
02-201, Fall 2015, Carl Kingsford

Programming is clearly, correctly telling a computer what to do.

A computer is a very complex, simple machine:

It's complex because it is made up of millions or billions of parts all engineered to work together
It's simple because it can only do relatively simple operations in exactly the way we tell it

Programming is the way we control this machine.

Example: Computing with a Go program at: http://play.golang.org

Learning to program is like learning a new language

We write programs in "programming languages", which have rules of spelling, grammar, and style.

Ceci n'est pas une pipe -> SUBJECT ne VERB pas DIRECT_OBJECT

Programming is like writing: you are striving to express what you want the computer to do as clearly, correctly,

Lecture 0: Introduction to the class

1. What is programming?

∑n
i=0

1
i2

http://play.golang.org/

and concisely as possible. Both your English writing and your programming should be precise and concise.

Just as with writing, you write, revise, edit, refine in a quest for correctness, clarity, and style.

We have to start by learning the "grammar" and "spelling" rules of our progamming language.

Programming is a notation system for describing processes.

Calculus is a notation system for describing certain types of mathematics.

There's a lot of notation here that you had to learn and that now probably seems invisible to you:

"f(t)" denotes a function application on variable t.
The "=" sign means you are giving a definition for function f: what its value is for parameter t.
"ln(t)" denotes calling a particular function (the natural logarithm).
The notation means division.
The means to take integrate over t (the variable in the denominator) from from 0 to t (the variable
passed into t).

There are some subtleties to this notation: on the righthand side, the 3 occurrences of t mean 3 different things.
The "dt" defines a variable over which you are integrating. That variable appears inside the ln(t). Finally, the t in
the range of the integral is the t defined by the parameter to funciton f.

You had to learn all of this for calculus. Programming involves learning a different notation to describe things a
computer can do:

x
y

… dt∫ t
0

You don't need to understand this yet, but it specifies Euclid's algorithm for computing the greatest
common divisor.

A fairly large part of this course is mastering programming notation.

Programming a way of thinking clearly about processes.

Programming is much more than the notation. In fact, there have been thousands of different notations
invented.

But most of these notations all involve the same concepts:

Making choices: Do A if B otherwise to C.
(Go to the store if it's raining, otherwise go running.)
Repeating things: Do A 100 times. Do A until B.
(Run around the track until you are tired.)
Definining new operations in terms of existing ones: When I say "Do A", you should do B,C,D,E.
(When I say "Go to the store", you should "drive there, and buy cookies, milk, cake, and chocolate.")

A large part of this class will be learning to think about these kinds of concepts.

Programming is a craft.

Programming is like carpentry: it takes practice and skill to do it right.

func	
 gcd(a	
 int,	
 b	
 int)	
 int	
 {
	
 	
 	
 	
 var	
 c	
 int
	
 	
 	
 	
 if	
 a	
 ==	
 b	
 {
	
 	
 	
 	
 	
 	
 	
 	
 return	
 a
	
 	
 	
 	
 }
	
 	
 	
 	
 if	
 a	
 >	
 b	
 {
	
 	
 	
 	
 	
 	
 	
 	
 c	
 =	
 a	
 -­‐	
 b
	
 	
 	
 	
 	
 	
 	
 	
 return	
 gcd(c,	
 b)
	
 	
 	
 	
 }	
 else	
 {
	
 	
 	
 	
 	
 	
 	
 	
 c	
 =	
 b	
 -­‐	
 a
	
 	
 	
 	
 	
 	
 	
 	
 return	
 gcd(a,	
 c)
	
 	
 	
 	
 }
}

As with cabinets, there are good programs and bad programs. A goal of this course is for you to learn to write
good programs.

Programming is great practice for thinking logically and linearly.

Writing a program requires you to think carefully about a problem in a "linear way" (A then B then C, etc.) rather
than vague intuition.

Writing a program is like solving a sudoku puzzle — programming tests (and builds!) your powers of
concentration and logical thinking — but programming is better than sudoku since at the end you have
something useful instead of a square of numbers. Programming also pays better as a career that being a
sudoku solver.

