
Carl Kignsford, 02-201, Fall 2015

Sometimes it would be useful to pass a function as a parameter to another function. For example, suppose you
were writing a protein folding program, but wanted to try out lots of diffrent energy functions:

How could we write findBestFold() above? It turns out that this is easy in Go, since you can store
functions in variables just like any other data:

You can even define a function on the fly when you need it:

Loose Ends

Functions as values of variables

//	crossings	cost	10	units
func	energy1(fold	Fold)	float64	{	return	...	}

//	crossing	costs	infinite	units
func	energy2(fold	Fold)	float64	{	return	...	}

//	find	the	lowest	energy	fold	for	protein	`seq`	using	the	given
//	energyFunction
func	findBestFold(seq	string,	energyFunction	...)	Fold

1
2
3
4
5
6
7
8
9

func	findBestFold(seq	string,	energyFunction	func(Fold)float64))	Fold	{

				//	you	can	call	`energyFunction`	like	any	other	function
				energyFunction(myCurrentFold)
				//...
}

//...

findBestFold("HHHPPPPHPPHPHPH",	energy1)

1
2
3
4
5
6
7
8
9
10

Function literals

Notice that the function we are defining inline can access variables around it like C .

Notice also that this function we created doesn't have (and can't have) a name: it's an anonymous function.

Modern computers xhave mutiple "CPUs" that can each execute instructions at the same time (or "in parallel").
Each of these "CPUs" is often called a core. Even your iPhone has multiple cores (2 or 3).

The fastest computers today are fast not because each CPU is fast, but because they have a very large
number of them. (The fastest computer currently has ~ 3 million cores).

Using parallelism is essential to quickly process large scientific data sets (partical physics measurments,
astronomical observations, genomics, etc.). For example, the gene expression quantifiers developed by my
group all make heavy use of multiple cores.

Go has great support for writing programs that use several cores. The main way it does this is via the go

keyword. If you have a statement that consists of a single function call f(...) , you can put the word go

in front of it, and it will run that function in parallel with the rest of your program.

For example:

var	C	int	=	123
findBestFold("HPPPHHHPP",	func(fold	Fold)float64	{
								return	C	+	12*fold.numCrossings	+	fold.numBuriedH
				}
)

1
2
3
4
5

Parallel Programs

Go routines

What do you think happens if we remove the fmt.Scanln(&input) statement?

Each one of these things running in parallel is called a goroutine.

Sometimes, the different parallel parts of your program need to talk to each other. Go provides the ability to do
this via channels .

Channels are a builtin type in Go. They are queues that can hold values of a particular type. You have to
make a channel just like lists and maps:

You can put x into a channel using the c <- x operator.

You can remove the next thing from the channel using the <- c operator.

package	main

import	(
				"fmt"
				"time"
				"math/rand"
)

func	f(n	int)	{	
				for	i	:=	0;	i	<	10;	i++	{	
								fmt.Println("function",	n,	":",	i)
								amt	:=	time.Duration(rand.Intn(250))	
								time.Sleep(time.Millisecond	*	amt)
				}
}	

func	main()	{
				for	i	:=	0;	i	<	10;	i++	{
								go	f(i)
				}
				var	input	string
				fmt.Scanln(&input)
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Communication between Goroutines

var	I	chan	int	=	make(chan	int)	//	a	channel	of	ints
J	:=	make(chan	float64)	//	a	channel	of	float64s

1
2

Discussion questions. Where could you use parallelism to speed up your homework assignments?

What happens if more than 1 goroutine modifies a global variable or a map ?

package	main
import	(
				"fmt"
				"time"
				"math/rand"
				"runtime"
)

func	pinger(c	chan	string)	{	
				for		{
								c	<-	"ping"	
				}	
}

func	ponger(c	chan	string)	{	
				for		{
								c	<-	"PONG"	
								time.Sleep(time.Duration(rand.Intn(10))	*	time.Second)
				}	
}

func	printer(c	chan	string)	{	
				for	{
								fmt.Println(<-	c)	
								time.Sleep(time.Second	*	1)	
				}	
}

func	main()	{	
				runtime.GOMAXPROCS(10)

				var	c	chan	string	=	make(chan	string)	
				go	pinger(c)	
				go	ponger(c)	
				go	printer(c)
				var	input	string
				fmt.Scanln(&input)	
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

goroutines: a function executing in parallel with the rest of your program, created with the go keyword.
parallel programming: writing programs that simultaneously use more than 1 core.
core: a unit of the CPU that can independently execute instructions.
channel: a builtin data structure in Go that lets you communicate between goroutines. It acts like a queue.

Glossary

