
02-201 Programming Practice Problems # 2
Carl Kingsford

11. Suppose you have a type:

type Node struct {

a int

next *Node

}

That can be used to represent a linked list. Write a function

kthFromEnd(start *Node, k int) int

that returns the integer in the node of the linked list that is k nodes from the end (i.e. if k=0
you should return the last integer.) You can assume that the linked list ends when next==nil,
and that k is less than the number of nodes in the list.

12. Suppose you have the same Node type as in the previous problem. Write a function:

integerOfBase(start *Node, base int)

that treats each integer in the linked list as a digit in a larger integer of base base. You
can assume all of the integers in the list are between 0 and base-1. The most-significant
digit is at the node pointed to by start and the least-significant digit (the ones-digit) is at
the end of the list. For example, a list L = 1 → 3 → 5 would return 135 if called with
integerOfBase(L, 10).

13. Suppose you have a type Stack that has two methods:

func (s *Stack) push(i int)

func (s *Stack) pop() int

that push and pop integers as usual with Stacks. Implement a type Queue with to methods:
enqueue(i int) and dequeue() int using only calls to push and pop on stacks — that is,
you can’t create any arrays or maps in your Queue type: you can only create Stacks. Hint:
use 2 stacks.

14. (Harder) Suppose you have a type:

type TreeNode struct {

a int

left, right *TreeNode

}

that can be used to represent a binary tree, where left and right are the left and right chil-
dren of the node. Write a function isBinarySearchTree(t *TreeNode) bool that returns
true if t’s nodes are in binary search tree order.

15. Assume you have the same TreeNode type as in the previous problem. Write a function
to print out the integers in a tree one level at a time, with each level on its own line. For
example:

1



3 1

5

7 9 8

2413

5
3 1
7 9 8
13 24

2


