Carl Kingford, 02-201, Fall 2015

Lecture 12: Grouping related varibles

Struct types

When working with random walks, we had to maintain 2 things: the x position, and the y position of the walker.
This (x,y) pairis really one logical unit.

Another example: in Lindenmayer systems we had to manipulate 3 things: the x position, the y position, and
the direction that the drawer was facing. These 3 things (x,y,dir) are logically one thing: the "state" of the
drawer.

It would be nice if we could create a single variable that holds all the relevant related items. Luckily, we can!
These are "structures":

type WalkerPosition struct
x float64
y float64d
dir float64

type Pen struct { // details about the location of the drawing pen
x float64
y float64d
dir float64

Lists collect values of the same type, struct s can collect values of different types. Consider the Contacts
application on your smartphone:

«ill Vodatone N = 12:05 O 69% S

New Contact

add
pholo

mobliie

"01 . ongione Default
o —
nome
home page

: ‘*.Q: Rdd mew address

We can represent all the information for each contact using a struct:

type Contact struct {
firstName string
lastName string
company string
mobile []int
homeEmail string
homePage string

00 N O VT A WN R

The above code creates a new type called Contact . Each one of the variables inside the struct is called a
field. These variables are contained within a Contact structure and any time you create a Contact, these
variables will be created automatically.

Creating structure variables

var person Contact // creates a person variable of type Contact

Once you've created a Contact type, you can use it anyplace you used any of the builtin types. You can pass
them into functions:

func printContact(c Contact
// print the contact

You can return them from functions:
func createContact(n string) Contact

// create a contact from name n

Accessing fields in structures

You can get the fields of a struct using the "." (dot) syntax:

func printContact(c Contact

fmt.Println("Name:", c.firstName + " " + c.lastName
fmt.Println("Company:", c.company
fmt.Println("Email:", c.homeEmail

fmt.Println("Web:", c.homePage

You can assign to a field of a struct using the same "." syntax:

func createContact(n string) Contact
var c¢ Contact
c.firstName = n
c.lastName = "Unknown"
return c

These c.firstName variables act just like regular variables, and you can manipulate them in the same
way. The only difference is that they are bundled together in a struct.

Example: A stack that contains Pen data

Suppose we want to have a stack that implementsthe [and] operators of L-systems:

// The pen state is now represented by a struct type
type Pen struct

X, y float64d

dir float64

// You can create a list of Pen structs just as you would any other list.
func createPenStack Pen
return make Pen, ©

func pushPen(S Pen, item Pen Pen
// You can manipulate the []Pen exactly as before.
return append(S, item

func popPen(S Pen Pen, Pen
if len(S) ==
panic(“Can’t pop empty stack!"
item := S[len(S)-1

S = S[0:1en(S)-1
return S, item

Complex Data Structures

Maps, lists, structs, and regular variables can be combined in complicated ways in order to organize your data
in a way that makes the most sense for what you want to do.

Maps of structs:

For example, you can create maps of structs:

var people map|[string]Contact

Now people["03ACX"].firstName can contain the first name of employee with employee id "03ACX".

A Go quirk! Go disallows assigning values to fields of a struct contained in an array:

// BAD CODE BAD CODE BAD CODE
people["03ACX"].firstName = "Carl" // Go doesn't allow this
// BAD CODE BAD CODE BAD CODE

There is no good reason for this. The Go designers think there is a good reason, but they are wrong. The way
around this is the following:

tmp := people["03ACX" // make a copy of the struct
tmp.firstName = "Carl" // change it
people| "O3ACX" | = tmp // put it back in the map

Lists of structs

Again, can create lists of struct types just as you would any other:
var employees = make([|Contact, 100

You access the items as usual:

employees|[10].mobile = make([]int, 10

Note: when you create a Contact, it is initialized so that all its fields are their "0" value. This means any lists
inside of the structare nil and needto be make ed.

Combining data types let you organize data in complex ways:

people[“Alice”].homeEmail == “alicef@yahoo.com”

——— what data? the data about people.

t which person? the one named Alice

: i what about Alice? her home email

Example of a complex data structure

Suppose you run a small company that has several teams of employees. Each team has a name, a meeting
time, a list of members. Each employee has an id, a name, and a salary.

You want to be able to:

e compute the total cost of a team, and
e see if any employee is on two different teams that meet at the same time

You might store this data in the following way:

type TeamInfo struct {
teamName | TeamInfo teamName string
meetingTime int
— | members []Employee

—

?

'

type Employee struct {
id int
name string
salary float64

map[string]TeamInfo

}

Writing teamCost () :
The cost of a team is the total cost of the salaries of the members of the team.

Computing the total cost of a team:

// returns the total cost of team t
func teamCost(teams map[string]TeamInfo, t string) float64
var sum float64
for i := range teams|[t].members
sum = sum + teams[t].members[i].salary

return sum

Our organization of the data let’s us find the members of a team with a simple teams[t].members
statement, which has the type of a list that we can iterate over.

Writing timeConflict() :
We want to check if any employee is on two different teams that meet at the same time.

This is harder, since the way we organized the data doesn’t let us directly find teams by meeting time or even
the teams an employee is on.

Any ideas?

1 | // returns true if an employee has a time conflict

5> | func timeConflict(teams map[string]TeamInfo) bool {

3

4 // we create a data structure to reorganize our data to answer the
5 // question. meetTimes[id][time] will be true if employee “id" has
= // a meeting at time " time”

7 meetTimes := make(map[int]map[int]bool)

8

9 // for every employee

10 for _, info := range teams {

11 for _, emp := range info.members {

12 // if we haven’t make the map for this employee yet

13 _, exists := meetTimes|emp.id]

14 if lexists {

5 meetTimes|[emp.id]| = make(map[int]|bool)

16 }

17 // if we added this meeting time to this emp in the past
18 if meetTimes|[emp.id]|[info.meetingTime]| {

19 fmt.Println("Employee”, emp.name,

20 "has 2 meetings at", info.meetingTime)

21 return true

22 }

23 meetTimes|[emp.id]|[info.meetingTime| = true

24 }

25 }

26 return false

27 |}

Test yourself! What data structuremight you use to represent a Minecraft world?

Summary

e Structs group a “small” number of related variables together to be manipulated as a unit.

¢ They are useful when your logical state has multiple parts to it.

e The type statement lets you define new types that work like the built-in types you’ve used many times
already.

e Maps, slices, structs, variables let you create complex organization of your data to make answering the
guestions you want to answer easier.

Glossary

e struct: groups related variables together so they can be passed around together
o field: a struct contains fields of the same or different types

