Carl Kingsford, 02-201, Fall 2015

Lecture 14: Pointers

Suppose we store information and employees and teams using the following types:

type TeamInfo struct
teamName string
meetingTime int
members Employee // note difference from class!

type Employee struct
id int
name string
salary float64

We can then store all the info about the company in a map from team names to TeamInfo structures:

company := make(map[string]TeamInfo
company| "appleWatch"] = TeamInfo
teamName: "appleWatch"
meetingTime: 10
members Employee
Employee{id: 7, name: "Carl", salary: 1.0 // DUP!!I
Employee{id: 3, name: "Dave", salary: 50.0
company| "iPhone"| = TeamInfo
teamName: "iPhone"
meetingTime: 3
members Employee
Employee{id: 4, name: "Mike", salary: 101.0
Employee{id: 8, name: "Sally", salary: 151.0
company| "iMac"| = TeamInfo
teamName: "iMac"
meetingTime: 10
members Employee
Employee{id: 7, name: "Carl", salary: 1.0 // DUP!!!I
Employee{id: 10, name: "George", salary: 75.0
Employee{id: 11, name: "Teresa", salary: 92.0

Notice the lines marked with // DUP!!!
teams. This is a waste of space, error prone because you must update each duplicate if any of the data

: there are two entries for Carl because he is on two different

changes, and slower because you always have to search for every duplicate.

The above structure of the data can be visualized as:

teamName TeamInfo
struct {
teamName = “appleWatch”
meetingTime = 10
1 ”
appleWatCh struct { struct {
members = " 54 - 7 id = 3
name = “Carl” name = “Dave”
salary = 1.0 salary = 50.0
} } }
struct {
teamName = “iPhone”
meetingTime = 3
[{H n
IPhone _ | struct { struct {
members = |71 4 id = 8
name = “Mike” name = “Sally”
salary = 101.0 salary = 151.0@
} } }
struct {
teamName = “iMac”
meetingTime = 10
“: " struct { struct { struct {
iMac members =| id =7 id = 11 id = 10
name = “Carl” name = “Teresa” name = “George”
salary = 1.0 salary = 92.90 salary = 75.90
} } }
}

In class, we saw a fix to this that used the employee id to link employees into the teams. This situation is

common enough, that most programming languages have a solution for it, which is pointers.

Pointers

We'd like to change the TeamInfo type so that each employee is represented once:

struct {
id = 3
teamName TeamInfo name = “Dave”
salary = 50.9
struct { | }
teamName = “appleWatch”
appleWatch meetingTime = 1@ R StTSCE ;
members = o
} name = “Carl”
salary = 1.9
}
struct {
teamName = “iPhone”
iPhone meetingTime = 3 struct {
members = E\ id = 4
} d > | name = “Mike”
salary = 101.8
struct { }
teamName = “iMac’
iMac meetingTime = .
members = struct {
} \ id = 8

name = “Sally”
\\\\\‘ salary = 151.8
}

1~“‘HH‘

struct { struct {
id = 18 id = 11
name = “George” name = “Teresa”
salary = 75.0 salary = 92.0

} }

The way we can do this is to change the TeamInfo type to:

type TeamInfo struct
teamName string
meetingTime int
members *Employee // the "*" means "pointer"

The []1*Employee typeisalist([])of pointers(*)t0o Employees

What is a pointer?

Your computer's memory is a long chain of cells numbered 0 to some large number. Each variable you declare

take up some number of these cells:

struct
Employee {

Address —

0
’
2
3
q -
5
6
7
Slvar Aint=3
9

—L
o

-
e

—L
A%}

struct
Employee {

—4 4 & &
~ O O B~ W

—t
co

—
©

The location of the variable is called its address.

