
Carl Kingsford, 02-201, Fall 2015

Programming languages provide many ways to help you organize your code. Functions are the most important
and we've seen a lot of examples of them. Functions help you organize the "action" of your program ---
functions are like new verbs that you create. This organization has helped us use "top-down" design: start from
the big problem and break it into smaller problems, writing a function for each of the smaller problems.

We've also seen that it is often helpful to start your program by thinking about how you will organize your data,
and we've seen data structures such as lists, maps, structs, and pointers that help you do this. This leads to
another useful way of thinking about how to design your program: describe the organization of your data and
have that reflected in your program. For example:

A contact management program will manipulate Contacts
A drawing program will manipulate a Canvas, and perhaps Lines, Colors, and Shapes
Facebook will manipulate Users, Posts, and Advertisements
Twitter will manipulate Tweets, Users, Advertisements

These are the "nouns" of these programs.

These two ways of thinking complement each other:

Lecture 16: Object-oriented Programming

The techniques of object-oriented programming let you combine data organization with functions that operate
on this data. It let's you think in terms of the "objects" that your program will manipulate (nouns) and the
functions ("verbs") that perform actions using the data.

Once you’ve decided on the “nouns”, you choose the “verbs” that apply to those nouns.

Here are some examples of pairs of "nouns" (data) with operations you might want to perform with them:

Examples of noun/verb pairs

Here are some examples from the spatial games assignment:

Go provides support for encoding the relationship between nouns and verbs in the form of "methods". You've
already used methods when you used the Canvas object. Now we will see how this is implemented.

A Canvas is just a struct like you have already seen:

There are several operations that you want to perform on a Canvas :

The Canvas object

These operations are logically related: they are the things you can do to a Canvas . As written above, they all
take a *Canvas as their first parameter. Go provides a special syntax for this situation.

A method is a function that operates on a particular type. Go's syntax for a method is the same as for a regular
function with one addition:

Once you've defined a method, you call it using the "." syntax:

The parameter before the function name is called the receiver: it is the object that will "recieve" the effect of the

	 	 	 	 MoveTo(c	 *Canvas,	 x,	 y	 float64)	
	 	 	 	 LineTo(c	 *Canvas,	 x,	 y	 float64)
	 	 	 	 SetStrokeColor(c	 *Canvas,	 col	 color.Color)	
	 	 	 	 SetFillColor(c	 *Canvas,	 col	 color.Color)	
	 	 	 	 SetLineWidth(c	 *Canvas,	 w	 float64)	
	 	 	 	 Stroke(c	 *Canvas)
	 	 	 	 FillStroke(c	 *Canvas)
	 	 	 	 Fill(c	 *Canvas)
	 	 	 	 ClearRect(c	 *Canvas,	 x1,	 y1,	 x2,	 y2	 int)	
	 	 	 	 SaveToPNG(c	 *Canvas,	 filename	 string)
	 	 	 	 Width(c	 *Canvas)
	 	 	 	 Height(c	 *Canvas)

1
2
3
4
5
6
7
8
9
10
11
12

Methods

var	 pic	 *Canvas	 =	 MakeCanvas()
pic.SetStrokeColor(blue)

1
2

function.

So what's the point of methods? You can always do the same thing using a function, but the method syntax
makes it clear that the function is a verb that operates on a particular noun. Itlogically groups operations with
the data they operate on. It also supports the "noun" / "verb" way of designing programs directly.

This also let's you use the same function name for different object types. For example

are different functions: one draws a Canvas and one draws a Button .

We will also see that this way of organizing your code has some other useful benefits in re-using functions
(next lecture).

Test yourself! How could we re-write our translation simulator to use an object-oriented style?

Recall our non-object-oriented implementation of a stack:

This was used in the following way:

(c	 *Canvas)	 Draw()	
(b	 *Button)	 Draw()	

1
2

An example: Implementing a Stack

func	 createStack()	 []int	 {
	 	 	 return	 make([]int,	 0)
}

func	 push(S	 []int,	 item	 int)	 []int	 {
	 	 	 return	 append(S,	 item)
}

func	 pop(S	 []int)	 ([]int,	 int)	 {
	 	 	 if	 len(S)	 ==	 0	 {
	 	 	 	 	 	 	 panic(“Can’t	 pop	 empty	 stack!")
	 	 	 }
	 	 	 item	 :=	 S[len(S)-‐1]
	 	 	 S	 =	 S[0:len(S)-‐1]
	 	 	 return	 S,	 item
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

The above code is kind of ugly because we have to pass S to the function each time, and also make sure to
reassign the result of the function calls to S . Using methods can make this code shorter and clearer.

