% have 100 or more stars.

Key Insights: Of the 28,100 widely-used npm packages,
4,108 (15%) were abandoned during our observation window.
We estimate that 78,023 dependent projects on GitHub, still
active at the time of abandonment, were directly exposed.

V. RQ2: RESPONDING TO ABANDONMENT

We detect how often and how fast dependent projects
exposed to the abandonment of widely-used packages remove
the package after abandonment. Essentially all strategies to
respond to abandonment that do not involve preventing it (e.g.,
contributing financially, taking over maintenance) involve re-
moving the dependency (e.g., replacing it with an alternative,
switching to a fork, copying the code, removing the function-
ality) [7]. Additionally, we compare the response to abandon-
ment to other established dependency management practices,
specifically, to developer responses to updates of their depen-
dencies with and without known security vulnerabilities.

A. Research Methods

We detect responses to abandonment (RQ2a) as well as
responses to updates (RQ2b) and security patches (RQ2c)
with the same three-step research design: (1) We collect a
set of events of interest among widely used npm packages
– package abandonment, package updates, security patches.
(2) We identify active projects directly exposed to these events.
(3) We determine whether and when the exposed projects
subsequently responded – by removing or updating (cf. Fig 2).

4The estimates are based on 2,046,047 candidate exposed projects retrieved
with World of Code, from which we randomly sampled and analyzed 60,000.
Among those we found 8,305 exposed dependents to the abandoned packages;
of those 2,288 had commit activity after exposure.

To scale the analysis, we randomly sample both (a) from
the set of all possible events to analyze and (b) from the
set of all exposed dependents for those dependencies. Note
that we use a consistent approach to collect data for different
dependency management practices, rather than comparing our
abandonment data against previously published results on
other dependency management practices – this allows for a
direct comparison and avoids potential issues caused by the
differences in research design and analyzed populations in past
research [16], [32]–[34], [38], [39], [42], [75].

Removal of Abandoned Dependencies (RQ2a). To analyze the
removal of abandoned dependencies, we rely on the data from
RQ1, namely the 4,108 abandoned packages we identified and
the sample of 2,288 directly dependent projects that were
active after the time of abandonment (among the 60,000
dependent projects we analyzed). For each dependent, we
analyze their commit history after the abandonment event to
measure whether and how long it took them to remove the
abandoned dependency from their package.json file. While the
event must happen within our observation window ending in
December 2020, we analyze subsequent reactions until a cutoff
date of September 1st, 2023.

Dependency Updates After New Package Releases (RQ2b).
To establish a baseline of common dependency management
practices, we select a sample of package updates among the
28,100 widely-used npm packages from RQ1 as events of
interest. Specifically, to generate a sample similar in size to
abandonment, we first identify all releases of widely-used
packages released within our six-year observation window, and
then randomly sample 6,000 of these releases making sure
each is from a unique package. For each update event, we
use the same search strategy with WoC described in Sec. IV
to detect candidate GitHub projects that directly depended
on the package of interest at some point in time. We then
analyze a large random sample of those candidate dependents
(> 500, 000), using the same process described in Sec. IV to
identify the subset that depended on the package of interest
at the time of the update and who had had any commits after
the event. If the dependent uses floating version constraints
(patterns that match multiple versions, e.g., ˆ1.4.2 to match
release 1.4.2 and any later releases before 2.0.0) that allowed
them to automatically update at the time of the event, we
discard the dependency from our analysis as it does not require
developer intervention to update the dependency. This results
in 7,916 observations.

Dependency Updates After Security Patches (RQ2c). As a
special version of detecting responses to package releases,
we analyze responses to releases that patch known security
vulnerabilities, which are usually considered more urgent than
other updates. We identified package releases with known
security vulnerabilities and corresponding package releases
that patch the vulnerability using the OSV database [76]. We
select the first release that patches the vulnerability and its
release date as the event of interest – that is, we study whether
and how fast developers respond to the security patch. We



found 442 packages among our set of 28,100 widely-used
npm packages that had at least one vulnerable release and
corresponding patch release within our six-year observation
window. For each of these packages, we randomly selected
one patch release, resulting in 442 events of interest. For each
security patch release of interest, we use the same search
strategy with WoC to detect candidate GitHub projects that
depended on the package of interest at some point in time. We
then analyze a large random sample of those candidate depen-
dents (> 500, 000), identifying the subset that depended on a
vulnerable version of the package of interest at the time of the
event occurrence and who had had any commits after the event,
again discarding issues that were patched automatically due to
floating version constraints. This results in 3857 observations.

