
02-201 Programming Practice Problems #1
Carl Kingsford

These are some programming problems you can try on your own. They are not required, but a
good starting point to test your knowledge.

1. Write a function merge(L1, L2 []int) []int that takes two sorted lists and returns a
merged sorted list.

2. Write a function countPartitions(L []int, k int) int that counts the number of ways
that integers in L can be summed together to equal k. For example:

countPartitions([]int{2,3,4}, 6)

should return 3 since 6 = 2 + 4, 6 = 3 + 3, and 6 = 2 + 2 + 2. Hint: use recursion.

3. Connect four: write a function connectFour(board [][]int) bool that returns true if there
are 4 consecutive true values in a row, column, or diagonal of the matrix board.

4. Write a function secondSmallest(L []int) int that returns the second smallest item in a
list of integers.

5. Write a function sample(dist []float64) int that returns a random integer between 0 and
len(dist)-1, inclusive, where integer i is chosen with probability dist[i]. You can assume
the the sum of the elements of dist is 1, and that you have a function random() that returns
a random float64 in [0, 1).

6. Write a function wordHistogram(filename string) map[string]int that reads every space-
separated word from the given file and returns a map that says how many times each word
occurred.

7. Write a function isPermutation(a, b []int) bool that returns true if the integers in b

are a permutation of the integers in a.

8. (a) Write a function intPatternReplace(long, pattern, newpat []int) that searches
long for the first occurrence of the sequence of integers in pattern, and replaces it with
newpat. For example:

L := []int{1,2,3,2,3}

intPatternReplace(L, []int{2,3}, []int{5,7})

should change L to []int{1,5,7,2,3}. You can assume len(pattern) == len(newpat).

(b) Remove the assumption that len(pattern) == len(newpat) and modify your function
to return the new list (which may be of different size than the original long list).

(c) Change your function of part (b) to replace all occurrences of pattern. Among overlapping
occurrences, replace the first. Be careful of the situation:

L := []int{1,2,3,3,3}

intPatternReplace(L, []int{2,3}, []int{2})

which should return []int{1,2,3,3} and not []int{1,2,2,2}.

9. Write a function maze(m [][]bool, startx, start, finishx, finishy int) []string

that returns a slice of commands "left", "right", "forward" that indicate a path to move
from position (startx, starty) to (finishx, finishy) without stepping on any squares in m

1



that contain false. You can assume that all the walls of the maze (the false entries in m)
are connected together. Hint: hug the left wall.

10. (Harder) Write a function

wordChain(dict map[string]bool, start, end string) []string)

that takes as parameters two strings and a set of words. Here dict is a map of strings to
bools, where we don’t care about the bools: we say a string w is in the dictionary if the entry
dict[w] exists. Your function should return a list of words that are in the dictionary, and
where start is the first word, end is the last word, and each word differs from its neighbors
by 1 letter. For example: ["cat", "bat", "bet", "get"]. Hint: use a stack.

2


