Wavelet Trees

02-714
Slides by Carl Kingsford

Following: Navarro,
Wavelet Trees for All, CPM 2012, pp. 2-26

Operations on strings

® rank((S,i) := the number of char c at or before position iin S.
® select(S,)) := the position of the j" occurrence of cin S.

® S[i] = “access character i”

Note: rank((S, select(S, j)) = j, so rank and select are inverses of
each other.

Goal: rank, select, access in quickly while using small space.

Operations on bit vectors

Our operations will depend on similar operations on bit vectors:

® rank;(S,i) := the number of 1 bits at or before position iin S.
® selecty(S,)) := the position of the " 1 bitin S.

® ranko(S,i) and selecty(S,)) are defined analogously.

S[i] = "access bit i” = rank4(S, i) — rank4(S, i = 1)

We will see later how to implement these operations to run in
O(1) time for binary vectors.

Wavelet Tree

O: letter € first half of alphabet
1: letter € first halt of alphabet

S—ACGGGACCGTTTTTAGGAJ
0011100011111 10110

ACACCAA GGGGTTTTTGG
01011O00 00001111100

YN o N

A AAA CCZC GGGGGAG T TTTT

Wavelet Tree, Example 2

1 2133453332217 327°6
000000100OO0O0O0OO0O10O011

/

1 2133433322132
00011111100010

PR /
\

O/

7 7
11

6
0
2 2 2 3 3 3333 77

1 11 00 0 00O

o

2N\ A

11 2 2 2 2 333333 4 5

Sli]

Go left if bitis O, go right if bit is 1.

Use ranko1() to map a bit at a node to i
the right place in the children. l

I’OO’E121334533322173276
0 00000100O0OO0O0OO0O10O0T1T1

/

1 2133433322132
\%
00011111100010

o /
\

/

212212 w3 343333
1011 0010000

o

N\ N,/

11 2 2 2 2 333333 4 5

Sli]

Go left if bitis O, go right if bit is 1.

Use ranko1() to map a bit at a node to i
the right place in the children. l

1 2133453332217 3276
0 00000100O0OO0O0OO0O10O0T1T1

= ranko(root, /

121334333 21 3 2
00011111100010

/

2
ow
ow
=
o W
o W
o W
o W

/“\

2 2 2 2 333333 4 5

S[i]
Go left if bitis O, go right if bit is 1.

Use ranko1() to map a bit at a node to i
the right place in the children. l

1 2133453332217 3276

root
0O 000001 00O00O0ODO0O1O0O0OT11

I, = ranko(root, i/ \
5
0

121334333 21 3 2
\%
00011111100010

o

S[i]
Go left if bitis O, go right if bit is 1.

Use ranko1() to map a bit at a node to i
the right place in the children. l

1 2133453332217 3276

root
0O 000001 00O00O0ODO0O1O0O0OT11

I, = ranko(root, i/ \
5
0

121334333 21 3 2
\%
00011111100010

O
— N
o
— N
= N
O
— N

1 2 2 2 2 333333 4 5 6
i3=ran|<o(w, iW)=5

rank¢(S,i)

Go left if cis in first half of alphabet, go right if c is in second half of alphabet.

Use ranko1() to map a bit at a node to the right i ranks(S,)

1 2133453332217 3276
0 0000O010O0O0OO0O0OO0O1O0O0T11

T,

1 2133433322132 5 7 7
00011111100010 011

— N\

121 2 3343333 5 6\
0/ 1 0010000 }1\
1 6

2 2 2 2 333333 4 5

place in the children.

root

2 2 2
1 11

o

11

rank¢(S,i)

Go left if cis in first half of alphabet, go right if c is in second half of alphabet.

Use ranko1() to map a bit at a node to the right i ranks(S,)

|

1 2133453332217 3276
0 0000010O0O0OO0O0O0O1O0O0T1I1

/ N:anlq(root,)
1 2133433322132

0001111110001°0

121 2 3343333 5 6\
0/ 1 0010000 ;1\
1 6

2 2 2 2 333333 4 5

place in the children.

root

2 2 2
1 11

o =

11

rank¢(S,i)

Go left if cis in first half of alphabet, go right if c is in second half of alphabet.

Use ranko1() to map a bit at a node to the right i ranks(S,)

|

1 2133453332217 3276
0 0000010O0O0OO0O0O0O1O0O0T1I1

/ \:anl« (root, i)

1 2133433322132 5776V
00011111100010 OllO

/ \ . rankov I
3 3 333 6
00 0 Q‘

333333 4 6

place in the children.

root

l

N\
e

N
N
N
N

rank¢(S,i)

Go left if cis in first half of alphabet, go right if c is in second half of alphabet.

Use ranko1() to map a bit at a node to the right i ranks(S,)

1 2133453332217 3276
0 0000010O0O0OO0O0O0O1O0O0T1I1

/ \:anl« (root, i)

1 2133433322132 5776V
00011111100010 OllO

place in the children.

root

1 21 1 3 3
010 0 0 0 /\
111 2 2 2 2 333333 4

I3 = ranko(w, |W) =

select(S,j)

Start at position j in leaf corresponding to c.

