Carl Kingsford, 02-201, Fall 2015

Lecture 7: Conditionals and Loops

"If" Statements

if syntax

if statements let you execute statements conditionally: that is which statements execute depend on
whether some condition is true or false. For example:

func max(a int, b int) int {

var m int
if a > b {
m=a
fmt.Println(a)
} else {
m=>b
fmt.Println(b)
}
return m

The syntax ofan if statementis:

if CONDITION {
THEN PART
} else {
ELSE PART

If CONDITION is true, then the statements inthe THEN PART will be executed.
If CONDITION is false, then the statements inthe ELSE PART will be executed.

The else clause is optional:

ifa>b{
fmt.Println("a is bigger")

}
fmt.Println("done")

Schematically:

true false
"then" part "else" part

v

statement followin
if-else

Test yourself! What kind of computer instruction do you think plays an important role in how if

statements are executed?

Conditions

The CONDITION partof an if statement can be any expression that evaluates to a Boolean value. For
example, the following comparison operators return Boolean values.

Boolean Operator Meaning

el>e2 el is greater than e2

el<e2 el is less than e2

el >=e2 el is greater than or equal to e2
el <=e2 el is less than or equal to e2

el ==e2 el is equal to e2

ell=e2 el is not equal to e2

le1 true if and only if e1 is false

Examples:

a>10 * b + c

10 == 10
square(10) < 101 - 1 + 2
I(x*y < 33)
The Boolean operators && and || (and and or) are particularly useful in if conditions.

Additional if examples

A max function:

// max() returns the larger of 2 ints
func max(a,b int) int {
if a > b {
return a

}

return b

The same function can be written with an else clause too:

// max() returns the larger of 2 ints equivalent to above
func max(a,b int) int {

if a > b {
return a
} else {
return b
}

The else clause is optional, and you can have as many statements as you want inside the THEN PART and
ELSE PART :

if temperature > 100 {
fmt.Println(“Warning: too hot!”)
fmt.Println("Run away!")

Go requires that

e the { mustbe onsamelineasthe if
e } and { mustbeonsameline asthe else

Another example:

1 | // AbsInt() computes the absolute value of an integer.
2 | func AbsInt(x int) int {

3 if x < 0 {

4 return -x

5 }

6 return x

7

Test yourself! What does the following print?

1 | var a,b int = 3,3
2

3 | if a < 10 {

4 a = a*a

5|)

6 | if a * a > 3*b {
7 var t int = a
8 a=m>b

9 b=t

10 | }

11 | if a < b {

12 fmt.Println(a)
13 | } else {

14 fmt.Println(b)
15 | }

if statements can be nested: an if statement can appear inside the THEN PART or ELSE PART of
another if statement. Thisis common, and let's you make complex decisions.

1 // returns the smallest even number among 2 ints; returns © if both are odd
2 | func smallestEven(a, b int) int {

3 ifa%2==20 {

4 ifb%2==20 {

5 // both a and b are even, so return smaller one
= if a <b{

7 return a

8 } else {

9 return b

10 }

11 } else {

12 // only a is even

13 return a

14 }

5 } else if b % 2 == 0 { Jf =55
G // only b is even

17 return b

18 i =llec

19 // both a and b are odd

20 return 0

21 }

22 | }

Reminder: % isthe "mod" operator: x % y isthe remainder when x is dividedby vy .

Notice that you can putan if directly followingan else :see line marked witha =*** above. This is the

same as:
1| ifa% 2 ==290
2
3 | } else {
4 ifb%2==20{
5 .
6 }
7|}

but uses one fewer setof { } .

"For" Loops

for syntax

Sometimes we want to execute a sequence of instructions many times. For this, a loop is what we need.
Go has only 1 kind of loop (with 2 variants): the for loop.

The statements in the body of the loop will be executed until the loop condition is false. Each time through the
loop is called an iteration.