Analysis. To answer the research questions, we use survival
analysis, which specializes in modeling time-to-event data and
providing estimates of the survival rates for a given popula-
tion [77]. Survival analysis is designed to account for right-
censored data like ours, where the occurrence of the event of
interest is only recorded for cases that have experienced the
event, and for other cases their data is “censored” because
(a) the event was not (yet) observed during the period of
observation or (b) they withdrew from the study during the
observation period. In our study, we consider a project to be
withdrawn and therefore censored if it becomes inactive during
our observation period (which we operationalize using the date
of its last commit). Additionally, survival analysis can account
for the fact that we can observe reactions for different periods
of time for different events (for earlier events, developers
had longer to react). Specifically, we use the Kaplan-Meier
estimator [78], which is a common non-parametric statistic
for estimating survival functions [79].

Limitations. To capture the reaction to average events, we
intentionally do not stratify our analysis by major/minor/patch
release or vulnerability severity. Behavior may differ between
different subtypes of events, which is not the focus of
our study. Similarly, a security patch is not automatically
urgent, since the vulnerability may not be exploitable;
again, our study only reveals average practices and does
not set normative expectations. Finally, our study does not
capture the more nuanced behavior of floating dependency
declarations when locking dependencies with npm – in such
cases, updates matching the versioning pattern may not
be fully automated; excluding those cases helps us avoid
ambiguity about what actions developers take, but may miss
some actions. Limitations from RQ1 also apply.

B. Results

Only 18% of directly dependent projects with any devel-
opment activity after the abandonment date ever remove the
abandoned dependency before our cutoff date (419 of 2,288 in
our sample) – the vast majority of dependent projects did not
remove the abandoned dependency. Among dependent projects
that removed the abandoned dependency, the average time to
removal is 13.5 months. Consistent with past research [34],

[38], we also observe that many developers do not update
dependencies, even those with security vulnerabilities: Only
17% (1,366 of 7,916 in our sample) respond to a random
dependency update before our cutoff date with an average
time to update of 10.5 months; and 44% (1,720 of 3,857 in
our sample) install a patch to a security vulnerability with an
average time to update of 8.5 months.

We show survival curves indicating the percentage of de-
pendent projects that react to package abandonment, package
updates, and security patches respectively within a given time
window in Figure 1, illustrating that security patches are
installed at higher rates and faster than other updates and
that developers react to abandonment generally at similar rates
and with similar latency to random dependency updates. Note
that survival rates in the plot are lower than what may be
expected from past research, because we censored projects if
they became inactive during our observation window – the
lack of updates can often be explained by dependent projects
becoming inactive whereas dependent projects that remain
active for long periods of time after security patch release
are much more likely to eventually update.5

Key Insights: The response rate for abandonment is similar
to updates and lower than the rate for security patches.

VI. RQ3: CHARACTERIZING RESPONSIVE DEPENDENTS

Next, we study population-level differences between the
characteristics of projects that remove abandoned dependen-
cies and those that do not.

A. Research Methods

Using our sample of 2,288 dependent projects directly
exposed to an abandoned dependency, identified in RQ1, we
take a snapshot of each project at the time of exposure to
abandonment, operationalize numerous factors representing
different project characteristics (hypotheses H1-H6 described
below), and use logistic regression analysis to model the
relationship between project characteristics and the likelihood
of removing the abandoned dependency.

Hypotheses and Variables. Specifically, the binary response
variable is whether the abandoned dependency was removed
within two years of abandonment. In addition, we test hypothe-
ses about the association between the following variables and
the binomial outcome:

Dependency Count (H1). We expect that projects with fewer
dependencies are less likely to remove abandoned ones. Such
projects may pay less attention to dependency management in
general and may thus do it less.

