
Carl Kingsford, 02-201, Fall 2015

A fundamental design principle in programming is encapsulation:

group together related things, and hide as many details as possible from the rest of the world, exposing
only a small "interface" to the rest of the program.

Examples we have seen so far:

Functions — to use "fmt.Printf" I only need to know the rules about what parameters it takes and what it
returns; how it is implemented is totally hidden from me.

Packages — inside the "fmt" package is a huge amount of code, but we only need to know about the
functions.

Objects & methods – I access a stack using only the methods on the Stack type --- it doesn't matter if
Stack is implemented as a list or some other technique. S.Pop() and S.Push(x) hide those
details, but still let you share data between invocations of functions.

Interfaces let you formally define a set of operations that a type supports. They let you hide completely how the
operations are carried out. They let you specify a type that will support a given set of operations without even
specifying the details about the type.

This will be made clearer with an example.

A typical drawing program manipulates: shapes, text, lines. It also displays and allows users to manipulate
handles on the shapes, colors, shadows, layers, canvases, etc.

Lecture 17: Interfaces

The principle of encapsulation

Interfaces

Example: Design for a drawing program

Drawing program objects

It would be natural to create an object for each type of shape: Circle, Oval, Triangle, Star, Square,

For example, here's an object for Square :

type%Square%struct%{

%%%x0,y0%int

%%%x1,y1%int

%%%fillColor%color.Color

%%%strokeColor%color.Color

%%%lineWidth%int

}

func%(s%*Square)%MoveTo(x,y%int)

func%(s%*Square)%Resize(w,h%int)

func%(s%*Square)%Handles()%[]Handles

func%(s%*Square)%Draw(c%*DrawingCanvas)

func%(s%*Square)%SetLineWidth(w%int)

func%(s%*Square)%ContainsPoint(x,y%int)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

And here's an object for Oval :

The methods for Square and Oval are needed for every shape.

We want to write a type that corresponds to a canvas. A canvas can have lots of different shapes on it:

Question 1: What type shouhd the shape field have?

We assume that DrawingCanvas should have a method to draw all the shapes:

This function should should call the Draw() function on each of the shapes that the canvas contains. It
should do something like:

type%Oval%struct%{

%%%x0,y0%int

%%%radius%int

%%%fillColor%color.Color

%%%strokeColor%color.Color

%%%lineWidth%int

}

func%(s%*Oval)%MoveTo(x,y%int)

func%(s%*Oval)%Resize(w,h%int)

func%(s%*Oval)%Handles()%[]Handles

func%(s%*Oval)%Draw(c%*DrawingCanvas)

func%(s%*Oval)%SetLineWidth(w%int)

func%(s%*Oval)%ContainsPoint(x,y%int)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Challenge: a DrawingCanvas type

type%DrawingCanvas%struct%{

%%%width,%height%int

%%%backgroundColor%color.Color

%%%shapes%[]????%%%%//%<[%what%type%should%go%here!!!?

}

1

2

3

4

5

func%(c%*DrawingCanvas)%DrawAllShapes()1

Question 2: How can the above code know to call (*Oval) Draw for ovals and (*Square) Draw for
squares?

The benefits of the above design are that:

DrawAllShapes is conceptually very simple: it just loops through the shapes and asks each of them to
draw themselves

All the shape-specific knowledge is encapsulated inside each shape type: an Oval knows how to draw
itself; a Square knows how to draw itself, etc.

Adding a new shape is easy: just create a new shape type. You don't need to modify any existing shape
types (each shape can store the data it needs, i.e. radius vs. width/length). You don't even need to modify
DrawAllShapes when you add a shape!

So how do we answer the above 2 questions so we can use this design? The answer to both of these
questions is the use of interface types.

The main problem above is that the shapes all have different types but we want to put them into a single list.

The thing that is common to "shapes" is what you can do with them: Draw , MoveTo , Resize , etc.

