
Carl Kingsford, 02-201, Fall 2015

The field of computational complexity tries to answer:

What kinds of problems can a computer solve?

What kinds of problems can’t a computer solve (efficiently)?

We'd really like to write the following function, which checks whether our program, stored in filename will
ever stop when run on the data in inputDataFile . This will tell us if we have a infinite loop bug or not:

Checking whether a program will ever stop on a given input is called the Halting problem since you are
checking whether your program will halt.

Surprisingly, writing such a function is not possible! No matter how clever you are, you cannot write it. Now we
will see why.

Consider the following function paradox :

Lecture 24: Computability and Computational
Complexity

Uncomputable functions

func	doesTerminate(filename	string,	inputDataFile	string)	bool	{
				//	checks	whether	the	Go	program	in	filename	stops	when	run
				//	on	inputDataFile
}

1
2
3
4

func	paradox(filename	string)	{
				if	doesTerminate(filename,	filename)	{
								for	true	{
												//	loop	forever,	i.e.	do	not	terminate
								}
				}
}

1
2
3
4
5
6
7

This function does the opposite of what the program in filename does: if filename halts on the data in
filename , then paradox runs forever. If filename runs forever, then paradox stops.

What happens when you put the paradox function into a file as a program and run:

If paradox terminates: then paradox runs forever.

If paradox runs forever: then paradox terminates.

So paradox can neither run forever nor halt, which means that the paradox function can't exist. This
means that doesTerminate can't exist.

This situation is pretty surprising: Every program either halts on a given input or not. But it’s not possible to
write a program to determine this in general. This shows that there are problems that computers cannot solve.
In fact, most questions about programs are undecidable!   This is not a unique situation: there are may
questions about programs that programs can't answer! (This makes writing an autograder a pretty hard
problem... since we can’t have a point category "will halt").

Next, we'll turn to some more positive results: questions that computers can answer efficiently.

The conceptual architecture of a modern computer looks like:

paradox("paradox.go")1

An idealized computer: Turing Machines

Real computers

You've seen this before. This kind of computer can be somewhat difficult to reason about: there are registers,
RAM, and lots of different CPU instructions. Some of the computer is also based on limits of our current
technology: how much RAM? how many registers?

Alan Turing proposed an idealized version of a computer (before, in fact, computers really existed). This is now
called a Turing machine:

Turing machines

A Turing Machine repeatedly executes steps. At each step, the machine decides what to do based only on the
symbol on the current tape position and the value of the state register.

At each step, the machine:

writes a value to the current cell,
changes the value of the state variable to something, and
then moves left or right.

In other words, a Turing machine (TM) executes a program such as this:

b

Instead of thinking of a TM as a program, we can think of it as a function that gets called repeatedly:

For example might equal , meaning stay in state 7, write 0 on the tape, and move one cell to
the right

Turing machines can solve anything a current real computer can. We won't prove this, but intuitively it should
be clear that a TM can do anything a current real computer can:

Both have finite state (registers in a computer, the "state" in a TM)

Both have memory (RAM in a computer, the tape in a TM)

The TM is slower because it doesn’t have random access, but if the TM wants to access cell , it just has to
move left or right until it is at cell .

The Church-Turing thesis is: "Everything that is efficiently computable is efficiently computable on a Turing
Machine."

Notice that this is much stronger than the (true) statement that Turing machines can solve anything your laptop
can.

It talks about all past, current, and future kinds of computers (quantum computers, kerfloble computers (as yet
uninvented), whatever...)

As such, it's not something that can really be "proven", but it seems intuitively reasonable.

The set P is the set of computational questions that can be answered in a polynomial number of steps.

t(7, 0) (7, 0, R)

i
i

Church-Turing Thesis:

The set P

Polynomial efficiency is a reasoanble choice to define "efficient" since polynomials like
 grow much much slower than exponential functions like .

Let's extend what we mean by a TM program to have two functions:

At every step, the TM can either use or to decide what to do.

Suppose an all powerful being tells the computer which one to use at each step. This is called a non-
deterministic Turing machine (NDTM). It's non-deterministic since it has choices at each step.

Another way to think about NDTM: at each step, the NDTM tries both versions of the functions. Notice this
splits the computation into two totally different histories.

p(n) = + 6 + 2n + 3n5 n3 e(n) = 23n+2

Nondeterministic Turing Machines

t0 t1

The set NP

NP is the set of YES / NO questions answerable in a polynomial number of steps on a non-deterministic Turing
machine.

P=NP? is the question: does this all powerful being telling us which function to use at each step help?

Intuitively, having an all powerful being give you hints about what to do at every step seems like it should
expand the set of questions you can answer efficiently.

There are many (many, thousands) of problems for which we have efficient non-deterministic programs, but
can’t find a regular program.

On the other hand, no one can prove that non-deterministic TMs can do more than regular ones.

Proving is one of the (if not the) major open question in mathematics and computer science. Showing
that would immediately give faster algorithms for thousands of problems. Showing that
would show that many problems do not have good algorithms, no matter what we do.

Computational complexity is the field concerned with answering these types of questions.

There is a huge amount currently not known about what kinds of problems can be solved in polynomial time.

There are problems that no computer can solve. The Halting problem is one of them.

Turing machines are an idealized version of real computers that a somewhat easier to reason about. We
think Turing machines can simulate any classical computer we will ever invent. (Quantum computers are a
different story!)

Non-determinstic Turing machines are an unrealistic model of computers. It seems like such a powerful
computer can never be built (Quantum?).

P = set of problems solvable in polynomial number of steps on a TM. NP = set of problems solvable in
polynomial number of steps on a NDTM.

No one can prove that , even though it really seems like NP is much bigger than P.

P = NP?

P ≠ NP
P = NP P ≠ NP

Summary

P ≠ NP

Glossary

P: set of problems solvable in polynomial number of steps on a TM.
NP: set of problems solvable in polynomial number of steps on a NDTM.
Halting problem: The computational question asking whether a program ever stops running when given a
particular input.
Turing machine: An idealized model of real computers.
Nondeterministic Turing machine: An idealized model of computation that seems much more powerful
than real computers.