Dependency Management Practices (H2). We expect that
projects that manage dependency updates and security patches
more actively are also more likely to respond to abandonment.

5As described above, our results do not include dependents that can
automatically update dependencies due to floating dependency version decla-
rations. This would account for an additional 33% immediate random depen-
dency updates and an additional 70% immediate security patch updates, also
shown in corresponding survival curves in our supplementary material [80].



Here we use two variables: First, we model whether there
was evidence of software composition analysis (SCA) tool
use in the year before exposure (i.e., tool configuration files,
README badges, or commits by bots), namely Dependabot,
Renovate, Greenkeeper, Snyk, DavidDM, and Gemnasium.
Second, we use the standard heuristic by Zerouali et al. [42]
to calculate the average technical lag of all the dependencies
the project had at exposure excluding the abandoned one.

Activity (H3). We expect that more actively developed
projects are more likely to respond to abandoned dependencies
because developers spend more time on the project overall. We
consider two variables: First, we calculate dependency churn,
i.e., the total number of times the project changed any of its
dependencies in the year before exposure. Second, we collect
the total number of commits in the year before exposure.

Number of Maintainers (H4). We expect that projects with
more maintainers are more likely to respond to dependency
abandonment because they have more capacity for mainte-
nance (and dependency management) work. Operationally, we
count the number of contributors responsible for the top 80%
of commits in the year before exposure.

Corporate Involvement (H5). We expect that corporate-led
projects and projects with more corporate involvement may
be more likely to respond to abandoned dependencies because
they are more likely to follow explicit end-of-life policies and
to explicitly allocate resources to dependency management
than volunteer-run projects [81]. Operationally, we check for
the presence of commits made in the year before exposure by
contributors using a corporate email domain, using the list of
corporate domains identified by Spinellis et al. [82].

Governance Maturity (H6). We expect that projects follow-
ing governance best practices are more likely to respond to
abandoned dependencies, conjecturing that responsiveness to
abandonment is also seen as a best practice. In particular,
we consider six governance practices: having a README,
a license, issue templates, pull request templates, contributing
guidelines, and a code of conduct, in line with past research
associating those with project success [66]. Operationally, for
each project, we start collect six binary flags indicating the
presence files for each practice at the time of exposure. We
then compute a latent trait model [83] to reduce the dimension-
ality of this dataset. The model assumes that the dependencies
between the six observed variables can be interpreted by a
few latent variables. The model with a single latent variable
fit our data best, confirming that the six indicator variables
mostly capture one underlying construct. Finally, we computed
the continuous variable governanceMaturity representing the
factor scores (or “ability” estimates) for the observed response
patterns as an operationalization of this latent construct, and
used this variable in our subsequent modeling.

For all of the above variables, we collect the relevant data
from the GitHub API or from the repository’s git history.
Where possible, we follow measures developed and validated
in past research. We manually validated the construct validity
of each factor using a sample of projects to avoid systematic

errors by manually verifying that the factor seemed to indeed
capture the intended data accurately.
Modeling Considerations. Before estimating the model, we
took several steps to ensure model quality and validity. First,
after manually examining the distribution of each variable, we
removed extreme outliers for variables with highly skewed
distributions (top 1% or fewer points), to reduce the risk of
high-leverage points biasing our regression estimates. We fur-
ther removed 7 repositories we failed to clone (likely deleted
since) and 14 we failed to compute the average technical lag
for, taking our total sample size down from 2,288 to 2,261
after both steps. Next, to reduce heteroscedasticity, we log-
transformed the numeric variables as needed [84] (Fig. 4
indicates which variables were log-transformed). The model
also includes control variables for repository age (controls for
the project’s development stage and software evolution) and
size (controls for the size of the codebase, measured in bytes).

