
02-201: Programming for Scientists

Carl Kingsford
Fall 2015

1. Course Information

1.1 Course description

Provides a practical introduction to programming for students with little or no prior programming
experience. Extensive programming assignments will illustrate programming concepts, languages,
and tools. Programming assignments will be based on analytical tasks that might be faced by scien-
tists and will typically include parsing, statistical analysis, simulation, and optimization. Principles
of good software engineering will also be stressed. Most programming assignments will be done in
the Go programming language, an industry-supported, modern programming language, the syntax
of which will be covered in depth. Several assignments will be given in languages such as Python
or Java to highlight the commonalities and differences between languages. No prior programming
experience is assumed, and no biology background is needed. Analytical skills and mathematical
maturity are required.

1.2 Course philosophy

Our first goal for this course is: if you successfully complete the projects of this course, you should
be comfortable writing your own programs and perhaps even be able to contribute to a research
group’s projects. This skill will make you more valuable for internships and in-semester research
projects, and it will really help you in later classes.

Our second goal is to convince you how much fun programming is! Writing a program is like
solving a sudoku puzzle — programming tests (and builds!) your powers of concentration and logical
thinking — but programming is better than sudoku since at the end you have something useful
instead of a square of numbers. Programming also pays better as a career that being a sudoku
solver.

This can be a challenging course for some because thinking “like a programmer” might be new
to you. Rest assured: the difficulty of the course and the material we cover is well within that
of a “typical” introductory programming course. Second, I think it’s better to challenge students
and assign grades with the knowledge that the material was challenging, rather than be easy and
have you not learn as much. What’s the point of taking a course in which you easily understand
everything? That certainly doesn’t expand your mind or make you a better thinker. This course
is partially based on Princeton’s COS 126, which is taken by freshman Integrated Science majors
there. I’d like to quote the syllabus of one of Princeton’s integrated science major courses, since it
captures the philosophy of this course so well (if you replace “problem sets” with “programming
assignments”):

“You cannot learn the material without doing the problem sets. We have tried to
write problems which are challenging, and hence probably require substantial effort, but
without too much ‘busy work.’ On the other hand, some students feel more comfortable
with some ‘warmup exercises’ that aren’t so hard. These can be found in standard
textbooks, which also provide a more traditional point of view on the material of the
course.”1

1http://www.princeton.edu/integratedscience/curriculum/sample-syllabi/ISC231_1152.pdf

1



We will provide some “warmup exercises” in the form of problem sets and quizzes. But the bulk
of the course will be 7–10 programming assignments, which are chosen to be both interesting and
not “busy work”. These programming assignments are the heart of the course. They are carefully
designed and are calibrated to be challenging (otherwise, what is the point?) but very reasonable
for the time you will have to do them.

1.3 Pre-requisites

• Some analytical skills and mathematical background.

• No biology or programming knowledge is assumed.

1.4 Course Details

Submitting Assignments. The programming assignments (homeworks and projects) will be sub-
mitted via Autolab, and will be graded in conjunction with the policy outlined below.

Discussion Forum. An online forum is provided on Piazza as an area for discussion and questions.
The forum will be moderated by the course staff who will respond to questions, but students
are encouraged to help each other via discussion. However, specifics of assignment or project
solutions should not be discussed — any hints will be provided by the teaching staff.

Programming Expectations. You are expected to produce clean, readable, and well-documented
code. The coding practices should be consistent with what is taught in the lectures (e.g. con-
sistent naming conventions, descriptive variable names, and short functions). A component
of each assignment’s grade will be based on coding style.

Programming Languages. Most of the course will be taught in the Go programming language.
This is a relatively new language that has industry backing and that is simpler than many
languages, but not too simple (it still contains important concepts like types, pointers, and
type interfaces). However, unlike most introductory programming courses, we will not only
look at a single language. Think of it as “comparative computational linguistics” — we
may have a few assignments in a couple of other languages. The best way to understand
programming concepts is to see how they are realized in a few different languages.

2. Tentative Topics

We hope to cover the following topics. We won’t necessarily cover them in this order, however.

• The machine and how programming languages abstract it. The connection between
programming language constructs and the underlying machine will be discussed. The syn-
tax for the programming language “Go” will be covered in depth, and comparison between
common programming language syntaxes will be given.

1. Imperative programming constructs: functions, if-statements, loops (for, while), switch-
statements, expressions

2. Basic data structuring constructs: variables, arrays, strings, structs, types, and pointers

3. Reading and writing files

4. How to build Go large programs

5. Basic execution and memory model (Von Neumann architecture)

2



• Basic data structures and algorithm design techniques: Several data structures and
algorithms will be introduced.

