String Comparison

Slides by Carl Kingsford

Why compare DNA or protein

Ssequences?

Partial CTCF protein sequence in 8 organisms:

SOPEEOTE

sapiens
troglodytes
lupus
taurus
musculus
norvegicus
gallus
rerio

-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
—-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
—-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—--—————— POPVTPA
—-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA

—EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPE--POQPOPPPPPQOPVAPA
—EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPOQPOPOQPOPOPVAPA
—EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE-——---—————— VSAEAPA
DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDOMGLLDQAPPSVPIP-APA

® |dentify important sequences by finding conserved regions.

® Find genes similar to known genes.

® Understand evolutionary relationships and distances (D. rerio aka zebrafish
is farther from humans than G. gallus aka chicken).

® |Interface to databases of genetic sequences.

® As a step in genome assembly, and other sequence analysis tasks.

® Provide hints about protein structure and function (next slide).

Sequence can reveal sftructure

£

(a) ldtk (b) 5pti

ldtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
S5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

The Simplest String Comparison Problem

Given: Two strings

a = ad=asa4...Adm

b — b1b2b3b4...bn

where a;, b; are letters from some alphabet like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

e mutate (replace) a character

e delete a character
delete

e insert a character riddle — ridle I&tat; rlple

1nsert

triple

Representing edits as alignments

prin-ciple
BEREERRP-e:
prinncipal
(1 gap, 2 mm)

misspell

mis-pell
(1 gap)

aa-bb-ccaabb

X [

ababbbc-a-b-
(5 gaps, 1 mm)

prin-cip-le
T T
prinncipal-
(3 gaps, 0 mm)

prehistoric

—-—=-historic
(3 gaps)

al-go-rithm-
[xx [[x]
alKhwariz-mi
(4 gaps, 3 mm)

Comparing Bird Songs

wiis

 ara LY

o ~«~a~««

. w—

- —

. —

. -

E: 1
m

| a,a_ l

,,%

A tgq wa

SIS i
Cpder R
RSO

101N

QQ.

! .tn,:_.a\ .

23::_

e

W»Q_Am.\.\h\

E.na&ﬁ-‘. ’

.ixRR:::.

SANECE L

a4 ﬂu

e
'* ‘“

nb .qmﬁw~s.._

(LA

xa.ndﬁn\-ﬂ\

v M.ﬂ m-., :
L3 7z LN
U ‘Vq %” A

erﬂ v
x za%

R e R

Bl s <UL

ndng €9

:c:
:5 2
:5: i
IR

= 1 I T
Mg ,m ,\m;

e TFE«..\ v

L (({ ﬁ:

ﬁxz. a.m

A&&V <+

e (e
e
e
W
€A A
g amv

AN &u

>
- l“

)
.o»

B ZLE5 nMM

o.;...u . UM\

TSV

:S:i
_

%:; ({
e 1.\.&“\

A\rszﬂ

SRy
ﬂ-..wf .. -

T DR PR

e (U

zfccﬁ ety

CU L GRS

ﬁ.::

:.n 31 s s.N\

S < CCLCRRR

.b [
23 ::

Florian et al. Hidden Markov Models in the Neurosciences

Tracing Textual Influences

She locks her lily fingers one in one. "Fondling," she saith, "since I have

Example from hemmed thee here Within the circuit of this ivory pale, I'll be a park, and
Horton, Olsen, Roe, . P " _ -
Digital Studies / Le thou shalt be my deer; Feed where thou wilt, on mountain or in dale:
champ Graze on my lips; and if those hills be dry, Stray lower, where the pleasant
numérique, Vol 2, fountains lie." Within this limit is relief enough.... (Shakespeare, Venus and
No 1 (2010)
Adonis [1593])

This later play Pre. Fondling, said he, since 1 haue hem'd thee heere,
by Markham VVithin the circuit of this Iuory pale.
references _
Shakespeare’s Dra. I pray you sir help vs to the speech of your master.
poem. Pre. Ile be a parke, and thou shalt be my Deere: He is very

busie in his study. Feed where thou wilt, in mountaine or

on dale. Stay a while he will come out anon. Graze on my
Common lips, and when those mounts are drie, Stray lower where
PABSASES he pl fountaines lie . Go th hou best booke i
identified by the pleasant fountaines lie . Go thy way thou best booke in
sequence the world.
alignment .
algorithms. Ve. I pray you sir, what booke doe you read? (Markham,

The dumbe knight. A historicall comedy... [1)

The String Alignment Problem

Parameters:

¢« »

e “gap” isthe cost of inserting a “-” character, representing an insertion
or deletion

e cost(x,y) i1s the cost of aligning character x with character y.
In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

e Can compute the edit distance by finding the lowest cost
alignment.

e Cost of an alignment is: sum of the cost(x,y) for the pairs of characters
that are aligned + gap x number of - characters inserted.