We further computed the variance inflation factors for
each variable to check for presence of multicollinearity [85],
checking to ensure each was lower than 5, a common thresh-
old within the statistics community [86]; none of the vari-
ables exceeded the threshold. To evaluate the model’s overall
goodness-of-fit we used McFadden’s pseudo-R2 measure [87].
Finally, we consider model coefficients significant if they are
statistically significant at the α = 0.05 level. For each variable,
we report the exponentiated log-odds regression coefficient so
as to report the transformed odds-ratio to aid in interpretation
(i.e., the factor by which a 1 unit increase in the predictor
increases the odds of the outcome occurring if the odds-ratio
is greater than 1, or decreases by if the odds-ration is less than
1), and the significance level (p-value) (cf. Fig. 4).
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Fig. 4. Summary of the multivariate logistic regression modeling the
likelihood of removing an abandoned dependency within two years post
abandonment. Confidence intervals (horizontal lines) for the odds ratios (OR)
that do not intersect 1 indicate variables with statistically significant effects.

Limitations. As is usual for this kind of work, despite the
careful development and validation described above, the op-
erationalized factors in our model can only capture part of
the concepts they are intended to represent and measure. For
example, we operationalize governance maturity by detecting
six files in the repository: While grounded in prior research
and supported by our latent trait (factor) analysis, it likely



cannot fully capture the concept of maturity. There may also
be additional dependent project characteristics and unobserved
confounding factors that we did not include in our model.
Our findings should not be considered an exhaustive list,
but rather a list highlighting some of the characteristics that
are constructive when modeling the removal of abandoned
dependencies. Hence, as usual, care should be taken when
generalizing our results beyond the studied measures.

B. Model Results

Regression results in Fig. 4 show five significant effects.
One is a strong positive effect of governance maturity (sup-
porting H6): For projects with one standard deviation higher
governance maturity score we expect to see about 43% in-
crease in the odds of removing the abandoned dependency.
The model also shows that higher technical lag is, on aver-
age, statistically significantly negatively associated with the
likelihood of removal (supporting H2).

Projects with higher dependency churn are generally more
likely to remove abandoned dependencies (supporting H3). To
demonstrate the interpretation of the exponentiated regression
coefficient, for every factor e (≃ 2.72) increase in the amount
of dependency churn (note the log transformation), the odds of
removing the abandoned dependency for the average project
in our sample multiply by 1.15, holding all else constant.
Additionally, as expected we observed a significant effect for
both control variables project age and project size.

The explanatory variables num dependencies (H1), use of
dependency management tools (H2), num commits (H3), num
maintainers (H4), and num corporate commits (H5) were not
significant in the model meaning we have insufficient evidence
to reject the null hypothesis that these factors do not impact
the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher
dependency churn, and keep more up to date on dependency
updates are more likely to remove abandoned dependencies
within two years.

VII. RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods

RQ4 extends RQ2 and RQ3 using the same data as RQ2,
except we model the distinction in responses to packages
that were explicitly declared as abandoned (explicit-notice) as
compared to packages that just stopped maintenance (activity-
based) as introduced in Sec. III. Similarly to RQ2, we again
apply survival analysis to model the time to removal of the
abandoned dependencies, except now we use a multivariate
Cox proportional-hazards model [88] to jointly control for all
factors modeled in RQ3 (see Sec. VI-A for factor definitions).
Cox regression is commonly used in medical research for
modeling the association between the survival time of patients
and one or more predictor variables. In our case, we use
Cox regression to estimate the effect of an explicit notice
of abandonment on the rate of dependency removal events
happening at a particular point in time, i.e., the “hazard rate.”

B. Results

We observe after controlling for all the factors we hypoth-
esized are associated with removing abandoned dependencies
in RQ2, that there is a statistically significant relationship
between the presence of an explicit notice of abandonment for
a given dependency and an increased likelihood of the aban-
doned dependency being removed by downstream projects (cf.
Fig. 5). Holding the other covariates constant, dependencies
with an explicit abandonment notice have 1.58 times the prob-
ability of being removed within a time span than abandoned
dependencies without an explicit notice (95% confidence inter-
val of 1.26 to 1.98). This is in alignment with our expectations,
because explicit-notice abandoned packages provide a clear
signal to dependents and are more visible sooner.
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Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

Key Insights: Packages that provide an explicit-notice of
abandonment tend to be removed at significantly faster rates
compared to those that do not.