An example:

func factorial(n int) int {
var f int = 1
var i int
for i = 1; i <= n; i=i+1 {
£ = £ *]
¥

return f

The syntax fora for loop is:

for INITIALIZATION_STATEMENT ; CONDITION ; POST-ITERATION_STATEMENT {

FOR-BODY

There are 3 parts following the for and beforethe { , and these parts are separated by semicolons.
These parts work as follows:

o INITIALIZATION_STATEMENT: a single statement that is executed one time before the loop starts.
e CONDITION: the loop will repeatedly execute until this condition is false.
¢ POST-INTERATION_STATEMENT: this is run after each time the FOR-BODY is executed

Test yourself! How many times is the word "Hi" printed by this loop:

var i int

for i =10; i < 20; i = i+1 {
fmt.Println("Hi")

¥

Schematically, a for loop works like this:

for init

statelment
—>’—true—> Loop Body
false
v
post-iteration

statement

statement
following loop

Note: any of the three parts of the for statement can be omitted. If both the INITIALIZATION_STATEMENT
and the POST-ITERATION_STATEMENT are omitted, you can omit the ;

"While" loops

If we only include the CONDITION in a for loop, we will execute the FOR-BODY "while" CONDITION is true.
You could re-write factorial as:

var f int = 1
var i int =1

for 1 <= n { // only condition in for
f=Ff*1i
i=1+1

}

Increment and Decrement operators

The i++ and i-- operators add 1 or subtract 1 from a variable. These are particularly useful in the
POST-ITERATION_STATEMENT part of a for loop, where you can write i++ instead of the longer (but
exactly equivalent) i = i + 1 .

:= variable declarations

Notice inthe factorial example that we had to create a variable i that just served to count how many

times we had executed the loop. This is quite common. Go provides a shorthand for this so that you can
declare a variable inside of the INITIALIZATION_STATEMENT:

The := operator both declares and initializes a variable. The above is equivalent to:

var v int = 1

Question: In v := 1 , how does Go know what type v is?

The answer is that Go knows v must be an integer because 1 is an integer. This works for string s

and float64 s too:

3.14159
= "Hi there"

n S
| 1l

These statements save you typing var and the type. We can now rewrite factorial in a more clear,

typical way:

func factorial(n int) int {

f =1

for i :=1; i <= n; i++ {
£ = £ *]

¥

return f

Question: What is the difference between these two snippets:

var f int = 1
for i :=1; i <= n; i++ {

£=f*i

and

var f int = 1

ic=1

for i <= n {
f=f*1i
i++

}

The answer is the scope of the variable i . In the first snippet, i lasts only for the loop, while in the second
example, i lasts after the loop completes.

Variable declarations in loop bodies

What will the following function print? Is it correct?

// BAD CODE
func sumSquares() {
// print partial sums of the sequence of squares
// of the numbers 1 to 10
for i :=1; i <=10; i =1+ 1 {
var j int
j=3j+1i*i
fmt.Println(j)

}
// BAD CODE

This is wrong! It will print:

16
25
36
49
64
81
100

which are the first 10 squares, not their sums. Why does this happen?

Variable j is created and destroyed each time through the loop!

Nested loops

Loops can be nested just like if statements. For example:

func printSquare(n int) {
for i :=1; i <= n; i=i+1 {
for j :=1; j <= n; j=j+1 {
fmt.Print("#")

}
fmt.Println("")

will print:

carlk$ go run square.go
s
it
HHtH RS
s
it
HHtHH RS
s
it
HitH RS
s

Example: Simulating Random Walks

A random walk on a grid is defined as follows: suppose you start standing at some square of the grid. You then
choose an adjacent square to move to uniformly at random. You repeat this until you get tired. The sequence of
squares you visit is called a random walk.

n

Let's write a function that will compute the squares you will visit if you perform a random walk on a n-by-n
chess board, starting from the middle square.

