
02-714: Homework #2
Due: Oct. 3 at the start of class

Please write your answers neatly or typeset them. You may discuss the problems with your
current classmates, but you must write your own solutions entirely independently. If you need to
make any assumptions in order to solve a problem, state them explicitly. If you consult any sources,
cite them.

1. (Adapted from JáJá.) A string x is a peroid of y if y = xkx1...,j where k ≥ 1 and j is some
integer ≥ 0. In other words, x is a period of y if y consists of repeated copies of x, where the
last copy might only be partial.

Let pe(x) be the length of the smallest period of x. Prove the following:

(a) If y has periods of length p and q, then it has one of size gcd(p, q) (gcd = greatest
common divisor).

(b) If y has a period of length q ≤ |y| − pe(y) then q is a multiple of pe(y).

(c) If y occurs in x at positions i and j, then |j − i| ≥ pe(y).

(d) If y occurs in x at positions i and i + d, where d ≤ m − pe(y), then d is a multiple of
pe(y).

2. Give a O(nm)-time algorithm to count the number of optimal alignments between two strings
x and y of length n and m, respectively.

3. Describe a simple modification to the edit-distance dynamic programming algorithm we saw
in class that allows you to more easily use many processors at once to solve the problem
faster.

4. Let x be a string of length n and y be a string of length m, and let g > 0 be an integer. Give
an O(nmg)-time algorithm to compute the optimal alignment between x and y that uses at
most g gaps, where a run of consecutive “-” characters counts as a single gap. Can you do it
faster if you make some additional realistic assumptions?

5. Let X be a string of length n. Describe how to pre-process X so that given an index i, you
can quickly find the shortest string u that starts at position i but occurs nowhere else. How
fast can your algorithm solve this problem?

6. (Gusfield) Suppose you have a set S = {s1, . . . , sr} of r strings of total length m, give an
O(rm)-time algorithm to compute the longest common substrings between all pairs of strings
in S.

7. (Gusfield) (a) Given two strings X and Y and an integer k, give a linear-time algorithm to
find a set of substrings of X, each of length ≥ k, such that Y is a concatenation of these
strings or determine that no such set exists. (b) Suppose we add the condition that the chosen
substrings of X cannot overlap. Give some approach to solve this problem.
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