VIII. DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-
ment, even among widely-used npm packages, is fairly com-
mon. While many developers carefully analyze signals like the
number of stars, responsiveness to issues, or number of con-
tributors when adopting dependencies [61], [89] and past stud-
ies have shown several statistical predictors for survival [5],
[66], [68], we were surprised by the scale of abandonment
among packages that had healthy signals, were among the
most popular packages on npm, and were generally similar
in their distribution of stars and past activity to those with
sustained maintenance. Given that open source maintainers
may disengage for all sorts of reasons, such as losing interest,
changing jobs, and starting a family [4], users of open source
are likely not able to entirely escape abandoned dependencies
with careful upfront vetting, but may also need to actively
consider strategies to manage abandoned dependencies – an
area also called for in our recent interview study [7] for which
maintainers have with little existing support.



The Rippling Effects of Abandonment. Although
abandonment rates are fairly high, we were surprised at
the low rates of direct exposure. While GitHub’s Dependency
Insights page often show thousands to hundreds of thousands
of dependent projects for the abandoned packages, the actual
direct exposure of active dependent projects at the time of
abandonment was not that high (µ = 19, cf. Sec. IV-B).
Many additional dependents of abandoned packages were
abandoned even before the package’s abandonment, so they
are unlikely to care about it; many others adopted the package
even after it was abandoned, possibly knowing and accepting
that they will not receive updates.

Package abandonment has vastly more wide-reaching conse-
quences when also considering indirect dependencies. On the
one hand, this is good news since the few projects that depend
directly on an abandoned package can potentially mitigate
the consequences of abandonment for the many downstream
projects that rely on the abandoned package only transitively.
On the other hand, if the maintainers of these intermediate
projects do not act, developers have very little means to do
anything about indirectly used abandoned packages in their
dependency graph. With an increased focus on the entire
supply chain through software bill of materials (SBOMs),
software composition analysis (SCA) tools and company-wide
or agency-wide policies for sunsetting, this can cause a lot of
pain for huge numbers of developers, vastly more than those
directly exposed. We recommend that maintainers of popular
projects should be particularly attentive to monitoring
and reacting to abandoned direct dependencies due to their
outsized lever to benefit the entire ecosystem.

For many abandoned packages in our sample, the small
direct exposure would make it feasible to reach out to affected
dependent projects (in the context of breaking changes, such
proactive actions are not uncommon [13]). However, main-
tainers currently do not have tools to identify all active direct
dependents (e.g., GitHub’s Dependency Insights page reports
too many false positives, vast numbers of inactive projects,
and drowns out direct dependents among many more indirect
ones while some dependents may not even be hosted on
GitHub). Researchers or practitioners should explore tools
for more targeted outreach to direct active dependents.

Allocating Resources to Sustain Open Source Communities.
Discussions of open source sustainability are often centered
on the most widely-used packages that form essential digital
infrastructure and usually focus on keeping those projects
alive, which may be arguably cheaper in the grand scheme of
things than placing the cost for mitigations and replacements
on all their dependents. However, the observed low rates of
direct exposure may call that balance into question, especially
if we can help the exposed projects with a migration
guide or through other coordinated action (discussed as
“community oriented solutions” in our prior work [7]). There
is also a fairness argument regarding the degree to which
the often-volunteer maintainers of packages do or should
feel responsible to provide ongoing maintenance for their

dependents, most of whom never contribute to the package in
any way. As we argued previously [7], we believe it is time
to place more emphasis on the responsible use of open
source rather than attempting indefinite maintenance.

In our study, we explicitly consider all dependents, not only
other packages in npm and not only packages or projects that
are popular and form digital infrastructure themselves. That is,
many of the exposed dependents are 0-star projects, including
personal projects like maintaining a personal website – but all
of them were still maintained for some period after exposure
to abandonment. Less prominent dependents may have a more
relaxed attitude toward abandonment, but they may also be less
experienced in dealing with dependencies and likely spend
less time on dependency management overall, thus making
abandonment possibly even more disruptive. More research
is needed on whether and how to help such developers,
rather than only helping and studying the most active
developers or the most popular projects.