Repeat: new i = selecty(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child

1 2133453332217 3276
0000001000O0OO0OO01O0O011

/

V12133433322132
00011111100010

root

w/

7 7 6
110

121221 3 3 5 6 7 7
0‘7110 0 0 01
111 2 2 2 2 3 3 3 4 5 6

select3(5,4)

select(S,j)

Start at position j in leaf corresponding to c.

Repeat: new i = selecty(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child

1 2133453332217 3276
0000001000O0OO0OO01O0O011

/

V12133433322132
00011111100010

root

/

7 7 6
110

121221 w3 343333 5 6 7 7
010110 0010000 0 1
/ Iw = selectg(w, 4) /\ / \
111 2 2 2 2 333%33 4 5 6
j=4

selects(S,4)

select(S,j)

Start at position j in leaf corresponding to c.

Repeat: new i = selecty(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child

1 2133453332217 3276
0000001000O0OO0OO01O0O011

/ \g

root

V12133433322132
00011111100010

1 212 2 1 2 5 6 7 7
01 01101 0 0O 00O 0 1
/ = selecty(w, 4/\ / \

111 2 2 2 2 3 3 3 3 3 3 5 6

1—4
selects(S,4)

select(S,j)

Start at position j in leaf corresponding to c.

Repeat: new i = selecty(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child

1 2133453332217 3276
0 0000O010O0O0OO0OO0OO0O10O0T11

oot = Selectp(root, iy) \
5
0

12133433 21 3 2
00011111100010

2 2 2 2
1 11 1

o =

1 1
0 0

/ lw = selectg(w,
1

11 2 2 2 2

selects(S,4)

Running Times

Tree height = log [} |, where is the alphabet.

rank, select, access follow a root-leaf path in the tree, taking
O(1) time at each node.

Therefore, rank, select, access take O(log [} 1) to run.

It alphabet size is constant, this is O(1).

Tree Shape

® Don’t have to use balanced tree shape

® Can instead encode using, say, Huffman code tree shape
- makes accesses to frequent characters faster

- gives good space usage even without compressed bit
vectors.

® Doesn't have to be binary tree

- by selecting optimal branching factor, can get query time
to O(log n / log log n).

Application: Inverted Indices

If you really want to hear about it, the first thing you'll
probably want to know is where I was born, and what my lousy
childhood was like, and how my parents were occupied and all
before they had me, and all that David Copperfield kind of crap,

49 but I don't feel like going into it, if you want to know the
truth.

Traditional inverted | 1,57
index represents the you | 2, 58 Good for searching for
document as an array word w
: really | 3
of lists: .
Hard to compute SJi]
want | 4,14,59

and | 22 29 35,41

know | 16,61

truth | 63

Application: Inverted Indices, 2

Represent text as a string of word ids.
Store as a wavelet tree.
S[i] now O(log 13 1) = O(log n)

selecty(S, j) now gives the position of the jth occurrence of
word w in time O(log n).

Application: Document Retrieval

Given a collection of documents Dy, ..., Dm, answer the following types of
queries quickly:

® |n which documents does word w appear?

Represent documents as strings of word ids.

Concatenate the documents together, separated by a $ word that does not
occur elsewhere.

$ $ $ $
b — 3% — S———
i=1
repeat:
pi = selectc(1) # ith occurrence
di = ranks(pi) + 1 # document containing it
print d;
p’ = selects(di) # end of document

1 = rankc(p’') + 1 # find 1lst occurrence after end of doc

Application: Graphs

Given a directed graph G, answer the following queries quickly:

successor(u, i) := the ith vertex v such that edge (v,u) exists.

predecessor(u, i) := the jth vertex v such that edge (u,v) exists.

Represent G as a concatenation of adjacencies lists, and store in wavelet tree:

bit vector
marking list
boundaries

213|5(4|3(5|6|2|6|5[4]1]|2

—1 001 001 1O0O011O0

\

® successor(u, i): p = selecty(B,u); return S[p+i-1] > =n, so

® predecessor(u, i): p = selecty(S, i); return rank+(B, p)

- these take
O(log n) time.

Application: Grid of Points

Suppose you have points (x1, y1), ..., (Xn,yn) ONn @an m x m grid and
you want to answer range queries quickly:

® Which points fall inside rectangle [Xmin,Xmax] OY [Ymin, Ymax]?

Sort points by x-coordinate, consider ya), Yn@), Yn@), ---, Ynn) @s a
string and store in a wavelet tree.

Map range to left and right, stop
Xleft Kright
v

J when characters in interval are

contained in [Ymin, Ymaxl-

Xlleft = raﬂkO(Broot, Xleft) / \< Xlleft = I’aﬂk1(Broot, Xleft)

[\

, Xlright = rank1(Broot, Xright)
X right = ranl<O(Broot, Xright)

Summary

Wavelet trees compactly store strings.
Allowing access almost as fast as for a plain array.
And allowing for fast rank and select queries too.

Lots of applications and extensions, often storing things not
normally thought of as strings.