No Crossing Rule Forbids #4

4. am is matched to some b; (j # n) and b, is matched to some ax (k = m).

g

So, the only possibilities for what happens to the last characters are:
1. (am, bn) are matched to each other
2. am 1s not matched at all

3. bn 1s not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

cost(aj, bj) + OPT(i —1,j — 1) match a;, b;

OPT(i,j) = min < gap + OPT (i — 1,)) a; is not matched
I gap + OPT(i,j — 1) b; is not matched
Cost of the optimal 1
alignment between Written in terms of
a:...a; and b;...b; the costs of smaller
problems

Key: we don’t know which of the 3 possibilities is the right one, so we try
them all.

Base case: OPT (i,0) =i x gap and OPT(0,j) =j x gap.

(Aligning 1 characters to 0 characters must use i gaps.)

Computing OPT(i,j) Efficiently

We're ultimately interested in OPT(n,m), but we will compute all other
OPT(ij) (1 < n,j < m) on the way to computing OPT(n,m).

Store those values in a 2D array:

OPT(i-\@
9 | 9g \\
8 | 8¢)
7 |79 ‘
s (o - OPT(i, j)
\\J
J 5 | 59
e AN OPT(i, j-1)
2|2 B OPT(i-1, j-1)
1 | 19
0 | O 191203940 |59 |6g |79 |8g]|9g | 109 | 11g | 129
o 1 2 3 4 5 6 7 8 9 10 11 12

Filling in the 2D Array

109

119

129

10

11

12

Edit Distance Computation

EditDistance(X,Y):
For 1 = 1,...,m: A[1,0] = 1*gap

For Jj =1,...,n: A[0,]] = Jj*gap
For 1 = 1,...,m:
For j =1,...,n:

A[1,]J] = min(
cost(a[i],b[j:) T A[i_llj_l]l
gap + A[1-1,3]],
gap + A[1,]J-1]

)
EndFor

EndFor
Return A[m,n]

Wheres the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between
some prefix of string 1 with some prefix of string 2.

Running Time

Number of entries in array = m x n, where m and n are the lengths of the
2 strings.

Filling in each entry takes constant time.

Total running time is = mn.

Alighment Python Code

def local align(x, y, score):
#“""Compute the score of an alignment between x and y”""
create a zero-filled matrix
A = make matrix(len(x) + 1, len(y) + 1)
for i in xrange(0, len(x)):

A[1][0] = i*score.gap
for j in xrange(0, len(y)):
A[0][]J] = Jj*score.gap

f£ill in A in the right order
for i in xrange(l, len(x)):
for j in xrange(l, len(y)):

if x[1] == y[J]:

mm score.mismatch
else:

mm = score.match

the local alignment recurrence rule:
A[i][J] = max(

A[i][]J-1] + score.gap,

A[i-1][j] + score.gap,

A[i-1][j-1] + mm,
)

return the opt score
return A[len(x)-1][len(y)-1]

Local Alignment Python Code

def make matrix(sizex, sizey):
"""Creates a sizex by sizey matrix filled with =zeros.
return [[0]*sizey for 1 in xrange(sizex))]

class ScoreParam:
"""The parameters for an alignment scoring function
def init (self, gap, match, mismatch):
self.gap = gap
self.match = match
self.mismatch = mismatch

Finding the actual alignment

OPT(i-1,))
9 \\
89)
79 v
5 NS OPTG)
50
4 AN OPT(i, j-1)
39 &\ \\//
29 —OPT(i-1, j-1)
1g
0 |19 29|39 |49 |59 69|79]8g|9g |00 10| 12
0 1 2 3 4 5 6 7 8 9 10 11 12

> >» O O 4 +H o » O

Trace the arrows all the way back

o 1 2 3 4 5 6 7 8 9 10 11 12
A A G G T A T G A A T C

X

Outputting the Alignment

Build the alignment from right to left.

ACGT
A-GA

Follow the backtrack pointers starting from entry (n,m).
e If you follow a diagonal pointer, add both characters to the alignment,

e Ifyou follow a left pointer, add a gap to the y-axis string and add the x-
axis character

e If you follow a down pointer, add the y-axis character and add a gap to
the x-axis string.