Programming is fun.

By the end of this class, you will be able to get a computer to draw pictures, answer mathematical questions,
design protein structures, analyze English text, and do many other tasks.

Specifically, the course projects will include programs to:

Model the growth of a population
Model diffusion over a surface
Run a simple model of the universe
Simulate evolution of competing species
Simulate English text and DNA
Draw plots of data
Perform simple encryption
Design protein structures

All by just writing some letters into a text file.

It's the ultimate virtual lego system: by writing code, you put together virtual machines.

DNA sequencing technologies produce millions of short (30-200 nucleotide) reads of a genome.
Computers are needed to piece those segments into a complete genome.

CellOrganizer analyzes images of cells to produce models of:

cell shape
nuclear shape
chromatin texture
vesicular organelle size, shape and position
microtubule distribution

2. The use of computers in science

Genome sequencing:

Modelling spatial relationships between organelles:

(http://www.cellorganizer.org)

A protein is a linear change of amino acids. Typically, the sequence of amino acids is encoded in a gene. The
chain folds up into some functional shape.

Problem: predict the shape of a protein from its amino acid sequence. The two lines show the real and
computationally predicted shape of a particular protein:

(Image by Phil Bradley from https://boinc.bakerlab.org/rah_hires_prediction.php)

Understanding the large-scale structure of the universe and how dark matter and dark energy affect its
evolution requires simulations.

Predicting the shape of proteins:

Modeling the universe:

http://www.cellorganizer.org/
https://boinc.bakerlab.org/rah_hires_prediction.php

(image from http://cosmicweb.uchicago.edu/sims.html).

1. Master the "Go" notation for programming languges.
2. Master the basic building blocks of algorithms (loops, conditionals, functions).
3. Understand what is going on inside the computer at a working level.
4. Practice writing semi-large programs that do real tasks.
5. Learn how to use programming tools to help you write good programs.
6. See how computation drives scientific progress.

7. See how much fun programming can be!

If you successfully complete the projects of this course, you should be comfortable writing your own programs
and perhaps even be able to contribute to a research group’s projects. This skill will make you more valuable
for internships and in-semester research projects, and it will really help you in later classes.

For a fuller discussion of these and other points, please read the syllabus. Below are some highlights of the
syllabus.

Goals of the course

3. Administration of the course

Course work:

http://cosmicweb.uchicago.edu/sims.html

10-15 homework assignments. (50% of your grade.) These are chosen to be challenging but doable.
This is where most of the work and learning should happen! Most of the homeworks will be programming
assignments where you will turn in a working program, but there will be several handwritten problem sets.

Several quizzes and participation. (10% of your grade.) Quizzes will be short, announced ahead of time,
and are intended so that both the teaching staff and you can gauge where your understanding is lacking
and where it is strong.

Two midterms and a final. (40% of your grade in total: 10% for each midterm, and 20% for the final.)
These are used to test your knowledge both of programming and non-programming concepts we will
cover.

Laptop use is encouraged! If you are following along with the examples we are working or trying out
programming concepts.

Laptop use for other purposes is forbidden. Texting during class is not allowed.

You must submit all assignments on time. There are no late assignments accepted. You should turn in
what you have by the deadline, and you will get partial credit. We will drop the lowest assignment grade.

Quizes cannot be made up if you miss them, except in the case of documented illness or emergency. We
will drop the lowest quiz grade.

Unless specified otherwise, you must work on all assignments on your own.

You may discuss programming assignments with classmates in a general way. However, you must not
share or show or see the code of your classmates. You must write your own code entirely. You can
post general coding questions (with code snippets) on the discussion board.

You may never use, look at, study, or copy any answers from previous semesters of this course.

Programming is a way of telling the computer what to do.
It is fun and good practice for thinking logically.
It is central to almost all aspects of modern science.

Other policies:

Academic honesty:

4. Summary

algorithm: a formal specification of a process that is (typically) executed by a computer.

programming language: a particular notation system for specifying algorithms.

compiler: a program that reads programming notation and turns it into something the computer can run.

5. Glossary

