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Operations on strings

® rank((S,i) := the number of char c at or before position iin S.
® select(S,)) := the position of the j" occurrence of cin S.

® S[i] = “access character i”

Note: rank((S, select(S, j)) = j, so rank and select are inverses of
each other.

Goal: rank, select, access in quickly while using small space.



Operations on bit vectors

Our operations will depend on similar operations on bit vectors:

® rank;(S,i) := the number of 1 bits at or before position iin S.
® selecty(S,)) := the position of the " 1 bitin S.

® ranko(S,i) and selecty(S,)) are defined analogously.

S[i] = "access bit i” = rank4(S, i) — rank4(S, i = 1)

We will see later how to implement these operations to run in
O(1) time for binary vectors.



Wavelet Tree

O: letter € first half of alphabet
1: letter € first halt of alphabet
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Wavelet Tree, Example 2
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Sli]

Go left if bitis O, go right if bit is 1.

Use ranko1() to map a bit at a node to i
the right place in the children. l
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Sli]

Go left if bitis O, go right if bit is 1.

Use ranko1() to map a bit at a node to i
the right place in the children. l
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S[i]
Go left if bitis O, go right if bit is 1.

Use ranko1() to map a bit at a node to i
the right place in the children. l
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S[i]
Go left if bitis O, go right if bit is 1.

Use ranko1() to map a bit at a node to i
the right place in the children. l
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rank¢(S,i)

Go left if cis in first half of alphabet, go right if c is in second half of alphabet.

Use ranko1() to map a bit at a node to the right i ranks(S, )
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rank¢(S,i)

Go left if cis in first half of alphabet, go right if c is in second half of alphabet.

Use ranko1() to map a bit at a node to the right i ranks(S, )
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rank¢(S,i)

Go left if cis in first half of alphabet, go right if c is in second half of alphabet.

Use ranko1() to map a bit at a node to the right i ranks(S, )
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rank¢(S,i)

Go left if cis in first half of alphabet, go right if c is in second half of alphabet.

Use ranko1() to map a bit at a node to the right i ranks(S, )
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select(S,j)

Start at position j in leaf corresponding to c.

Repeat: new i = selecty(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child
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select(S,j)

Start at position j in leaf corresponding to c.

Repeat: new i = selecty(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child
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select(S,j)

Start at position j in leaf corresponding to c.

Repeat: new i = selecty(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child
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select(S,j)

Start at position j in leaf corresponding to c.

Repeat: new i = selecty(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child
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Running Times

Tree height = log [} |, where  is the alphabet.

rank, select, access follow a root-leaf path in the tree, taking
O(1) time at each node.

Therefore, rank, select, access take O(log [} 1) to run.

It alphabet size is constant, this is O(1).



Tree Shape

® Don’t have to use balanced tree shape

® Can instead encode using, say, Huffman code tree shape
- makes accesses to frequent characters faster

- gives good space usage even without compressed bit
vectors.

® Doesn't have to be binary tree

- by selecting optimal branching factor, can get query time
to O(log n / log log n).



Application: Inverted Indices

If you really want to hear about it, the first thing you'll
probably want to know is where I was born, and what my lousy
childhood was like, and how my parents were occupied and all
before they had me, and all that David Copperfield kind of crap,

49 but I don't feel like going into it, if you want to know the
truth.

Traditional inverted | 1,57
index represents the you | 2, 58 Good for searching for
document as an array word w
: really | 3
of lists: .
Hard to compute SJi]
want | 4,14,59

and | 22 29 35,41

know | 16,61

truth | 63




Application: Inverted Indices, 2

Represent text as a string of word ids.
Store as a wavelet tree.
S[i] now O(log 13 1) = O(log n)

selecty(S, j) now gives the position of the jth occurrence of
word w in time O(log n).



Application: Document Retrieval

Given a collection of documents Dy, ..., Dm, answer the following types of
queries quickly:

® |n which documents does word w appear?

Represent documents as strings of word ids.

Concatenate the documents together, separated by a $ word that does not
occur elsewhere.

$ $ $ $
b — 3% — S———
i=1
repeat:
pi = selectc(1) # ith occurrence
di = ranks(pi) + 1 # document containing it
print d;
p’ = selects(di) # end of document

1 = rankc(p’') + 1 # find 1lst occurrence after end of doc



Application: Graphs

Given a directed graph G, answer the following queries quickly:

successor(u, i) := the ith vertex v such that edge (v,u) exists.

predecessor(u, i) := the jth vertex v such that edge (u,v) exists.

Represent G as a concatenation of adjacencies lists, and store in wavelet tree:

bit vector
marking list
boundaries
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® successor(u, i): p = selecty(B,u); return S[p+i-1] > =n, so

® predecessor(u, i): p = selecty(S, i); return rank+(B, p)

- these take
O(log n) time.




Application: Grid of Points

Suppose you have points (x1, y1), ..., (Xn,yn) ONn @an m x m grid and
you want to answer range queries quickly:

® Which points fall inside rectangle [Xmin,Xmax] OY [Ymin, Ymax]?

Sort points by x-coordinate, consider ya), Yn@), Yn@), ---, Ynn) @s a
string and store in a wavelet tree.

Map range to left and right, stop
Xleft Kright
v

J when characters in interval are

contained in [Ymin, Ymaxl-

Xlleft = raﬂkO(Broot, Xleft) / \< Xlleft = I’aﬂk1(Broot, Xleft)

[ \

, Xlright = rank1(Broot, Xright)
X right = ranl<O(Broot, Xright)




Summary

Wavelet trees compactly store strings.
Allowing access almost as fast as for a plain array.
And allowing for fast rank and select queries too.

Lots of applications and extensions, often storing things not
normally thought of as strings.