Step 1. Define a type that corresponds to our noun that can hold the data we need for a stack:

Step 2. Define methods for the verbs: Push, Pop:

Step 3. Define a regular function for Create:

func	 main()	 {
	 	 	 	 S	 :=	 createStack()

	 	 	 	 S	 =	 push(S,	 1)
	 	 	 	 S	 =	 push(S,	 10)
	 	 	 	 S	 =	 push(S,	 13)
	 	 	 	 fmt.Println(S)

	 	 	 	 S,	 item	 :=	 pop(S)
	 	 	 	 fmt.Println(item)

	 	 	 	 S,	 item	 =	 pop(S)
	 	 	 	 fmt.Println(item)

	 	 	 	 S,	 item	 =	 pop(S)
	 	 	 	 fmt.Println(item)
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

type	 Stack	 struct	 {
	 	 	 	 items	 []int
}

1
2
3

func	 (S	 *Stack)	 Push(a	 int)	 {
	 	 	 	 S.items	 =	 append(S.items,	 a)	 	 	 	
}

func	 (S	 *Stack)	 Pop()	 int	 {
	 	 	 	 a	 :=	 S.items[len(S.items)-‐1]
	 	 	 	 S.items	 =	 S.items[:len(S.items)-‐1]
	 	 	 	 return	 a
}

1
2
3
4
5
6
7
8
9

In order to call a method, we need a variable of the appropriate type. So Create can’t be a method since
that is how we create a variable of this type. This is sometimes called a factory function since it creates
variables of a given type.

Now using the stack is much nicer:

Suppose you have a type:

You want to write a method called NextDay() that will set the date to the next day from what it currently is.
You would write a function with the following signature:

Notice that we made the receiver have type *Date . This is for the normal reason: we want to change the

func	 CreateStack()	 Stack	 {
	 	 	 	 return	 Stack{items:	 make([]int,	 0)}
}

1
2
3

S	 :=	 CreateStack()
S.Push(10)
S.Push(20)
fmt.Println(S.Pop())====

1
2
3
4

Points on Pointers and Methods

type	 Date	 struct	 {
	 	 	 	 month,	 day,	 year	 int
}

1
2
3

func	 (d	 *Date)	 NextDay()	 {
	 	 	 	 d.day++
	 	 	 	 switch	 d.month	 {
	 	 	 	 case	 1:	 if	 d.day	 ==	 32	 {
	 	 	 	 	 	 	 	 d.month	 =	 2
	 	 	 	 	 	 	 	 d.day	 =	 1
	 	 	 	 }
	 	 	 	 //	 and	 do	 on
	 	 	 	 }	 	 	
}

1
2
3
4
5
6
7
8
9
10

date, so we need a pointer to the date we want to change, rather than a copy.

Now suppose we want to call this function. The "logically correct" syntax would be:

today is of type Date , so &today is of type *Date , which is the correct type for the receiver.
However (&today). is a lot to type, so Go allows you to abbreivate this as:

Go knows that the receiver should be a pointer to today , so it automatically does the &today

conversion.

Methods are functions that are associated with a type.

If you have a variable X , you can call any of its methods using:

 This works like a normal function call.

Writing your code this way is object-oriented programming.

The way to design a program in this style is to:

Create types for the things your program will manipulate
Write methods for each of those types that perform the operations on those things that you will need.
Use those methods to solve the tasks you are aiming to solve.

method: a function that operates on a particular tpe
object-oriented programming: the style of programming that defines "objects" (nouns) and the verbs

var	 today	 Date	 =	 Date{day:4,month:11,year:2015}

(&today).NextDay()

1
2
3

today.NextDay()1

Summary

X.methodName(param1,	 param2)1

Glossary

(functions) that operate on them explictly.  

