Carl Kingsford, 02-201, Fall 2015

Lecture 11: Maps

What if you want to store populations of US states?

Population estimate for

State or territory July 1, 2013
California 38,332,521
Texas 26,448,193
New York 19,651,127
Florida 19,552,860
lllinois 12,882,135
Pennsylvania 12,773,801
Ohio 11,570,808
Georgia 9,992,167

Michigan 9,895,622
North Carolina r 9,848,060

New Jersey & 8,899,339

Creating map variables

maps let you do this. Maps are a built-in data type in Go. You can declare them using the following syntax:

1 | map[KEVTYPE VALUETYPE

Maps associate a key with a value.

For example:
1 | var grades map[string]lint // strings to ints
2 | var rules map[string]string // strings to strings
3 | var multi map[string][]string // strings to string slices
4 | var pop map[string]float64 // strings to floats
5 | var ssn map[int]string // ints to strings
6 | var families map[string]map[stringlint

As with lists, you have to make a map after you declare it.

grades = make(map[stringlint)
rules = make(map[string]string)
multi = make(map[string][]string)
pop = make(map[string]float64)
ssn = make(map[int]string)

O U1 A W N B

families = make(map[string]map[string]int)

Note that you don't have to give a "size" for the map to make :the map will grow and shrink automatically as
needed.

Using maps

Maps act a lot like lists, but you can access elements using keys instead of integer indices:

1 | var statePop map[stringlint = make(map[string]lint)
2

3 | statePop|["PA"] = 12773801

4 | statePop["CA"] = 38332521

5

6

fmt.Println("The population of PA is", statePop["PA"])

Some more examples:

grades|“Carl”]| = "A+++"
fmt.Println("Rule for", x, "is", rules[x
ssn[627729183 | = "Dave"

paPop = pop|"PA"

Test yourself! What types are the maps in the above example?

After make , each element of the map contains its "0" value:

grades := make(map[string]|string
fmt.Println(grades| “Chuck" // will print ""

Mental image of a map

__

--

_____________ Vivian & 83
______________ Dave | 767
_..Rebecca i 0.5

--

Charlie 80

__Margaret 25
____________ Lauren 21

Checking if an element has ever been set in a map

You can access an element of a map using the syntax paPop = pop[“PA”] . In this case, if key "PA" has
been given a value in the map, you will get the value, otherwise, you will get a "0" value.

You can explictly check whether an element has been set by using a double-assignment:
paPop, exists := pop|“PA”

paPop will be set as above, but exists willbe false if nothing was stored previously for key "pa"
in the map.

(You can use any variable name where exists occurs above --- exists isa bool variable.) Thisis
useful to check whether a key has ever been given a value:

paPop, exists := pop[“PA”
if lexists
fmt.Println(“Never set PA pop!”

Getting the number of elements in a map

Use the len() function to getthe number of things that have been added to a map: len(pop) if pop
is a map. For example,

m := make(map[int]int
ml] =0
m7] = 10
m8| =0

fmt.Println(len(m // will print "3"

Deleting an element from a map

You can remove an item from a map (so it looks like you never set it to a non-zero value):

delete(pop, “PA”
delete(rules, “A”

delete(ssn, x
Here pop , rules and ssn are maps, and the second parameter is the key to delete.
Map literals
Just as with lists, you can explicitly list what you want to be in a map at the start:

rules := map[string]string
ﬂ’A)J ﬂ'B _ A_ B”
rrB» “A+B+A”

(Note that if you put the key:value items each on their own line, the last pair must have a "," following it

just like all the rest.)

Looping through the items in a map

Just as with lists, we can loop over the elements in a map using for ... range :

for k, v := range pop
fmt.Println(“The population of”, k, “is”, v

The difference is that we provide 2 variables in the for statement(e.g. k and v above). These will loop
through all the key and value pairs.

Note: there is no guarantee about which order the elements of the map will be accessed ina for...range
statement.

Example use of maps

Recall that we wrote something similar to this in the Lindenmayer example:

// gets the Rhs for a given Lhs for a rule
func getRhsFor(char string, lhs, rhs string) (string, bool
for i, 1 := range lhs
if 1 == char
return rhs[i], true

return "", false

This assumed we had rules encoded like this:

lhs := string{"A", "B"

rhs : string{"B-A-B", "A+B+A"

But the rules are more logically and easily encoded as a map from a string (Ihs) to another string (rhs):

rules := make(map[string]string
rules["A"] = "B-A-B"
rules["B"] = "A+B+A"

Now we can write getRhsFor() much more easily:

// gets the Rhs for a given Lhs for a rule

func getRhsFor(char string, rules map[string]string) (string, bool
rhs, exists := rules[char
return rhs, exists

Maps of maps

Just like lists of lists (and lists of lists of lists, etc.) maps of maps are allowed (as are maps of maps of maps of
...). You declare a map of maps using the syntax like:

var mom map[int]map[string]int

This is a map of integers to maps of strings to integers. In other words, mom[10] is a variable of type
map[string]lint . It's also true that ‘'mom[10]["hi"] is an integer.

Just like with 2-D lists, you have to explictly create the "inner" maps:

mom = make(map[int]|map[string]int

mom[10]["hi"] = 3 // error at this point
mom[10] = make(map[string]int
mom[10]["hi"] = 3 // ok now

Mental image of a map of maps:

..

Key Vaiue . Albert 505,

"" Bob. . .i....302 ...

cMU Ethan. . i 65.45. ...

___ Vivian____ i .83 .

______________ Dave i 767 .

Bob * N Rebecca 905 ..

-- Susan 100

Ethan .
Vivian .
Dave .
Rebecca .
Susan .

Why use lists instead of maps?

You can think of list []float64 asa map[int]float64 where only keys between 0 and the length of
the list are allowed. Maps can handle much of what lists can do (and some programming languages like AWK
only include maps and not lists). So why would you ever use lists?

e Lists can use less memory than maps if you really need to store an element for every index in the list.
o Lists can be appended to.

e The order of the elements of a list is specified, while for maps there is no fixed ordering (although you can
fake it).

In summary, often you could use either and which one you use is a matter of style and clarity (is what you

doing more like keeping a list of items? or more like associating items with integers?)

When you can use a list, you probably should. Otherwise, use a map .

Summary

e Maps store associations between a key and a value.
o Keys must be unique within a map.
¢ You can use them like lists, but with more general keys.

e Maps are extremely useful, often more useful than lists.

Glossary

e Kkey: a value used to index items in a map

e value: a value retrieved for a given key in a map

e key/value pair: a pair of keys and values that are associated in a map
e map: stores associations between keys and values