Solution #1:

1 | package main
5> | import (
3 "fmt"
4 "math/rand"
5 [)
6
7 | func randDelta() int {
8 return (rand.Int() % 3) - 1
9 |}
10
11 | func randomWalk(n int, steps int) {
12 var X, y = n/2, n/2
13 fmt.Println(x,y)
14 for 1 := @; i < steps; i++ {
15 var dx, dy int
16
17 for dx == 0 && dy == 0 {
18 dx = randDelta()
19 for x+dx < @ || x+dx >= n {
20 dx = randDelta()
21 }
22
23 dy = randDelta()
24 for y+dy < @ || y+dy >= n {
25 dy = randDelta()
26 }
27 }
28 X = X + dx
29 y =y +dy
39 fmt.Println(x,y)
31 }
32 |}
33
34 | func main() {
35 randomWalk (1@, 20)
36 |)
Notes:

e rand.Int()

returns a random non-negative integer. You must put import "math/rand"

your program to access that function.

e Loop A executes for the requested number of steps of the random walk

/] A

// B

/] C

at top of

e Loop B executes until we successfully pick a non-zero direction to move in
e Loop C executes until we pick a y-direction that keeps us inside the chess board.

This works fine, and will print something like:

Ao vt vt oLt AP DdMDDdMu D w phbulphhwnN WA U
AN 00 o0 N O VoD b uio by b ulown

Solution #2

Note that the code around loop C is basically the same as the code just above it! This is code duplication and is

usually bad. The reason it is bad is that if you fix a bug in one copy of the code, you have to remember to fix it
in the other copy. In addition, it indicates you haven't broken your problem down into the best set of functions.

If we create a function for the idea of taking a random step, the code becomes shorter, easier to read, with little
duplication:

func randDelta() int {
return (rand.Int() % 3) - 1

func inField(coord, n int) bool {
return coord >= @ && coord < n

func randStep(x,y,n int) (nx int, ny int) {
nx, ny = x, y
for (nx == x & ny == y) || !inField(nx,n) || !inField(ny,n) {
nx = x+randDelta()
ny = y+randDelta()

return

func randomWalk(n, steps int) {
var X, y = n/2, n/2
fmt.Println(x,y)
for i := 0@; i < steps; i++ {
X,y = randStep(x,y,n)
fmt.Println(x,y)

Now, inField expresses the test for whether a coordinate is in the chessboard, randStep provides one
random step, and randwWalk is just aloop asking for the next random step.

This is more understandable.
It is also more flexible: perhaps we will be able to use randStep() someplace else.

Good Programming: Break big problems into small functions with good interfaces.

Example: Printing a Diamond

Write a function to print out a diamond shape:

func printDiamond(n, shift int)

2 ceil = largest
[n/ -I integer<n/2

n = number of lines
(must be odd)

|n/2| floor = smallest
integer=n/2

printDiamond(19,5)

How can we start thinking about this problem? Notice that a diamond is composed of two triangles. So we can
break the problem down into two subproblems:

b8 |

Break into two subproblems: s
printTriangle(n, shift int) el
printInvertedTriangle(n, shift int)

B
Dl

func printDiamond(n, shift int) {

if n % 2 == 0 { Check that the parameters are
fmt.Println("Error! n must be odd; it's", n) valid. This is good practice.
} else {
printTriangle(n / 2 + 1, shift) € oerrrnrnnnnn Pnnt top tnangle
printInvertedTriangle(n/2, shift+l) .
y T T S
} Print bottom triangle.

Since nis odd:

fn/2'| = ’n,/2 + 1 What's going on here?

Since nis an integer variable and 2 is an integer
|_TL/2J ’n,/2 the coden / 2 does integer division and rounds down.

The bottom triangle is slightly shorter and shifted to the right by 1 extra space.

Top-down design:

e Weusedthe printTriangle() and printInvertedTriangle() functions in our thinking
before we wrote them.

¢ We know what they are supposed to do, so we could use them to write printDiamond() even before
we implemented them.