Abandoned Dependencies in the Context of Dependency
Management. Despite many calls for better dependency man-
agement, especially from a security perspective (recently
even with the US White House joining in [37]), study after
study shows that the majority of developers rarely update
dependencies, even those with known vulnerabilities, and even
when informed about problems by automated tools [16], [26],
[27], [32]–[34], [38]–[44], [75]. If developers do not patch
known security vulnerabilities or even add dependencies with
known vulnerabilities, should we expect them to care about
abandonment? Our results show that different dependency
management practices correlate. Developers who generally
keep their dependencies up to date are also more likely to
react to abandoned dependencies. When (or if) the larger
open source community manages to improve dependency
management practices in response to perceived higher stakes
(e.g., the continuously increasing frequency of supply chain
attacks), we expect to also see more people reacting to
abandonment – therefore support to help developers exposed
to abandonment will only become more important.

At the same time, abandonment is different. A dependency
does not automatically and immediately become a problem
when abandoned – impacts are often delayed and may not
even occur in a dependent project’s lifespan [7]. A large
number of updates and vulnerability fixes can be captured with
floating dependency versions (semantic versioning is a com-
mon practice in npm [27], [28], automating the “immediate
reaction” to 33% of analyzed updates and and 70% of ana-
lyzed patch events; although this practice also raises its own
security challenges [15], [16], [23]) and various SCA tools
can inform and automate update actions. However, there is no
equivalent default action or tool automation for abandonment.
The decision to remove abandoned dependencies is closer in
nature to decisions surrounding technical debt reduction and
risk reduction (similar to trying to stay on top of updates
to avoid painful large migrations and integration problems
later [13]) than the more immediate urgency to patch known



vulnerabilities. This is visible in our results (e.g., Fig. 1) where
fixing vulnerabilities is more likely and faster than reacting to
abandoned dependencies, but reactions to abandoned depen-
dencies are fairly similar to reactions to random dependency
updates, even in the absence of any automated tooling.

Responsible Sunsetting and Effectively Signaling Abandon-
ment. Our results show that many developers, though far
from all, care about abandoned dependencies but may not be
aware of them or may observe a dependency for a lengthy
period before taking action. Dependencies that are clearly
marked as abandoned (explicit notice, see Sec. III) are removed
significantly faster than those that silently stop receiving
maintenance (RQ4), suggesting that awareness matters. Based
on our research, we can clearly recommend that maintainers
should place an explicit notice about abandonment of their
package as their final action to benefit their dependents,
costing very little effort to the departing maintainers. We
believe it is time to establish best practices for responsible
sunsetting of packages, which may include leaving an explicit
notice and possibly also reaching out to direct dependents.

In addition, future research should explore the most
effective way to present abandonment notices, for exam-
ple, where to place notices to be effective (e.g., placed in
README versus using npm’s deprecate message to create
alerts during package installation) and what to include in the
message to make it actionable (e.g., alternatives, migration
paths). We also expect that there are many opportunities to bet-
ter communicate the maintenance status of packages beyond
already available signals. There are many research opportuni-
ties to develop dependabot-style tooling to inform developers
about abandoned dependencies and to curate actionable in-
formation (e.g., automatically suggest alternatives [49], [90],
[91] or even generate patches [92]–[96]). Building on the vast
research on signaling theory [50]–[52] and the use of nudging
in software engineering [45], [46], [56], the key challenge
for designing such tools will be identifying when and
how to inform developers, as the abandonment of different
dependencies may not be equally important to developers [7].

IX. CONCLUSION

We perform a large-scale quantitative analysis across all
widely-used packages in the npm ecosystem, identifying how
common abandonment is, measuring exposure and response to
abandonment, and performing statistical analysis to understand
what factors impact the likelihood of removing abandoned
dependencies. We found that abandonment is common and
that the majority of exposed dependents do not remove the
abandoned dependencies, but also that removal rates are sig-
nificantly faster for packages that provide explicit notice of
abandonment. Based on our finding we recommend strategies
for focusing remediation activities, responsible sunsetting, and
prioritizing research and tooling.

X. DATA AVAILABILITY

The data and script necessary to reproduce all visualizations
and models in the paper are available in the publicly-accessible

artifact hosted on Zenodo [80].
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