A pointer is a variable that contains the address of some other variable:

struct
Employee {

varAint=3

O O - O 00 A WMN = O

—
o

var E *Employee = 12

"
=k

—
N

struct
Employee {

—% —k —k & 4
~ O N 5~ W

—L
oo

—
(9]

Setting what a pointer points to

A pointer is a variable that contains an address of another variable. To get the address of a variable you use
the & (address) operator:

var P Employee = createEmployee()
var person *Employee

// at this point, person == nil

A U1 A W N B

person = &P

Another example:

1 | var 1 int = 10
2 | var p *int = &i

This creates the following situation:

Accessing the value of the variable that a pointer points to

Suppose you have the following statements:

1 | var 1 int = 10
2 | var p *int = &i

Then i 'svalueis 10 and p 'svalueisthe addressof i .lfyou fmt.Println(p) Yyou willget some
large integer (probably in hexadecimal) that is the memory address where i is stored. If, however, you do

1 | fmt.Println(*p)

you will print out "10". The * operator, when put before a pointer means "follow the pointer". The expression
*p acts almost exactly like i . Consider the following statements:

A W N R

fmt.Println(*p) // will print "10"

*p = 20

fmt.Println(*p) // will print "20"
fmt.Println(i) // will print "20" ****

Assigning to *p is exactly the same thing as assigningto i .And =*p is really just another name for i .

It's sort of like i

is "The White House" and

*p is "1600 Pennsylvania Avenue".

Here's an another example sequence of statements using pointers:

O 00 N O L1 A W N B

P R R R R R R R
N oD WN RO

var i int = 10
var j int = 10
var p *int = &i

i=11
fmt.Println(*p)
fmt.Println(p)

*p = 300

fmt.Println(*p)
fmt.Println(p)
fmt.Println(i)

p=4&j
fmt.Println(*p)
*p o= 12
fmt.Println(*p)

Test Yourself! Write down what each Println statement above will print out and then check your

answers by running the above statements in Go.

Other pointers

You can have pointers to any variable:

var name *string // ptr to string

var person *Employee // ptr to Employee

var pj *int // ptr to int

var m map[string]|*Employee // map from strings to pointers to Employees
var pA *[]float64 // a ptr to a list of real numbers

var Apf []*float64 // a list of pointers to real numbers

Pointers are "meta" things. An Employee is a piece of data, an "object" of your program. A *Employee is
a reference to that object. A variable of type *Employee isnotan Employee .

LCeci nest nas une fufie.

René Magritte

Pointers to struct s

Just as with our Employee example, itis often the case that you have a pointer to a variable that holds a

struct :

var P Employee = createEmployee
var person *Employee // at this point, person == nil

person = &P // now person points to P

*person).name = “Jerry"

The statement (*person).name means: follow the person pointer;you arrive ata struct of type
Employee ; access the field name ofthat struct . Thisis so common, Go provides a shortcut:

person.name = "Jerry"

You can access the fields of a struct from a pointer to that struct just as if you had the struct directly.
Another example:

type Contact struct
name string
id int

func main
// c is a Contact structure
var c¢ Contact = Contact{name:"Dave", id:33

// p points to c
var p *Contact = &c

fmt.Println(c // will print out contents of c
fmt.Println(*p) // will *also* print out context of c

*p).name = "Holly" // will change c.name to "Holly"
p.id = 33 // will change c.id to 33
fmt.Println(*p

Passinga struct to a function:

What's wrong with this code?

// BAD CODE BAD CODE BAD CODE
type Contact struct {

name string

id int

func setContactInfo(d Contact) {
d.name = "Holly Golightly"

O 00 N OO U1 » W N B
-

d.id = 101
10 |)
11
12 | func main() {
13 var c Contact = Contact{name:"Dave", id:33}
14 setContactInfo(c)
15 fmt.Println(c)
16 | I
17 // BAD CODE BAD CODE BAD CODE

When we pass c into setContactInfo we are passing in a copy, so any changes we make to d
inside of setContactInfo don'teffect ¢ .How can we fix it?

Have the function take a pointerto a Contact and then pass the address of ¢ into the function:

1 | type Contact struct {

2 name string

3 id int

4|}

5

6 | func setContactInfo(c *Contact) { // NOTE *
7 c.name = "Holly Golightly"

8 c.id = 101

9 |}

10

11 | func main() {

12 var ¢ Contact = Contact{name:"Dave", id:33}
13 setContactInfo(&c) // NOTE &

14 fmt.Println(c)

15 | }

Summary

Pointers store addresses of other variables. Declare by prefixing type with * Access the variable they point to
by prefixing the pointer with * Get the address of a variable (to assign to a pointer) via & Most common use:
pointers to structures

Glossary

address: the location in memory of a variable.

pointer: a variable that holds the address of another variable.

dereference: means "following the pointer" and is denoted *p when p is a pointer.
address of operator: &x returns the address of variable x .