Go lets you define a type that specifies only the operations that can be performed on the type:

This looks nearly the same as a struct but (a) using the word interface and (b) listing functions

func%(c%*DrawingCanvas)%DrawAllShapes()%{

%%%for%shape%:=%range%shapes%{

%%%%%%%shape.Draw(c)

%%%}

}

1

2

3

4

5

interface types

type%Shape%interface%{

%%%MoveTo(x,y%int)

%%%Resize(w,h%int)

%%%Handles()%[]Handles

%%%Draw(c%*DrawingCanvas)

%%%SetLineWidth(w%int)

}

1

2

3

4

5

6

7

instead of data. The way to read this is that a Shape is a thing that has these methods.

If I have a Shape , I don’t need to know what kind of shape, or how its shape functions are implemented.

Now we can write:

This makes the shape field be a list of Shapes . This list can now contain anything that supports all the
methods of the Shape interface.

Here are some Shape objects:

Modifying the DrawingCanvas struct:

type%DrawingCanvas%struct%{

%%%width,%height%int

%%%backgroundColor%color.Color

%%%shapes%[]Shape

}

1

2

3

4

5

func%(c%*DrawingCanvas)%DrawAllShapes()%{

%%%%for%shape%:=%range%shapes%{

%%%%%%%%//%we%know%shape%as%a%Draw()%method%b/c%it%is%a%Shape

%%%%%%%shape.Draw(c)%

%%%%}

}

1

2

3

4

5

6

Putting it all together

We can then write the functions:

//=================================

//%What%all%shapes%must%do

//=================================

type%Shape%interface%{

%%%MoveTo(x,y%int)

%%%Draw()

}

//=================================

//%An%Oval%Shape

//=================================

type%Oval%struct%{

%%%x0,y0%int

}

func%(s%*Oval)%MoveTo(x,y%int)%{%

%%%%s.x0,%s.y0%=%x,y%

}

func%(s%*Oval)%Draw()%{

%%%%fmt.Println("I'm%an%OVAL!!!!%at",%s.x0,%s.y0)

}

//=================================

//%A%Square%Shape

//=================================

type%Square%struct%{

%%%x0,y0%int

}

func%(s%*Square)%MoveTo(x,y%int)%{

%%%%s.x0,%s.y0%=%x,y

}

func%(s%*Square)%Draw()%{

%%%%fmt.Println("I'm%a%SQUARE!!!!%at%",%s.x0,%s.y0)

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Notice that we never said that Oval was a Shape or that Square was a Shape . Go figured that out
on its own.

This is called "duck typing" because "If it walks like a duck, swims like a duck, and quacks like a duck, it’s a
duck." So "If it Draw()s like a Shape, MoveTo()s like a Shape, and Resize()s like a Shape, it’s a Shape.".

//=================================

//%A%function%to%draw%all%the%shapes

//=================================

func%DrawAllShapes(shapes%[]Shape)%{

%%%%fmt.Println("===================================")

%%%%for%_,%shape%:=%range%shapes%{

%%%%%%%%shape.Draw()

%%%%}

%%%%fmt.Println("===================================")

}

//=================================

//%Create%some%shapes%and%add%them%to%the%list

//=================================

func%main()%{

%%%%shapes%:=%make([]Shape,%0)

%%%%var%s1%Shape%=%&Square{10,10}

%%%%var%s2%Shape%=%&Square{100,100}

%%%%var%s3%Shape%=%&Oval{60,75}

%%%%shapes%=%append(shapes,%s1)

%%%%shapes%=%append(shapes,%s2)

%%%%shapes%=%append(shapes,%s3)

%%%%DrawAllShapes(shapes)

%%%%shapes[1].MoveTo(3333,3333)

%%%%DrawAllShapes(shapes)

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Duck typing

Summary

Interfaces let you create a type that depends only on the operations you can perform on it.

Let's you write general code that words for any type that supports that interface.

encapsulation: the principle that programs should be "local": details should be hidden and any
dependencies should be confined to small parts of a program.

Glossary

