
Carl Kingsford, 02-201, Fall 2015

Every function in Java must be inside a class , which are similar to Go's struct s. For example:

You can put each of your classes in a separate file (names ClassName.java).

You have to end every statement with a ';'

Lecture 22: Java

Overall Structure

Classes & Objects

class	MyProgram	{

				int	times	=	100;
				
				public	void	printError()	{
								System.out.println("Must	provide	a	command	line	argument");
				}

				//	this	is	the	main	function.
				public	static	void	main(String[]	argv)	{
								if	(argv.length	>=	2)	{
												for	(int	i	=	0;	i	<	times;	i++)	{
																System.out.println(argv[1]);
												}
								}	else	{
												printError();
								}
				}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Every statement must end with ';'

Java and Go have similar types, but with different names:

Java Go

byte int8

short int16

int int32

long int64

float float32

double float64

boolean bool

String string

The special type void means: "no type" --- it's used to indicate that a function doesn't return anything.

Lists, called Arrays in Java have a type that puts the [] after the type of variables included in the array:

Just like in Go, you have to "make" a list, but in Java it's called new :

creates an array of 100 int s.

You can create 2-dimensional lists directly:

Types

Lists (aka Arrays)

int[]							//	a	list	of	integers
float[]					//	a	list	of	floats
String[]				//	a	list	of	strings

1
2
3

A	=	new	int[100];1

B	=	new	int[100][200];1

This creates a new 2-dimensional array B .

Java does not explictly have pointers. All "big" variables are implicitly pointers.

Java does not have stuct s. Instead it has class es, like Python.

You must declare all variables before you use them (as in Go). The syntax is to place the type before the new
variable name:

The basic operators in Java are the same as in Go:

Java Go Definition

= = assignment

== == equals

+,*,-,/ +,*,-,/ math operators

+ + string concatenation

Functions all must live in a class someplace. The syntax is similar to Go:

Pointers

Structs

Variables

int	a;
float	b;
String	c;
int[]	d	=	new	int[100];

1
2
3
4

Operators

Functions (methods)

The main differences: the return type goes before the function name; and inside the parameter list, types go
before the variables.

Functions also have "permissions":

permission meaning

public anyone can call

private only functions inside the same class can call this function

protected only things in the same package (and subclasses) can call the function

The syntax for an if statement is nearly the same as in Go, except that () are required:

Java also has a switch statement, that works similarily to, but different than Go (Java's is more like C's):

public	int	Square(int	x)	{
				return	x*x;
}

1
2
3

If Statements

if	(a	>	10)	{			//	The	()	are	required
				//	do	this	if	a	is	bigger	than	10
}	else	{
				//	otherwise,	do	this
}

1
2
3
4
5

switch(a)	{
case	3:	case	5:	case	7:	
				prime	=	true;
				break;		//	THIS	IS	REQUIRED
case	2:	case	4:	case	6:	case	8:	case	9:	
				prime	=	false;
				break;
default:
				System.out.println("Number	too	big!")
}

1
2
3
4
5
6
7
8
9
10

The main differences are (1) you have to repeat the case keyword, and (2) you MUST end each case

block with break --- otherwise the program will continue executing the next cases.

The Java for loop is nearly the same as one form of the Go for loop:

You can delcare a variable in the first part of the for loop. Java doesn't have a := -like operator, so you
declare the variable using the normal TYPE NAME = VALUE syntax.

If you have an array (or any other variable that can be interated over), you can write a for ... range -like
version of the for loop:

Java also has a while loop, that works just like a for loop but without the initialization or increment
statement:

Java also has something that C/C++ has but that Go lacks: a loop that always executes at least once:

Loops

for loops

for	(int	i	=	10;	i	<	100;	i++)	{				//	the	()	are	required
				//	do	something	for	i	=	10...99
}

1
2
3

int[]	A	=	new	int[100];
for	(int	v	:	A)	{
				//	do	something	for	every	element	in	A
}

1
2
3
4

while loops

int	a	=	23512;
while	(a	<	10)	{
				a	=	a	-	a*a;
}

1
2
3
4

do...while loops

This will print a even if it is < 10 to start.