6. Linear data structures: arrays, lists, stacks, queues; binary search

7. Dictionary data structures: binary search trees including tree traversals (DFS, BFS,
pre-, in-, post-order); hash tables.

8. Divide and conquer, recursion

• The tools of programming: Throughout the course, we will cover important tools for good
software engineering practice.

9. Assertions, preconditions, postconditions

10. Code documentation

11. Unit tests — testing small sections of code

12. Debugging — strategies, common errors

13. Profiling — figuring out what’s taking so long

• Abstraction and modularization: How we control complexity through well-defined inter-
faces.

14. Bigger units of code: Modules, namespaces, packages

15. Type interfaces and user-defined types

16. Object-oriented programming

17. Design patterns

• Parallelism: Using Go’s parallel features to let your program do more than 1 thing at a
time.

18. Goroutines

19. Channels

• Computability and the limits of computers. Are there problems computers fundamen-
tally cannot solve?

20. Turing machines

21. Halting problem and uncomputable functions

22. NP and NP-complete problems

3. Coursework

Coursework will consist of extensive programming plus a midterm and final exam:

Homework assignments (programming and problem sets). (50% of your grade) Approxi-
mately 8 – 15 assignments designed to give you familiarity with a particular language feature,
programming idea, common programming task, or algorithm.

3



Two midterms and final. (40% of your grade) The midterms and final exam will tests your
knowledge of the material from the class, and your ability to read and design programs. The
midterms will be held in class and the final held during the university’s scheduled time. The
midterm dates are:

• Midterm 1: October 9

• Midterm 2: November 13

The midterms will not be cumulative: midterm 2 will cover whatever we get to after midterm
1.

The final date and time is set by the university and will be posted when available. The final
will cover all the material from the class.

Quizzes and participation (10% of your grade) We will have occasional problem sets or quizzes
that serve to reinforce the concepts we have covered. Quizzes will be announced at least the
class before.

Programming assignments must be completed on your own (unless noted) and turned in to the
autograder by a given deadline. No late assignments will be accepted. All programming
assignments will be graded by the autograder, which will check that your programs are outputting
the expected results. In addition, a fraction of your grade for every programming assignment will
be based on following appropriate programming style. The autograder will give you an estimated
grade immediately, excluding the style portion of your grade. The TAs will subsequently go over
your code and assign the final grade, taking into account coding style.

4. Collaboration Policy

You may discuss programming assignments with classmates. However, you must not share or
show or see the code of your classmates. You must write your own code entirely. You can
post general coding questions (with code snippets) on the discussion board.

You must write all programming assignments on your own and cannot share code with other
students or use code obtained from other students. In addition to manual inspection, we use an
automatic system for detecting programming assignments that are significantly similar.

You may never use, look at, study, or copy any answers from previous semesters of this course.

5. Other policies

Classroom etiquette: To minimize disruptions and in consideration of your classmates, I ask
that you please arrive on time and do not leave early. If you must do either, please do so quietly.
Laptop use is encouraged so long as you are trying examples or following along with the lecture
slides. Use of laptops for other purposes is strongly discouraged. Texting during class is particularly
discouraged.

Excused absences: Students claiming an excused absence for an in-class exam must supply
documentation (such as a doctor’s note) justifying the absence. Absences for religious observances
must be submitted by email to the instructor during the first two weeks of the semester.

Academic honesty: All class work should be done independently unless explicitly indicated
on the assignment handout. You may discuss homework problems and programming assignments
with classmates, but must write your solution by yourself. If you do discuss assignments with other

4



classmates, you must supply their names at the top of your homework / source code. No excuses
will be accepted for copying others’ work (from the current or past semesters), and violations will
be dealt with harshly. (Getting a bad grade is much preferable to cheating.)

The university’s policy on academic integrity can be found here: http://www.cmu.edu/policies/
documents/AcademicIntegrity.htm. In part it reads “Unauthorized assistance refers to the use
of sources of support that have not been specifically authorized in this policy statement or by the
course instructor(s) in the completion of academic work to be graded. Such sources of support
may include but are not limited to advice or help provided by another individual, published or
unpublished written sources, and electronic sources.” You should be familiar with the policy in its
entirety.

In particular: use of a previous semester’s answer keys or online solution manuals
for graded work is absolutely forbidden. Any use of such material will be dealt with
as an academic integrity violation.

5