¢ In a sense, it doesn’'t matter how printTriangle() and printInvertedTriangle() are
implemented: if they do what they are supposed to do, everything will work.

e |t’s only their interface to the rest of the program that matters.

e This is top-down design, and it’s often a very good way to approach writing programs:

o start by breaking down your task into subproblems.
o write a solution to the top-most subproblem using functions for other subproblems that you will write
later.

o then repeat by writing solutions to those subproblems, possibly breaking them up into subproblems.

The printTriangle function:

The size variable
tracks the
number of # to
print on the
current row.

size goes up by
2 after each row

Tip: watch out for "off-by-one" errors: e.g. using row <= n

Why

loops for n rows
(0 ton-1)

func printTriangle(n, shift int) ({

................ >var size int
for ro

(n-1) - row + shift ?

=1

s= 0;

row < n;

K
row + 1 {

row

// print space to indent row

for i := 1;

}

i<=
fmt.Print ("

(n - 1) - row + shift

)

i++ {

// print the right number of symbols in a row

for i := 1; i <= size; i++ {

A

fmt.Print ("#") h :
})) Lines that start
> size = ' size + 2 with // are comments
fmt.Println() for the human

A

Print a newline
(return) character
after each row

reader

loops for size times
to print out the right
number of #

or row := 1 (though using both would be ok)

row

for i := 1; i <= (n - 1) - row + shift; i++ {
fmt.Print(" ")

A WON—= O

when row = n-3, loop should execute 2 + shift times
when row = n-2, loop should execute 1 + shift times

n-1 b im0 WHeEN row = n-1, loop should execute shift times

At each row, one fewer space should be written.
The last row (numbered n-1) should have shift spaces
written.

The printInvertedTriangle function:

size starts at the size of func printInvertedTriangle(n, shift int) {
the top-most row, which - svar size int = 2*n - 1
has 2n - 1 symbols in it. // Note: this loop counts down
for row := n; row > 0; row = row - 1 {
> for i := 1; i <= n - row + shift; i++ {
fmt.Print(" ")

In first iteration of the
row loop, row == n, SO }

n-row = 0, and this . . s
loop iterates shift times // p]:.‘lnt the - right . numb?r of symbols in a row
for 1 := 1; i <= size; i++ {
fmt.Print ("#")
}

size = size - 2
fmt.Println()

The complete code for printDiamond :

1 | func printTriangle(n, shift int) {

9 var size int =1

3 for row := @; row < n; row = row + 1 {

4 // print space to indent row

5 for i :=1; i <=n-row -1+ shift; i =1i + 1 {
6 fot.Print(" ")

7 }

8 // print the right number of symbols in a row
9 for i :=1; 1 <= size; i =1 + 1 {

10 fmt.Print("#")

11 ¥

12 size = size + 2

13 fmt.Println()

14 ¥

15 | }

16

17 | func printInvertedTriangle(n, shift int) {

18 var size int = 2*n - 1

19 // Note: this loop counts down

20 for row := n; row > ©; row = row - 1 {

21 for i :=1; 1 <=n - row + shift; i =i + 1 {
22 fmt.Print(" ")

23 ¥

24 // print the right number of symbols in a row
25 for i :=1; i <= size; i =1 + 1 {

26 fmt.Print("#")

27 ¥

28 size = size - 2

29 fmt.Println()

30 ¥

31 |}

32

33 | func printDiamond(n, shift int) {

34 ifn%2==0 {

35 fmt.Println("Error! n must be odd; it's", n)
36 } else {

37 printTriangle(n / 2 + 1, shift)

38 printInvertedTriangle(n/2, shift+1)

39 ¥

40 | }

Summary

¢ Conditionals let you choose which code to execute based on Boolean expressions
e Conditionals in Go are expressed usingthe if ... else construct.

e Loops execute a set of statements repeatedly while a Boolean expression is true and stop when it
becomes false.

e Go has only one type of loop: for

¢ Along with functions and variables, these constructs form the basis of all programs.

Glossary

e iteration: one time through a loop.

e nested: when one programming construct is "inside" the body of another.

e code duplciation: duplicate code that is usually better put into a new function.

e top-down design: solving a big problem by breaking it into successively smaller problems.