The equivalent of fmt.Println is similar:

Like Go, Java functions are organized into packages. For example, Java has a Random class that generates
random numbers. It lives in the java.util.random package. You can use it in your code in two different
ways:

or, because this is a lot of typing,

When something goes wrong, Java or you can "throw an exception". These errors are then passed back up the
call stack until someone handles it. If no one handles it, your program will terminate with an error.

do	{
				fmt.Println(a);
				a--;
}	while	(a	<	10);

1
2
3
4

Printing

System.out.println("Hi	there");1

Importing packages

java.util.random.Random	R	=	new	java.util.random.Random();1

import	java.util.random;	/*	this	goes	at	the	top	of	
																												your	.java	file	before	any	
																												class	definitions	*/

//	...

Random	R	=	new	Random();

1
2
3
4
5
6
7

Exceptions

They way you handle an exception is to surround the code that might throw it in a try...catch block:

If anything inside the try block throws an IndexOutOfBoundsException , then the code in the
catch part will be run.

public	void	bad()	throws	IndexOutOfBoundsException	{
				if	(10	<	100)	{
								throw	new	IndexOutOfBoundsException();
				}
}

public	void	trySomethingBad()	{
				try	{
								bad();
				}	catch(IndexOutOfBoundsException	e)	{
								System.out.println("Hey,	something	went	wrong...	I'll	ignore	it.");
				}
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Example: An integer stack

public	class	Stack	{
				
				/**
					*	These	are	member	variables	inside	of	the	Stack	class.
					*/
				private	int[]	items;		//	storage	for	the	stack
				private	int	numItems;	//	current	#	of	items	in	the	stack
				
				/**	Creates	a	new	stack	with	a	small	amount	of
					*	storage	space.
					*/
				public	Stack()	{
								items	=	new	int[16];
								numItems	=	0;
				}
				
				/**	Create	a	new	stack	with	a	user-supplied	guess
					*	of	how	big	it	will	get.
					*/
				public	Stack(int	sizeGuess)	{

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

								items	=	new	int[sizeGuess];
								numItems	=	0;
				}
				
				/**
					*	Pushes	an	integer	on	the	stack.
					*	@param	x	-	the	integer	to	push	onto	the	stack
					*/
				public	void	push(int	x)	{
								if	(numItems	>=	items.length)	{
												//	create	a	new	list	
												int[]	newList	=	new	int[2*items.length];
												
												//	copy	current	list	over	to	the	new	list	over
												int	i	=	0;
												for	(int	v	:	items)	{
																newList[i]	=	v;
																i++;
												}
												items	=	newList;
								}
								//	add	the	item	to	the	end	of	the	list
								numItems++;
								items[numItems-1]	=	x;
				}
				
				/**
					*	Removes	the	top	item	from	the	stack	and	returns	it.
					*	@return	the	former	top	of	the	stack
					*	@throws	IndexOutOfBoundsException
					*/
				public	int	pop()	throws	IndexOutOfBoundsException	{
								//	if	we	try	to	pop	an	empty	stack,	throw	an	error
								//	(similar	to	Go's	panic)
								if	(numItems	==	0)	{
												throw	new	IndexOutOfBoundsException();
								}
								int	x	=	items[numItems-1];
								numItems--;
								return	x;
				}
				
				/**
					*	Prints	the	stack	items	to	the	console,	separated
					*	by	commas

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Java syntax is largely similar to Go

Every function must live in a class

Types go before function names and variable names

"new" is used where "make" is used in Go

There are numerous other small syntax differences

Java has extensive support for "object-oriented programming" --- much more than we can cover in this
class.

					*/
				public	void	print()	{
								for	(int	i	=	0;	i	<	numItems;	i++)	{
												//	note	that	items[i]	is	automatically	converted
												//	to	a	string	when	needed.
												System.out.print(items[i]	+	",");
								}
								System.out.println();
				}

				/**
					*	A	demo	usage	of	the	stack.
					*	@param	args
					*/
				public	static	void	main(String[]	args)	{
								Stack	S	=	new	Stack(100);
								S.push(10);
								S.push(20);
								S.push(31);
								System.out.println(S.pop());
								S.push(42);
								S.print();
				}
}

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

Summary

